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GLOBAL ATTRACTORS OF INFINITE-DIMENSIONAL

NONAUTONOMOUS DYNAMICAL SYSTEMS. I

d.n. cheban

Abstract. The article is devoted to the in�nite-dimensional abstractnonautonomous
dynamical systems, which admit the compact global attractor. It is shown, that
nonautonomous dynamical system, which has the bounded absorbing (weakly absorb-
ing) set, also has a compact global attractor, if its operators of translation along the
trajectories are compact (asymptotically compact; satis�es the condition of Ladyzhen-
skaya). This results are precised and strengthened for the nonautonomous dynamical
systems with minimal basis. The conditions of existence of the compact global attrac-
tor for the skew-product dynamical systems (cocycles) are presented. The necessary
and su�cient conditions of the existence of compact global attractor are given in terms
of Lyapunov functions. The applications of obtained results for the di�erent classes
of the evolutionary equations are given.

During last years the ideas and methods developed in theory of �nite-dimensional
dynamical systems are actively used in theory of in�nite-dimensional systems [1-
9] and in functional-di�erential equations which generate them [2-3] and also in
di�erential equations with partial derivatives [1,4]. In the works of the author
[5,6] many important facts are gathered and systematize,which deal with abstract
in�nite-dimensional dynamical systems,which admit a compact global attractor.
The aim of the work is using for abstract nonautonomous dynamical systems with
in�nite-dimensional phase spaces some results, which were earlier established for au-
tonomous in�nite-dimensional systems or for nonautonomous �nite-dimensional sys-
tems [7,8]. Our point of view [7] in studying nonautonomous dissipative di�erential
equations is such that some abstract nonautonomous dynamical system which has a
compact global attractor is naturally put in correspondence to every nonautonomous
di�erential equation. Such method permits to solve a lot of questions, which appear
during studying dissipative di�erential equations,using the general theory of dy-
namical systems. Let us notice,that there is another point of view in studying this
problem: with every nonautonomous di�erential equation some double-parametric
family of mappings of phase space is connected (look,for example,at [10-13]). We
consider the �rst point of view to be better,as it permits to use the ideas,methods
and results of the theory of dynamical systems while studying di�erent classes of
nonautonomous evolutional equations .But there is su�ciently strong connection be-
tween the mentioned above methods of studying nonautonomous equations . More
precisely this question is discussed at the end of this article .
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x 1. Global attractors of autonomous dynamical systems.

Let (X; �) be the full metric space , R(Z) is a group of real numbers, S = R

or Z, S+ = fsjs 2 S; s � 0g and T (S+ � T ) is subsemigroup of group S. By
(X;T; �) de�ne a dynamical system on X and let W is some family of subsets of
X. A dynamical system (X;T; �) is called W -dissipative , if for any " > 0 and
M 2 W there is L(";M ) > 0 such that �tM � B(K; ") for all t � L(";M ), where
K is some �xed subset from X, which depends on W only; B(K; ") is open "-
neighborhood K and �tM = f�(x; t) = xtjx 2 Mg. Then the set K let us call by
attractor forW . The most interesting for applications are cases, when K is bounded
or compact and W = ffxgjx 2 Xg, W = C(X) (where C(X) is the family of all
compact subsets of X), W = fB(x; �x) : x 2 X; �x > 0 is �xed g or W = B (X)
(where B (X) is the family of all bounded subsets of X ).

The system (X;T; �) is called [1-5]:
- point-wise dissipative ,if there is K � X such that for all x 2 X

lim
t!+1

�(x � t;K) = 0; (1:1)

- compactly dissipative ,if the equality (1.1) takes place uniformly in x on com-
pacts from X ;

- locally dissipative ,if for any point p 2 X there is �p > 0 such that the equality
(1.1) takes place uniformly in x 2 B(p; �p) ;

- boundedly dissipative ,if the equality (1.1) takes place uniformly in x on every
bounded subset from X.

