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GLOBAL ATTRACTORS OF INFINITE-DIMENSIONAL
NONAUTONOMOUS DYNAMICAL SYSTEMS. 1

D.N. CHEBAN

ABSTRACT. The article is devoted to the infinite-dimensional abstract nonautonomous
dynamical systems, which admit the compact global attractor. It is shown, that
nonautonomous dynamical system, which has the bounded absorbing (weakly absorb-
ing) set, also has a compact global attractor, if its operators of translation along the
trajectories are compact (asymptotically compact; satisfies the condition of Ladyzhen-
skaya). This results are precised and strengthened for the nonautonomous dynamical
systems with minimal basis. The conditions of existence of the compact global attrac-
tor for the skew-product dynamical systems (cocycles) are presented. The necessary
and sufficient conditions of the existence of compact global attractor are given in terms
of Lyapunov functions. The applications of obtained results for the different classes
of the evolutionary equations are given.

During last years the ideas and methods developed in theory of finite-dimensional
dynamical systems are actively used in theory of infinite-dimensional systems [1-
9] and in functional-differential equations which generate them [2-3] and also in
differential equations with partial derivatives [1,4]. In the works of the author
[5,6] many important facts are gathered and systematize,which deal with abstract
infinite-dimensional dynamical systems ,which admit a compact global attractor.
The aim of the work is using for abstract nonautonomous dynamical systems with
infinite-dimensional phase spaces some results, which were earlier established for au-
tonomous infinite-dimensional systems or for nonautonomous finite-dimensional sys-
tems [7,8]. Our point of view [7] in studying nonautonomous dissipative differential
equations is such that some abstract nonautonomous dynamical system which has a
compact global attractor is naturally put in correspondence to every nonautonomous
differential equation. Such method permits to solve a lot of questions, which appear
during studying dissipative differential equations,using the general theory of dy-
namical systems. Let us notice that there is another point of view in studying this
problem: with every nonautonomous differential equation some double-parametric
family of mappings of phase space is connected (look,for example,at [10-13]). We
consider the first point of view to be better,as it permits to use the ideas,methods
and results of the theory of dynamical systems while studying different classes of
nonautonomous evolutional equations .But there is sufficiently strong connection be-
tween the mentioned above methods of studying nonautonomous equations . More
precisely this question is discussed at the end of this article .

(© D.N. CHEBAN , 1998
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§ 1. Global attractors of autonomous dynamical systems.

Let (X, p) be the full metric space , R(Z) is a group of real numbers, S = R
or Z, Sy = {s|s € S,s > 0} and T(Sy C T) is subsemigroup of group S. By
(X,T,m) define a dynamical system on X and let W is some family of subsets of
X. A dynamical system (X,7T,7) is called W-dissipative , if for any ¢ > 0 and
M € W there is L(g, M) > 0 such that 7'M C B(K,¢) for all t > L(e, M), where
K is some fixed subset from X, which depends on W only; B(K,¢) is open e-
neighborhood K and n'M = {m(z,t) = xt|x € M}. Then the set K let us call by
attractor for W. The most interesting for applications are cases, when K is bounded
or compact and W = {{z}|z € X}, W = C(X) (where C'(X) is the family of all
compact subsets of X), W = {B(z,d;) : ¢ € X,6, > 0is fixed } or W = B(X)
(where B(X) is the family of all bounded subsets of X ).

The system (X, T, 7) is called [1-5]:

- point-wise dissipative if there 1s K C X such that for all x € X

lim p(x-t,K)=0; (1.1)

t—+o00

- compactly dissipative |if the equality (1.1) takes place uniformly in # on com-
pacts from X ;

- locally dissipative ,if for any point p € X there is d, > 0 such that the equality
(1.1) takes place uniformly in « € B(p,d,) ;

- boundedly dissipative |if the equality (1.1) takes place uniformly in # on every
bounded subset from X.