During studying dissipative systems we distinguish two cases , when K is compact
or bounded (but is not compact ). According to this the system (X;T; �) is called
point-wise k (b)-dissipative ,if (X;T; �) is point-wise dissipative and the set K,
mentioned in (1.1), is compact (bounded ). Analogically are de�ned de�nitions of
a compactly k ( b )-dissipative system and the other types of dissipativity . Let
(X;T; �) is compactly k- dissipative and K is a compact set , which is attractor of
all compact subsets of X. Suppose

J = 
(K); (1:2)

where 
(K) =
T
t�0

S
��t �

�K. We can show [2-3,7-8],that the set J , de�ned by the
equality (1.2), does not depend on selection of the attractor K, and it is characterized
by the properties of the dynamical system (X;T; �) itself only . The set J is called
the Levinson centre of the compact dissipative system (X;T; �). Let us mention
some facts, which we will need below .

Theorem 1.1 [2-3,7-8]. If (X;T; �) is compactly dissipative dynamical system and
J is its Levinson centre , then:

1. J is invariant,that is �tJ = J for all t 2 T ;
2. J is orbitally stable , that is for any " > 0 there is �(") > 0 such that from
�(x; J) < � it follows �(x � t; J) < " for all t � 0;

3. J is an attractor of the family of all compact subsets from X;
4. J is the maximal compact invariant set of (X;T; �).
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The dynamical system (X;T; �) is called [5-8]:
- locally completely continuous ,if for any p 2 X there are � = �p > 0 and

l = lp > 0 such that �lB(x; �) is relatively compact ;
- weakly dissipative ,if there is a nonempty compact K � X such that !x\K 6= ;

for any x 2 X. Then the compact K is called a weak attractor of the system
(X;T; �).

Theorem 1.2 [6-7]. If the dynamical system (X;T; �) is weakly dissipative and
locally completely continuous , then (X;T; �) is locally k - dissipative.

Lemma 1.3[1,5]. Let B 2 B (X), then the next conditions are equivalent :

1. for any fxkg � B and tk ! +1 the sequence fxk � tkg is relatively compact;
2. a.
(B) 6= ; and is compact;

b.
(B) is invariant and

lim
t!+1

sup
x2B

�(x � t;
(B)) = 0: (1:3)

3. there is a nonempty compact K � X such that

lim
t!+1

sup
x2B

�(x � t;K) = 0: (1:4)

Remark 1.1. From theorem 1.1 and lemma 1.3 it follows , that the dynamical
system (X;T; �) is boundedly k-dissipative then and only then ,when it is compactly
k-dissipative and its Levinson centre J is the attractor of the family of all bounded
subsets fromX. In this case the set J is called by the global attractor of the dynamical
system (X;T; �).

According to [9], we will say that the dynamical system (X;T; �) satis�es the
condition of Ladyzhenskaya ,if for any set M 2 B (X) it is carrying out one of the
conditions 1.- 3.of lemma 1.1.

Theorem 1.4 [5,9]. Let (X;T; �) satis�es the condition of Ladyzhenskaya , then
the next conditions are equivalent :

1. there is a bounded set B0 � X such that for any x 2 X there will be � (x) > 0
such that x � t 2 B0 for all t � � ;

2. there is a bounded set B0 � X such that for any x 2 X there will be � (x) � 0
such that x � � 2 B0;

3. there is a nonempty compact K1 � X such that !x � K1 for all x 2 X;
4. there is a nonempty compact K2 � X such that !x \K2 6= ; for all x 2 X;
5. there is a nonempty compact set K3 � X such that for any bounded set
B � X takes place the equality

lim
t!+1

sup
x2B

�(x � t;K3) = 0: (1:5)

6. there is a bounded set B0 such that �tB � B0 for all t � L(B).

Theorem 1.5 [5]. Let (X;T; �) is pointwisely k-dissipative. In order to (X;T; �)
were locally dissipative ,it is necessary and su�ciently that for any p 2 X there will
be �p > 0 and a compact Kp such that

lim
t!+1

sup
x2B(p;�p)

�(x � t;Kp) = 0: (1:6)
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x 2. Global attractors of nonautonomous dynamical systems.

Let Y be a compact topological space , (E; h; Y ) is locally trivial banach strat-
i�cation [14] and j � j is the norm on (E; h; Y ) co-ordinate with the metric � on E
(that is �(x1; x2) = jx1 � x2j for any x1; x2 2 X such that h(x1) = h(x2) ). Let
us remember [7,15],that the three < (E; T1; �); (Y; T2; �); h > is called by a nonau-
tonomous dynamical system ,if h : E ! Y is an homomorphism of the dynamical
system (E; T1; �) on (Y; T2; �) .