During studying dissipative systems we distinguish two cases , when K is compact
or bounded (but is not compact ). According to this the system (X, 7T, ) is called
point-wise k (b)-dissipative ,if (X, 7T, 7) is point-wise dissipative and the set K,
mentioned in (1.1), is compact (bounded ). Analogically are defined definitions of
a compactly k ( b )-dissipative system and the other types of dissipativity . Let
(X,T,m) is compactly k- dissipative and K is a compact set , which is attractor of
all compact subsets of X. Suppose

J = Q(K), (1.2)

where Q(K) = (),5qU,>; 77 K. We can show [2-3,7-8] that the set J, defined by the
equality (1.2), does not depend on selection of the attractor K, and it is characterized
by the properties of the dynamical system (X, T, x) itself only . The set J is called
the Levinson centre of the compact dissipative system (X, 7, 7). Let us mention
some facts, which we will need below .

Theorem 1.1 [2-3,7-8]. If (X, T, ) is compactly dissipative dynamical system and
J 1s its Levinson centre , then:
1. J is invariant, that is 7*J = J for allt € T';
2. J is orbitally stable , that is for any € > 0 there is §(¢) > 0 such that from
ple, J) < d it follows p(x -1, J) < e for allt > 0;
3. J is an attractor of the family of all compact subsets from X;
4. J is the maximal compact invariant set of (X, T, ).
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The dynamical system (X, T, ) is called [5-8]:

- locally completely continuous ,if for any p € X there are 6 = J, > 0 and
[ =1, > 0 such that 7! B(z, §) is relatively compact ;

- weakly dissipative ,if there is a nonempty compact K C X such that w, N K # {§
for any # € X. Then the compact K is called a weak attractor of the system

(X, T, ).

Theorem 1.2 [6-7]. If the dynamical system (X, T, ) is weakly dissipative and
locally completely continuous , then (X, T, r) is locally k - dissipative.

Lemma 1.3[1,5]. Let B € B(X), then the next conditions are equivalent :
1. for any {xr} C B and ty — +oo the sequence {xy -1y} is relatively compact;
2. af2(B) # 0 and is compact;
b.Q(B) is invariant and

I -4,9(B)) = 0. 1.3
m sup plz -1, Q(B)) (1.3)

3. there 1s a nonemply compact K C X such that

I -, K)=0. 1.4
Jm_sup plz -4, K) (1.4)

Remark 1.1. From theorem 1.1 and lemma 1.3 it follows , that the dynamical
system (X, T, w) is boundedly k-dissipative then and only then ,when it is compactly
k-dissipative and its Levinson centre J is the attractor of the family of all bounded
subsets from X. In this case the set J s called by the global attractor of the dynamical
system (X, T, ).

According to [9], we will say that the dynamical system (X, T, 7) satisfies the
condition of Ladyzhenskaya ,if for any set M € B(X) it is carrying out one of the
conditions 1.- 3.of lemma 1.1.

Theorem 1.4 [5,9]. Let (X, T, 7) satisfies the condition of Ladyzhenskaya , then
the next conditions are equivalent :

1. there is a bounded set By C X such that for any x € X there will be T(x) > 0

such that x -1 € By for allt > 7;

2. there is a bounded set By C X such that for any x € X there will be 7(x) > 0
such that © - T € By,
there is a nonemply compact K1 C X such that w, C Ky for all x € X;
there is a nonempty compact Ko C X such that w, N Ko # 0 for allz € X;
5. there is a nonemptly compact set Kz C X such that for any bounded sel

B C X takes place the equality

t_l}g_noo :1612 plz-t, K3) = 0. (1.5)

6. there is a bounded set By such that 7'B C By for all t > L(B).

i

Theorem 1.5 [5]. Let (X,T,m) is pointwisely k-dissipative. In order to (X, T, )
were locally dissipative it 1s necessary and sufficiently that for any p € X there will
be 6, > 0 and a compact K, such that

lim sup p(x-t, K,) =0. 1.6
t—>+°°xeB(p,<s,,)( r) (1.6)
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§ 2. Global attractors of nonautonomous dynamical systems.

Let Y be a compact topological space , (E, h,Y) is locally trivial banach strat-
ification [14] and |- | is the norm on (E, h,Y) co-ordinate with the metric p on F
(that is p(x1,®2) = |#1 — @2| for any 1,22 € X such that h(x1) = h(xz2) ). Let
us remember [7,15],that the three < (E, Ty, 7), (Y, T2,0),h > is called by a nonau-
tonomous dynamical system ,if 4 : £ — Y is an homomorphism of the dynamical
system (E,T1,7) on (Y, T2, 0) .

A mnonautonomous dynamical system < (E,Ty,n), (Y, T2, 0),h > we will call
pointwisely (compactly, locally, boundedly ) dissipative, if (E, T}, ) is so.

By Levinson centre of the compactly dissipative system < (F,Ty,7),
(Y, T2, 0), h > we will call Levinson centre of (£, Ty, 7).

Theorem 2.1. Let < (E,Ty,7),(Y,Ts, 0),h > is a nonautonomous dynamical sys-
tem and for any bounded set M € B(X) there is | = [(M) > 0 such that 7' (M) is
relatively compact (that is the dynamical system (E,Ty, ) is completely continuous
), then the next conditions are equivalent :

1. there is a positive number r such that for any x € X there will be 7 = 7(z) >
0 for which |x - 7| <r;

2. the dynamical system < (E,Ti,n),(Y,T2,0),h > is compactly dissipative
and

lim sup p(x-t,J)=0 (2.1)

for any R > 0,where J is Levinson centre (E,Ty, ), that is the nonau-
tonomous system < (E, Ty, n), (Y, T2, 0), h > admits the compact global at-
tractor .

Proof. Evidently,from 2. it follows 1.. Let us show that in conditions of theorem
2.1 takes place also the opposite implication . Suppose A(r) = {x € F| |z| < r},
where 7 > 0 1s the number figuring in condition 1.. As Y is compact and the banach
stratification (F, h,Y) is locally trivial, then its null section © = {f,|y € Y ,where
0, is the null element of the layer B, = h™'(y)} is compact and ,hence, the set
A(r) is bounded ,as A(r) C S(@,r) = {x € F| |p(x,6) < r} . According to the
condition of the theorem for bounded set M there is a positive number [ such that
7' M is relatively compact.Let # € M and 7 = 7(x) > 0 such that -7 € M , then
z-(r+1) € K =xtM. Thus the nonempty compact K is a weak attractor of the
system (F, Ty, 7) and according to theorem 1.2 the dynamical system (F,T1,7) is
compactly dissipative. Let J is Levinson centre of (E, Ty, 7) and R > 0, then the
set A(R) ={z € F| |#| < R}, as it was noticed above, is bounded ,and for it there
will be a number { > 0 such that 7' A(R) is relatively compact and as (E, Ty, ) is
compactly dissipative, then its Levinson centre J, according to theorem 1.1 | attracts
the set 7' A(R) , and jhence , the equality (2.1) takes place. Theorem is proved .

Corollary 2.1. Let < (E, Ty, m), (Y, T2, 0),h > be a nonautonomous dynamical sys-
tem and vector stratification of (F,T1, ) is finite-dimensional, then the conditions
1. and 2. of theorem 2.1 are equivalent .

This assertion follows from theorem 2.1 as for any r > 0 the set {x € E| || <r}
is compact,if vector stratification of (X, h,Y) is finite-dimensional,and jhence the
dynamical system (FE, T}, m) is completely continuous.
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Remark 2.1. For finite-dimensional systems ( that is the stratification of (E,h,Y)
is finite-dimensional ) theorem 2.1 was earlier proved in [16] .

Theorem 2.2. Let < (E, Ty, n), (Y, T2, 0), h > be a nonautonomous dynamical sys-
tem and (E, Ty, ) satisfies the condition of Ladyzhenskaya ,then the conditions 1.
and 2. of theorem 2.1 are equivalent.

Proof. AsY is compact and (F, h,Y) is locally trivial then for any R > 0 the set
{x € F| |z| < R} is bounded. According to the condition 1. of theorem 2.1 for any
z € F there is 7 = 7(x) > 0 such that - 7 € A(r) = {x € E| |z| < r}. According
to theorem 1.4 the dynamical system (F, Ty, ) is compactly dissipative. Let .J is
Levinson centre of (E, 71, 7) and R > 0. As the set M = A(R) = {x € F| |[#| < R}
is bounded , then according to the condition of the theorem and lemma 1.3 the set
Q(M) # 0, is compact, invariant and the equality (1.3)takes place. As J is the
maximal compact invariant set in (E, 71, 7) (look at theorem 1.1),then Q(M) C J
and, hence, the equality (2.1) takes place. Theorem is proved .