A nonautonomous dynamical system < (E; T1; �); (Y; T2; �); h > we will call
pointwisely (compactly, locally, boundedly ) dissipative, if (E; T1; �) is so.

By Levinson centre of the compactly dissipative system < (E; T1; �),
(Y; T2; �); h > we will call Levinson centre of (E; T1; �).

Theorem 2.1. Let < (E; T1; �); (Y; T2; �); h > is a nonautonomous dynamical sys-
tem and for any bounded set M 2 B (X) there is l = l(M ) > 0 such that �l(M ) is
relatively compact (that is the dynamical system (E; T1; �) is completely continuous
), then the next conditions are equivalent :

1. there is a positive number r such that for any x 2 X there will be � = � (x) �
0 for which jx � � j < r;

2. the dynamical system < (E; T1; �); (Y; T2; �); h > is compactly dissipative
and

lim
t!+1

sup
jxj�R

�(x � t; J) = 0 (2:1)

for any R > 0,where J is Levinson centre (E; T1; �), that is the nonau-
tonomous system < (E; T1; �); (Y; T2; �); h > admits the compact global at-
tractor .

Proof. Evidently,from 2. it follows 1.. Let us show that in conditions of theorem
2.1 takes place also the opposite implication . Suppose A(r) = fx 2 Ej jxj � rg,
where r > 0 is the number �guring in condition 1.. As Y is compact and the banach
strati�cation (E; h; Y ) is locally trivial, then its null section � = f�yjy 2 Y ,where
�y is the null element of the layer Ey = h�1(y)g is compact and ,hence, the set
A(r) is bounded ,as A(r) � S(�; r) = fx 2 Ej j�(x; �) � rg . According to the
condition of the theorem for bounded set M there is a positive number l such that
�lM is relatively compact.Let x 2 M and � = � (x) � 0 such that x � � 2 M , then
x � (� + l) 2 K = �lM . Thus the nonempty compact K is a weak attractor of the
system (E; T1; �) and according to theorem 1.2 the dynamical system (E; T1; �) is
compactly dissipative. Let J is Levinson centre of (E; T1; �) and R > 0, then the
set A(R) = fx 2 Ej jxj � Rg, as it was noticed above, is bounded ,and for it there
will be a number l > 0 such that �lA(R) is relatively compact and as (E; T1; �) is
compactly dissipative, then its Levinson centre J , according to theorem 1.1 , attracts
the set �lA(R) , and ,hence , the equality (2.1) takes place. Theorem is proved .

Corollary 2.1. Let < (E; T1; �); (Y; T2; �); h > be a nonautonomous dynamical sys-
tem and vector strati�cation of (E; T1; �) is �nite-dimensional, then the conditions
1. and 2. of theorem 2.1 are equivalent .

This assertion follows from theorem 2.1 as for any r > 0 the set fx 2 Ej jxj � rg
is compact,if vector strati�cation of (E; h; Y ) is �nite-dimensional,and ,hence,the
dynamical system (E; T1; �) is completely continuous.
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Remark 2.1. For �nite-dimensional systems ( that is the strati�cation of (E; h; Y )
is �nite-dimensional ) theorem 2.1 was earlier proved in [16] .

Theorem 2.2. Let < (E; T1; �); (Y; T2; �); h > be a nonautonomous dynamical sys-
tem and (E; T1; �) satis�es the condition of Ladyzhenskaya ,then the conditions 1.
and 2. of theorem 2.1 are equivalent.

Proof. As Y is compact and (E; h; Y ) is locally trivial then for any R > 0 the set
fx 2 Ej jxj � Rg is bounded. According to the condition 1. of theorem 2.1 for any
x 2 E there is � = � (x) � 0 such that x � � 2 A(r) = fx 2 Ej jxj � rg. According
to theorem 1.4 the dynamical system (E; T1; �) is compactly dissipative. Let J is
Levinson centre of (E; T1; �) and R > 0 . As the set M = A(R) = fx 2 Ej jxj � Rg
is bounded , then according to the condition of the theorem and lemma 1.3 the set

(M ) 6= ;, is compact, invariant and the equality (1.3)takes place. As J is the
maximal compact invariant set in (E; T1; �) (look at theorem 1.1),then 
(M ) � J
and, hence, the equality (2.1) takes place. Theorem is proved .