The dynamical system (E, T}, 7) is called [1-2] asymptotically compact, if for any
bounded close positively invariant set M € B(E) there is a nonempty compact, such
that the equality (1.4) takes place .

Remark 2.2. Let us notice that a dynamical system s asymptotically compact, | if
it satisfies one of the following two conditions : the dynamical system (E, Ty, m) is
completely continuous or it satisfies the condition of Ladyzhenskaya . It is evident
,that the opposite assertion does not take place .

Theorem 2.3. Let < (E, Ty, n), (Y, T2, 0), h > be a nonautonomous dynamical sys-
tem and (E, Ty, ) is asymptotically compact, then the next conditions are equivalent

1. there is a positive number Ry and for any R > 0 there will be [(R) > 0 such
that
|r'z| < Ro (2.2)

for allt > l(R) and |z| <R ;

2. the dynamical system < (E,T1,7),(Y,T2,0),h > admit the compact global
attractor, that is it 1s compactly dissipative and for its Levinson centre J the
equality (2.1) takes place for any R >0 .

Proof. Evidently from 2. it follows 1. | that is why for proving the theorem it
is sufficiently to show , that from 1. it follow 2. Let My € B(E) , then there is
R > 0 such that My C A(R) = {x € E| |z| < R}. According to the condition 1.
for the given number R there will be [ = [(R) > 0 such that (2.2) takes place and,
in particular, the set M = [J{#"My|t > I(R)} is bounded and positively invariant.
As (E, Ty, n) is asymptotically compact for the set M there will be a nonempty
compact K for which the equality (1.4)takes place. For ending the proof of the
theorem 1t is sufficiently to cite theorem 2.2 . Theorem is proved .

Theorem 2.4. Let < (E, Ty, n), (Y, T2, 0), h > be a nonautonomous dynamical sys-
tem and the mappings © = w(,t) : E — E(t € T\) are represented like a sum
m(x,t) = o(x,t) +Y(x,t) for allt € Ty and

r el
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and the conditions are fulfilled :

1. Je(x, t)| <m(t,r) foralt € Ty, r >0 and |x| <r, wherem : Ty xRy — Ry
and m(t,r) = 0 fort = 400 ;

2. mappings (-, 1) : £ — E(t > 0) are conditionally completely continuous ,
that is (A, 1) is relatively compact for any t > 0 and a bounded positively
wnvariant setl AC E .

Then the dynamical system (E, Ty, ) is asymptotically compact.

Proof. Let A C E is a bounded set such that ©+(A4) = [J{=' At > 0} is also
bounded , » > 0 and A C {& € E| |¢| < r} . Let us show , that for any {23} C A
and tp — 400 , the sequence {ay -1} is relatively compact. We will convinced |
that the set M = {ag - tx} may be covered by a compact ¢ net for any ¢ > 0 .
Let ¢ > 0 and [ > 0 such that m(l,r) < £/2 and let us represent M in the form
of unification My U My |, where My = {a ~tk}21:1 , My = {ag ~tk}:§21+1 and
k1 = max{k|t; < [}. The set M3 is the subset of the set (Xt (A)) the elements
of which we can represent in the form of p(z,1) + ¢(z,l)(z € ¥t (A)) . As the set
PY(XT(A),1) is relatively compact, then it may be covered by a finite /2 net . Let
us notice that for any y € (X1 (A),1) there is x € X1 (A) such that y = ¢(z,!) and
lyl = (2, )] <m(l,r) < e/2 . that is why the null section © of the stratification of
(E,h,Y) is an €/2 net of the set (X7 (A),l). Thus M>, and jhence, M is covering
by a compact € net and as the space F' is full ,then the set M = {zy, - g }is relatively
compact. Now for ending the proof of the theorem is sufficiently to cite the lemma
1.3 . Theorem is proved .