The dynamical system (E; T1; �) is called [1-2] asymptotically compact, if for any
bounded close positively invariant set M 2 B(E) there is a nonempty compact, such
that the equality (1.4) takes place .

Remark 2.2. Let us notice that a dynamical system is asymptotically compact, , if
it satis�es one of the following two conditions : the dynamical system (E; T1; �) is
completely continuous or it satis�es the condition of Ladyzhenskaya . It is evident
,that the opposite assertion does not take place .

Theorem 2.3. Let < (E; T1; �); (Y; T2; �); h > be a nonautonomous dynamical sys-
tem and (E; T1; �) is asymptotically compact, then the next conditions are equivalent
:

1. there is a positive number R0 and for any R > 0 there will be l(R) > 0 such
that

j�txj � R0 (2:2)

for all t � l(R) and jxj � R ;
2. the dynamical system < (E; T1; �); (Y; T2; �); h > admit the compact global

attractor, that is it is compactly dissipative and for its Levinson centre J the
equality (2.1) takes place for any R > 0 .

Proof. Evidently from 2. it follows 1. , that is why for proving the theorem it
is su�ciently to show , that from 1. it follow 2. Let M0 2 B (E) , then there is
R > 0 such that M0 � A(R) = fx 2 Ej jxj � Rg. According to the condition 1.
for the given number R there will be l = l(R) > 0 such that (2.2) takes place and,
in particular, the set M =

S
f�tM0jt � l(R)g is bounded and positively invariant.

As (E; T1; �) is asymptotically compact ,for the set M there will be a nonempty
compact K for which the equality (1.4)takes place. For ending the proof of the
theorem it is su�ciently to cite theorem 2.2 . Theorem is proved .

Theorem 2.4. Let < (E; T1; �); (Y; T2; �); h > be a nonautonomous dynamical sys-
tem and the mappings �t = �(�; t) : E ! E(t 2 T1) are represented like a sum
�(x; t) = '(x; t) +  (x; t) for all t 2 T1 and
x 2 E
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and the conditions are ful�lled :

1. j'(x; t)j � m(t; r) for all t 2 T1; r > 0 and jxj � r , where m : T1�R+! R+

and m(t; r)! 0 for t! +1 ;
2. mappings  (�; t) : E ! E(t > 0) are conditionally completely continuous ,

that is  (A; t) is relatively compact for any t > 0 and a bounded positively
invariant set A � E .

Then the dynamical system (E; T1; �) is asymptotically compact.

Proof. Let A � E is a bounded set such that �+(A) =
S
f�tAjt � 0g is also

bounded , r > 0 and A � fx 2 Ej jxj � rg . Let us show , that for any fxkg � A
and tk ! +1 , the sequence fxk � tkg is relatively compact. We will convinced ,
that the set M = fxk � tkg may be covered by a compact " net for any " > 0 .
Let " > 0 and l > 0 such that m(l; r) < "=2 and let us represent M in the form
of uni�cation M1 [M2 , where M1 = fxk � tkg

k1
k=1 , M2 = fxk � tkg

+1
k=k1+1 and

k1 = maxfkjtk < lg. The set M2 is the subset of the set �l(�+(A)) the elements
of which we can represent in the form of '(x; l) +  (x; l)(x 2 �+(A)) . As the set
 (�+(A); l) is relatively compact, then it may be covered by a �nite "=2 net . Let
us notice that for any y 2 '(�+(A); l) there is x 2 �+(A) such that y = '(x; l) and
jyj = j'(x; l)j � m(l; r) < "=2 . that is why the null section � of the strati�cation of
(E; h; Y ) is an "=2 net of the set '(�+(A); l). Thus M2, and ,hence, M is covering
by a compact " net and as the space E is full ,then the set M = fxk � tkgis relatively
compact. Now for ending the proof of the theorem is su�ciently to cite the lemma
1.3 . Theorem is proved .