Remark 2.3. a. Theorem 2.4 generalizes on nonautonomous systems, and in au-
tonomous case it defines more precisely a well-known for autonomous systems fact
( look,for example,at [1,17—19] ).

b. For finite-dimensional systems (that is when vector stratification of (E,h,Y) is
finite-dimensional ), theorems 2.1-2.3 are proved in [7,16], for infinite-dimensional
systems partial results are contained in [20].

v. The assertion ,close to theorem 2.1 is contained in the work [21].

§ 3.Global attractors of nonautonomous
dynamical systems with minimal base .

Everywhere in this paragraph we suppose that < (F, Ty, 7), (Y, T, 0) > is the
nonautonomous dynamical system, Y is a compact minimal set and (E,k,Y) is a
locally trivial banach stratification .

Theorem 3.1. Let the next conditions are fulfilled :

1. (E,T1,m) is completely continuous , that is for any bounded set A C E there
is | = l(a) > O such that 7' (A) is relatively compact;

2. all motions (E, Ty, m) are bounded on Ty, that is sup{|z - t| |t € T4} < +0
foranyx € F ;

3. there are yo and Ry > 0 such that for any x € E,, there willbe 1= 1(2) > 0
such that

|z 7| < Ro. (3.1)
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Then the nonautonomous dynamical system < (E, Ty, m), (Y, Ta, o) > admit the com-
pact global attractor.

Proof. Let R > Ry, then for any # € F there is 7 = 7(2) > 0 such that |- 7| < R
. If it were not so,then there will be R’ > Ry any zf, € F such that

2} 7| > R (3.2)

for all 7 > 0. As the dynamical system (F, Ty, 7) is completely continuous and as it
takes place the boundedness on Ty of the motion m(z!,¢) the point z! is stable LT
and as Y is minimal ,then the set w1 Ny, is nonempty ,and according to condition
(3.2) we have

|z -t| > R (3.3)

for all # € w,: N Ey, and ¢ > 0. Inequality (3.3) contradicts (3.1). This contradic-
tion proves the assertion we need. Now for ending the proof of the theorem it is
sufficiently to cite theorem 2.1 .

Remark 3.2. 1.For finite-dimensional systems (that is vector stratification (E, h,Y)
is finite-dimensional) theorem 3.1 increases theorem 2.6.1 from [22], exactly the con-
dition of uniform boundedness s changed for ordinary boundedness of trajectories of
(E, Tl, 7T).

2.1If the condition of minimality of Y in theorem 3.1 is taken away,then it is not
true even in the class of linear nonautonomous systems.

This is proved by the following example .

Example 3.3. Let us consider the linear differential equation
' = a(t)z, (3.4)

where a € C(R, R) is defined by the equality a(t) = —1 + sints. Let us remark the
next properties of the function a and the equation (3.4):

a'(t) = 0 fort - 400 ;

a(t) € [-2,0] for allt € R ;

{a;|7 > 0} is relatively compact in C(R, R), rae a.(t) = a(t + 7)(t € R);
wq # 0 and is compact ;

all functions from w, are constant and b6(t) = ¢ € [-2,0](t € R) for any
bew

a(tn) = 0 then and only then , when ¢, = =14 (5 + 2mn)? (n € Z);

there is {tn, } C {tn} such that a(t +1,,) — b(¢t) and b(¢) =0 for allt € R ;
8. for any b € H* (a) = {a,|7 € Ry} the inequality

T W N =

-

|p(t, 2, b)] < |z] (3.5)

takes place for all x € R and t € Ry, where o(t, z,b) is the solution of the
equation

Y (t) = b(t)y, (3.6)

going through the point € R for ¢ = 0;
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9. if b € wy \ {0}, then b(t) = ¢ < 0(t € R) and ;hence,

Jim fe(t 2,0)] =0 (3.7)
forall x € R ;
10. if b = 0(b € wy), then (¢, 2,b) = « for all t € R.