Remark 2.3. a. Theorem 2.4 generalizes on nonautonomous systems, and in au-
tonomous case it de�nes more precisely a well-known for autonomous systems fact
( look,for example,at [1; 17� 19] ).

b. For �nite-dimensional systems (that is when vector strati�cation of (E; h; Y ) is
�nite-dimensional ), theorems 2.1-2.3 are proved in [7,16], for in�nite-dimensional
systems partial results are contained in [20].

v. The assertion ,close to theorem 2.1 is contained in the work [21].

x 3.Global attractors of nonautonomous
dynamical systems with minimal base .

Everywhere in this paragraph we suppose that < (E; T1; �); (Y; T2; �) > is the
nonautonomous dynamical system, Y is a compact minimal set and (E; h; Y ) is a
locally trivial banach strati�cation .

Theorem 3.1. Let the next conditions are ful�lled :

1. (E; T1; �) is completely continuous , that is for any bounded set A � E there
is l = l(a) > O such that �l(A) is relatively compact;

2. all motions (E; T1; �) are bounded on T+, that is supfjx � tj jt 2 T+g < +1
for any x 2 E ;

3. there are y0 and R0 > 0 such that for any x 2 Ey0 there will be � = � (x) � 0
such that

jx � � j < R0: (3:1)
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Then the nonautonomous dynamical system < (E; T1; �); (Y; T2; �) > admit the com-
pact global attractor.

Proof. Let R > R0 , then for any x 2 E there is � = � (x) � 0 such that jx � � j < R
. If it were not so,then there will be R0 > R0 any x00 2 E such that

jx00 � � j > R0 (3:2)

for all � � 0. As the dynamical system (E; T1; �) is completely continuous and as it
takes place the boundedness on T+ of the motion �(x1; t) the point x1 is stable L+

and as Y is minimal ,then the set !x1 \Ey0 is nonempty ,and according to condition
(3.2) we have

jx � tj � R0 (3:3)

for all x 2 !x1 \ Ey0 and t � 0. Inequality (3.3) contradicts (3.1). This contradic-
tion proves the assertion we need. Now for ending the proof of the theorem it is
su�ciently to cite theorem 2.1 .

Remark 3.2. 1.For �nite-dimensional systems (that is vector strati�cation (E; h; Y )
is �nite-dimensional) theorem 3.1 increases theorem 2.6.1 from [22], exactly the con-
dition of uniform boundedness is changed for ordinary boundedness of trajectories of
(E; T1; �).

2.If the condition of minimality of Y in theorem 3.1 is taken away,then it is not
true even in the class of linear nonautonomous systems.

This is proved by the following example .

Example 3.3. Let us consider the linear di�erential equation

x0 = a(t)x; (3:4)

where a 2 C(R;R) is de�ned by the equality a(t) = �1 + sin t
1

3 . Let us remark the
next properties of the function a and the equation (3.4):

1. a0(t)! 0 for t! +1 ;
2. a(t) 2 [�2; 0] for all t 2 R ;
3. fa� j� � 0g is relatively compact in C(R;R), gde a� (t) = a(t+ � )(t 2 R);
4. !a 6= ; and is compact ;
5. all functions from !a are constant and b(t) = c 2 [�2; 0](t 2 R) for any
b 2 !a;

6. a(tn) = 0 then and only then , when tn = �1 + (�2 + 2�n)2 (n 2Z);
7. there is ftnkg � ftng such that a(t+ tnk)! b(t) and b(t) = 0 for all t 2 R ;
8. for any b 2 H+(a) = fa� j� 2 R+g the inequality

j'(t; x; b)j � jxj (3:5)

takes place for all x 2 R and t 2 R+, where '(t; x; b) is the solution of the
equation

y0(t) = b(t)y; (3:6)

going through the point x 2 R for t = 0;
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9. if b 2 !a n f0g, then b(t) = c < 0(t 2 R) and ,hence,

lim
t!+1

j'(t; x; b)j= 0 (3:7)

for all x 2 R ;
10. if b = 0(b 2 !a), then '(t; x; b) = x for all t 2 R.

Suppose Y = H+(a) and de�ne by (Y;R+; �) the dynamical system of displacements
on Y . Let X = R�Y and (X;R+; �) is a semigroup dynamical system on X, where
� = ('; �) (that is �((x; b); t) = ('(t; x; b); bt) for all (x; b) 2 X and t 2 R+). Then
< (X;R+; �); (Y;R+; �) > is a nonautonomous dynamical system, generated by the
equation (3.4), where h = pr2 : X ! Y . From the properties 1.-10.it follows , that
for the nonautonomous dynamical system < (X;R+; �); (Y;R+; �) >, generated by
the equation (3.4), all the conditions of theorem 3.1 are carried out ,except the
minimality of Y , and it has no the compact global attractor.