Suppose Y = H*(a) and define by (Y, R, ¢) the dynamical system of displacements
onY. Let X =R xY and (X, Ry, 7) is a semigroup dynamical system on X, where
m = (p,0) (that is 7((x, b),t) = (p(t, 2, b),b) for all (#,0) € X and ¢ € R,). Then
< (X, Ry, m), (Y,Ri, o) > is a nonautonomous dynamical system, generated by the
equation (3.4), where h = pry : X — Y. From the properties 1.-10.it follows , that
for the nonautonomous dynamical system < (X, R4, ), (Y, R4, 0) >, generated by
the equation (3.4), all the conditions of theorem 3.1 are carried out ,except the
minimality of Y, and 1t has no the compact global attractor.

Corollary 3.4. Let (E,T1, ) be completely continuous and for any y € Y there is
R(y) > 0 such that

Jim -] < () (3.8)
for any = € E,, then the nonautonomous dynamical system < (X,Th, ),
(Y, Ta,0), h > admits the compact global attractor.

This assertion follows from theorem 3.1, if we will notice , that from condition
(3.8) it follows the boundedness on T} of every motion from (X, 7y, 7) .

Theorem 3.5. Let the next conditions are carrying out :

1. (E,T1,m) is asymptotically compact, that is for any bounded semi-continuous
set A C F there is a nonempty compact K 4 such that

. AN Q.
t_l}g_noo B(r* A, K4) = 0; (3.9)
2. (B, Ty, ) is asymptotically bounded , that is for any bounded set A C E there
is | = l(A) > 0 such that U{r* At > I} is bounded ;
3. there are yp € Y and Ry > 0 such that (3.1) is fulfilled.
Then the nonautonomous dynamical system < (E, Ty, 7),(Y,T2,0), h > admits the
maximal compact attractor.

Proof. First, let us notice, that in conditions of theorem 3.5 the dynamical system
(E, Ty, ) satisfies the condition of Ladyzhenskaya .Let R > Ry, then for any =z €
there will be 7 = 7(2) > 0 such that |z 7| < R. If we suppose that it is not so ,then
there will be z! € £ and R’ > Ry such that

let - 7| > R > Ry (3.10)

for all 7 > 0 and, hence , w1 N Ey, # @. That is why for any « € w,, N Ey, the
inequality (3.3) takes place , but this contradicts (3.1) . Thus the assertion we need
is proved. Now for ending the proof of the theorem it is sufficiently to cite theorem
2.2
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Remark 3.6. Let us notice , that theorem 3.5 (like theorem 3.1) without demanding
the minimality of Y does not take place even in class of linear systems. The last
assertion is proved by the example 3.3 .

Theorem 3.7. Let (E,h,Y) be a finite-dimensional vector stratification, Y is a
compact minimal set and yg € Y, then the next conditions are equivalent:

1. the nonautonomous dynamical system < (E, Ty, m), (Y, T2, 0), h > is dissipa-
Live;
2. there 1s R > 0 such that

lim |z -t|< R (3.11)

t—+o00

for all z € Ey, and all motions (E,T1, ) are bounded on Ty ;
3. there 1s a positive number r such that for any x € Ey, and [ > 0 there will
be T = T(x) >l for which

|z 7| <r (3.12)

and all the motions (E, Ty, ) are bounded on T, ;

4. there is a nonempty compact K1 C E such that wy N K1 # 0 for all x € Ey,
and all the motions (E, Ty, ) are bounded on T, ;

5. there is a nonempty compact Ky C E such that w, # 0 and w, C Ko for all
x € By, and all the motions (E, Ty, ) are bounded on Ty ;

6. there is a positive number Ry such that for any Ry > 0 there will be [(Ry) > 0,
that

|l‘~t| < Ry (313)

for all t > L(R1),|z| < Ri(x € Ey,) and all the motions (E, T, ) are
bounded on T} .

Proof. Implications 1. = 6. = 2. = 5. = 4. = 3. are evident. According
to theorem 3.1 from 3. it follows 1..Theorem is proved.

§4. Global attractors of skew products of dynamical systems.

Let W and Y be full metrical spaces, (Y, T, o) is a group dynamical system on Y
and < W, o, (Y,T,0) > is a skew product over (Y, T, o) with the layer W (that is
¢ is a continuous mapping W x Y x Ty in W satisfying conditions: ¢(0,w,y) = w
and ot + 7w, y) = ¢, o(r,w,y),y,) forallt € Ty, 7€ Tyw € Wand y € Y),
X =W x Y, (X, T, ) is a semi-group dynamical system on X defined by the
equality 7 = (p,0) and < (X, Ty, 7), (Y, T,0),h > (h = pra) is the corresponding
nonautonomous dynamical system.

If M C W, then suppose

QM) = () |J e(r, M,y77) (4.1)

T

for every y € Y, where y™ 7 = o(y,—7).
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Lemma 4.1. The next assertions take place:
1. the point p € Q,(M) then and only then , when there are t, — +oo and
{zn} C M such that p= lim @(t,, 2,y '");
- n—4oo

2. U y)Qy(M) CQye(M) forally €Y andt € Ty, where U(t,y) = (2, -, )

3. if it were any point w € Qy (M) the motion @(t,w,y) is defined on T;
4. of there 1s a nonempty compact K C W such that

dim Be(t, M,y™), K) =0, (4.2)
then Qy (M) # 0,is compact,
Jim B(p(t, M, y™), 2,(M)) = 0 (4.3)
and
U, y)y (M) = Qy.: (M) (4.4)

foralyeY andt €Ty .

Proof. The first assertion of the lemma directly follows from the equality (4.1).
Let w € Q, (M), then there are ¢, — +o0o and «,, C M such that

w = nBI-ll—loo Sp(tna L, y_tn)

and hence,
p(tw,y) = Tim o(t, (tn, zn, y i), y) = Jm o(t 4t 2, y='").  (4.5)

Thus ¢(t, w, y) € Qy.+ (M), that is U(t, y)Q, (M) C Q. (M) forally € Y and ¢t € T}.
From the equality (4.5) it follows | that the motion (¢, w, y) is defined on T like
o(t +tn, zn, y~ ") is defined on [—#,, +oo) and t,, — +oo.
The fourth assertion of the lemma is proved like theorem 1.1.1 and lemma 1.1.3

from [8].

The skew product over (Y, T, ¢) with the layer W we will define by a compactly
dissipative one | if there is a nonempty compact KX C W such that

Jim sup{(U(t, )M, K)ly e Y} =0 (4.6)

for any M € C'(W).

Lemma 4.2. Let Y is compact and < W, ¢, (Y, T,0) > is a skew product over
(Y, T, o) with the layer W. In order to < W, ¢, (Y, T,0) > , were a compact dissi-
pative one |, it is necessary and sufficiently that the semi-group autonomous system
(X, Ty, m) should be a compactly dissipative one .

This assertion directly follows from the corresponding definitions .

We will say , that the space X possesses the (S)-property, if for any compact
K C X there is a coherent set M C X such that K C M.

By the whole trajectory of the semi-group dynamical system (X,T4,m) (of the
skew product < W, ¢, (Y, T,0) > over (Y,T,0) with the layer W), which goes
through the point ¢ € X((u,y) € W x Y) we will call the continuous mapping
y:T = X(v : T = W) which satisfies conditions : (0) = #(v(0) = u) and
my(r) =yt + ) (et + Tu,y) = @(t,y(7),y -t)) forallt € T4 and 7€ T
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Theorem 4.3. Let Y be compact, < W, p, (Y, T,0) > is compactly dissipative and
K is the nonempty compact, figuring in the equality (4.6), then :

1. I, = Qy(K) # 0, is compact, I, C K and

Jim B(U( ™)K, 1) = 0 (4.7)

for everyy €Y,
2. U, y)ly =1y forally €Y andt € Ty ;

3.
. _t _
foral M e C(W) and y €Y ;
4.
im sup{g(U(t,y™ )M, I)ly €Y} =0 (4.9)

for any M € C(W), where I = U{I,|ly € Y},
5. Iy, = prily for all y € Y, where J is a Levinson centre of (X, T4, m), and
Jhence [, I = priJ;
6. the set I is compact;
7. the set I 1s coherent if one of the next two conditions s fulfilled :
a. Ty = Ry and the spaces W and Y are coherent;
b. Ty = Z4 and the space W X Y possesses the (S)-property or it is
coherent and locally coherent.