Corollary 3.4. Let (E; T1; �) be completely continuous and for any y 2 Y there is
R(y) � 0 such that

|{
lim

t!+1
jx � tj � R(y) (3:8)

for any x 2 Ey, then the nonautonomous dynamical system < (X;T1; �),
(Y; T2; �); h > admits the compact global attractor.

This assertion follows from theorem 3.1, if we will notice , that from condition
(3.8) it follows the boundedness on T+ of every motion from (X;T1; �) .

Theorem 3.5. Let the next conditions are carrying out :

1. (E; T1; �) is asymptotically compact, that is for any bounded semi-continuous
set A � E there is a nonempty compact KA such that

lim
t!+1

�(�tA;KA) = 0; (3:9)

2. (E; T1; �) is asymptotically bounded , that is for any bounded set A � E there
is l = l(A) � 0 such that [f�tAjt � lg is bounded ;

3. there are y0 2 Y and R0 > 0 such that (3.1) is ful�lled.

Then the nonautonomous dynamical system < (E; T1; �); (Y; T2; �); h > admits the
maximal compact attractor.

Proof. First, let us notice, that in conditions of theorem 3.5 the dynamical system
(E; T1; �) satis�es the condition of Ladyzhenskaya .Let R > R0, then for any x 2 E
there will be � = � (x) � 0 such that jx � � j < R. If we suppose that it is not so ,then
there will be x1 2 E and R0 > R0 such that

jx1 � � j � R0 > R0 (3:10)

for all � � 0 and, hence , !x1 \ Ey0 6= ;. That is why for any x 2 !x1 \ Ey0 the
inequality (3.3) takes place , but this contradicts (3.1) . Thus the assertion we need
is proved. Now for ending the proof of the theorem it is su�ciently to cite theorem
2.2 .
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Remark 3.6. Let us notice , that theorem 3.5 (like theorem 3.1) without demanding
the minimality of Y does not take place even in class of linear systems. The last
assertion is proved by the example 3.3 .

Theorem 3.7. Let (E; h; Y ) be a �nite-dimensional vector strati�cation, Y is a
compact minimal set and y0 2 Y , then the next conditions are equivalent:

1. the nonautonomous dynamical system < (E; T1; �); (Y; T2; �); h > is dissipa-
tive;

2. there is R > 0 such that

|{
lim

t!+1
jx � tj < R (3:11)

for all x 2 Ey0 and all motions (E; T1; �) are bounded on T+ ;
3. there is a positive number r such that for any x 2 Ey0 and l > 0 there will

be � = � (x) � l for which

jx � � j < r (3:12)

and all the motions (E; T1; �) are bounded on T+;
4. there is a nonempty compact K1 � E such that !x \K1 6= ; for all x 2 Ey0

and all the motions (E; T1; �) are bounded on T+;
5. there is a nonempty compact K2 � E such that !x 6= ; and !x � K2 for all
x 2 Ey0 and all the motions (E; T1; �) are bounded on T+ ;

6. there is a positive number R0 such that for any R1 > 0 there will be l(R1) > 0,
that

jx � tj < R0 (3:13)

for all t � L(R1); jxj � R1(x 2 Ey0) and all the motions (E; T1; �) are
bounded on T+.

Proof. Implications 1. =) 6: =) 2: =) 5: =) 4: =) 3: are evident. According
to theorem 3.1 from 3. it follows 1..Theorem is proved.

x 4. Global attractors of skew products of dynamical systems.

Let W and Y be full metrical spaces, (Y; T; �) is a group dynamical system on Y
and < W;'; (Y; T; �) > is a skew product over (Y; T; �) with the layer W (that is
' is a continuous mapping W � Y � T+ in W ,satisfying conditions: '(0; w; y) = w
and '(t + �; w; y) = '(t; '(�; w; y); y� ) for all t 2 T+; � 2 T;w 2 W and y 2 Y ),
X = W � Y; (X;T+; �) is a semi-group dynamical system on X de�ned by the
equality � = ('; �) and < (X;T+; �); (Y; T; �); h > (h = pr2) is the corresponding
nonautonomous dynamical system.