Proof. The first two assertions of the theorem follows from lemma 4.1 .
If we suppose that the equality (4.8) does not take place , then there will be
€0 >0,y €Y, My e C(W),{xp} C My and t,, = 400 such that

p(U(tn, y5 ") n, Iy,) > €o. (4.10)

According to the equality (4.7) for ¢y and yg € Y there will be tg = to(eg, y0) > 0
such that

Bty VK 1) < 5 (4.11)
for all ¢ > ty. Let us notice , that
U(t”’ y()_tn)x” = U(to, yO_tD)U(tn - th yo_t")l‘n (412)

As < W, ¢, (Y, T, a) > is compactly dissipative,then the sequence {U (t, —to, y5 " )&n}
we may consider to be a convergent one. Suppose T = lir_lr_l oty — to, 2p, yo_t"),
n— 400
then according to lemma 4.1 7 € Qy—tu (My) and U (t, yo_t”)f € Qy,(Mp). From the
0

equality (4.6) it follows that # € K. Passing to the limit in (4.10), when n — +o0
and taking into consideration (4.12) we will get

Ulto, ;)T ¢ B(Iy,, o). (4.13)

On the other hand as 7 € K, then from (4.11) we have

£

U(toa yO_tD)E € B(Iyoa §)a

(4.14)
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,and this contradicts (4.13). This contradiction proves the assertion we need .
Let us prove now the equality (4.9). If we suppose that it does not take place ,
then there will be gg > 0, My € C(W),yn € Y, {#,} C My and t, — +oo such that

p(U(tn, vy '™ )an, I) > eo. (4.15)

As Y is compact, then the sequences {y,} and {y, - t,} we may consider to be

convergent. Suppose yy = lir_lr_l Yo and ¥ = lir_l{l Yn - tn. According to (4.8) for
n— 400 n— 100

the number 5 > 0 and yo € Y there will be t5 = (20, yo) such that

g
B(U (to, yo~ )Mo, I,,) < 50 (4.16)
for all t > tg(ep, yo). Let us notice , that
Ultn, ¥ ") en = Ulto, yy ™ U (tn — to, Y5 ™) n. (4.17)

As < W, ¢, (Y, T,0) > is compactly dissipative,then the sequence {U (¢, —to, y;, ") zy }
we may consider to be a convergent one.Suppose ' = lir_lr_l o(tn —to, xn, yir) and
n— 400

let us notice, that according to (4.6) ' € K. From the equality (4.17) it follows,that
Ultn,y, "™ )en — Ulto,y~ ")z’ and ,hence, from (4.15) we have

Ulto,yo™")a" € B(Ly, 3)- (4.18)

The last inclusion contradicts (4.17), and this finishes the proving of the fourth
assertion of the theorem.

Let us prove the fifth assertion of the theorem.In order to do this et us notice,
that w € I, if p(t, w,y) is defined on T and (T, w, y) is relatively compact. Really,
as w = p(t,o(—t,w,y),y"") for all ¢ € T, then from the equality (4.8) follows the
inclusion we need. Thus we get the following description of the set I, : I, = {w € W]
at least one whole trajectory of < W, ¢, (Y, T,0) >} goes through the point (z,y).
Now it remains to notice jthat Levinson centre J is compact and consists of the
whole trajectories of (X, T4, 7) , and ,hence, priJ, C I, forall y € Y.

The compactness of the set I follows from the equality I = prqyJ, from the com-
pactness of J and from the continuity of pri : X — W.

The last assertion follows from the next: in conditions of theorem 4.3 Levinson
centre J of the dynamical system (X, T4, 7), according to corollary 1.8.7 and theorem
1.8.15 from [8] , is coherent, and jhence, I as a continuous image of a coherent set,
also 1s coherent . Theorem is proved in full.

Remark 4.4 Theorem 4.3 intensifies and defines more precisely the main results

of [11-12,23).
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