If M �W , then suppose


y(M ) =
\

t�0

[

��t

'(�;M; y�� ) (4:1)

for every y 2 Y , where y�� = �(y;�� ).
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Lemma 4.1. The next assertions take place:

1. the point p 2 
y(M ) then and only then , when there are tn ! +1 and
fxng �M such that p = lim

n!+1
'(tn; xn; y�tn);

2. U (t; y)
y(M ) � 
y�t(M ) for all y 2 Y and t 2 T+, where U (t; y) = '(t; �; y)
;

3. if it were any point w 2 
y(M ) the motion '(t; w; y) is de�ned on T ;
4. if there is a nonempty compact K � W such that

lim
t!+1

�('(t;M; y�t);K) = 0; (4:2)

then 
y(M ) 6= ;,is compact,

lim
t!+1

�('(t;M; y�t);
y(M )) = 0 (4:3)

and
U (t; y)
y(M ) = 
y�t(M ) (4:4)

for all y 2 Y and t 2 T+ .

Proof. The �rst assertion of the lemma directly follows from the equality (4.1).
Let w 2 
y(M ), then there are tn ! +1 and xn �M such that

w = lim
n!+1

'(tn; xn; y
�tn)

and ,hence,

'(t; w; y) = lim
n!+1

'(t; '(tn; xn; y
�tn); y) = lim

n!+1
'(t+ tn; xn; y

�tn): (4:5)

Thus '(t; w; y) 2 
y�t(M ), that is U (t; y)
y(M ) � 
y�(M ) for all y 2 Y and t 2 T+.
From the equality (4.5) it follows , that the motion '(t; w; y) is de�ned on T like

'(t + tn; xn; y�tn ) is de�ned on [�tn;+1) and tn ! +1.
The fourth assertion of the lemma is proved like theorem 1.1.1 and lemma 1.1.3

from [8].

The skew product over (Y; T; �) with the layer W we will de�ne by a compactly
dissipative one , if there is a nonempty compact K � W such that

lim
t!+1

supf�(U (t; y)M;K)jy 2 Y g = 0 (4:6)

for any M 2 C(W ).

Lemma 4.2. Let Y is compact and < W;'; (Y; T; �) > is a skew product over
(Y; T; �) with the layer W . In order to < W;'; (Y; T; �) > , were a compact dissi-
pative one , it is necessary and su�ciently that the semi-group autonomous system
(X;T+; �) should be a compactly dissipative one .

This assertion directly follows from the corresponding de�nitions .
We will say , that the space X possesses the (S)-property, if for any compact

K � X there is a coherent set M � X such that K �M .
By the whole trajectory of the semi-group dynamical system (X;T+; �) (of the

skew product < W;'; (Y; T; �) > over (Y; T; �) with the layer W ), which goes
through the point x 2 X((u; y) 2 W � Y ) we will call the continuous mapping

 : T ! X(� : T ! W ) which satis�es conditions : 
(0) = x(�(0) = u) and
�t
(� ) = 
(t + � )('(t+ �; u; y) = '(t; 
(� ); y � t)) for all t 2 T+ and � 2 T .
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Theorem 4.3. Let Y be compact, < W;'; (Y; T; �) > is compactly dissipative and
K is the nonempty compact, �guring in the equality (4.6), then :

1. Iy = 
y(K) 6= ;, is compact, Iy � K and

lim
t!+1

�(U (t; y�t)K; Iy) = 0 (4:7)

for every y 2 Y ;
2. U (t; y)Iy = Iy�t for all y 2 Y and t 2 T+;
3.

lim
t!+1

�(U (t; y�t)M; Iy) = 0 (4:8)

for all M 2 C(W ) and y 2 Y ;
4.

lim
t!+1

supf�(U (t; y�t)M; I)jy 2 Y g = 0 (4:9)

for any M 2 C(W ), where I = [fIyjy 2 Y g;
5. Iy = pr1Iy for all y 2 Y , where J is a Levinson centre of (X;T+; �), and

,hence , I = pr1J ;
6. the set I is compact;
7. the set I is coherent if one of the next two conditions is ful�lled :

a. T+ = R+ and the spaces W and Y are coherent;
b. T+ = Z+ and the space W � Y possesses the (S)-property or it is

coherent and locally coherent.

Proof. The �rst two assertions of the theorem follows from lemma 4.1 .
If we suppose that the equality (4.8) does not take place , then there will be

�0 > 0; y0 2 Y;M0 2 C(W ); fxng �M0 and tn ! +1 such that

�(U (tn; y
�tn
0 )xn; Iy0) � �0: (4:10)

According to the equality (4.7) for �0 and y0 2 Y there will be t0 = t0(�0; y0) > 0
such that

�(U (t; y�t0 )K; Iy0) <
�0
2

(4:11)

for all t � t0. Let us notice , that

U (tn; y
�tn
0 )xn = U (t0; y

�t0
0 )U (tn � t0; y

�tn
0 )xn: (4:12)

As < W;'; (Y; T; �) > is compactly dissipative,then the sequence fU (tn�t0; y
�tn
0 )xng

we may consider to be a convergent one. Suppose x = lim
n!+1

'(tn � t0; xn; y
�tn
0 ),

then according to lemma 4.1 x 2 

y
�t0
0

(M0) and U (t0; y
�t0
0 )x 2 
y0 (M0). From the

equality (4.6) it follows that x 2 K. Passing to the limit in (4.10), when n ! +1
and taking into consideration (4.12) we will get

U (t0; y
�t0
0 )x =2 B(Iy0 ; "0): (4:13)

On the other hand as x 2 K, then from (4.11) we have

U (t0; y
�t0
0 )x 2 B(Iy0 ;

"

2
); (4:14)
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,and this contradicts (4.13). This contradiction proves the assertion we need .
Let us prove now the equality (4.9). If we suppose that it does not take place ,

then there will be "0 > 0;M0 2 C(W ); yn 2 Y; fxng � M0 and tn ! +1 such that

�(U (tn; y
�tn
n )xn; I) � "0: (4:15)

As Y is compact, then the sequences fyng and fyn � tng we may consider to be
convergent. Suppose y0 = lim

n!+1
yn and y = lim

n!+1
yn � tn. According to (4.8) for

the number "0 > 0 and y0 2 Y there will be t0 = t0("0; y0) such that

�(U (t0; y0
�t)M0; Iy0) <

"0
2

(4:16)

for all t � t0("0; y0). Let us notice , that

U (tn; y
�tn
n )xn = U (t0; y

�t0
n )U (tn � t0; y

�tn
n )xn: (4:17)

As < W;'; (Y; T; �) > is compactly dissipative,then the sequence fU (tn�t0; y�tnn )xng
we may consider to be a convergent one.Suppose x0 = lim

n!+1
'(tn � t0; xn; y

tn
n ) and

let us notice, that according to (4.6) x0 2 K. From the equality (4.17) it follows,that
U (tn; y�tnn )xn ! U (t0; y�t0 )x0 and ,hence, from (4.15) we have

U (t0; y0
�t0)x0 2 B(Iy0 ;

"0
2
): (4:18)

The last inclusion contradicts (4.17), and this �nishes the proving of the fourth
assertion of the theorem.

Let us prove the �fth assertion of the theorem.In order to do this ,let us notice,
that w 2 Iy , if '(t; w; y) is de�ned on T and '(T;w; y) is relatively compact. Really,
as w = '(t; '(�t; w; y); y�t) for all t 2 T , then from the equality (4.8) follows the
inclusion we need. Thus we get the following description of the set Iy : Iy = fw 2 W j
at least one whole trajectory of < W;'; (Y; T; �) >g goes through the point (x; y).
Now it remains to notice ,that Levinson centre J is compact and consists of the
whole trajectories of (X;T+; �) , and ,hence, pr1Jy � Iy for all y 2 Y .

The compactness of the set I follows from the equality I = pr1J , from the com-
pactness of J and from the continuity of pr1 : X !W .

The last assertion follows from the next: in conditions of theorem 4.3 Levinson
centre J of the dynamical system (X;T+; �), according to corollary 1.8.7 and theorem
1.8.15 from [8] , is coherent, and ,hence, I as a continuous image of a coherent set,
also is coherent . Theorem is proved in full.

Remark 4.4 Theorem 4.3 intensi�es and de�nes more precisely the main results
of [11-12,23].
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