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ABSTRACT. In this paper we study the connection between the uniform asymptotic stability and the power-law
or exponential asymptotics of the solutions of infinite-dimensional systems (differential equations in Banach
spaces, functional differential equations, and completely solvable multidimensional differential equations).
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Krasovskii [1, 2], Zubov [3], and Coleman [4] showed that for homogeneous autonomous systems in a
finite-dimensional space the existence of a power-law asymptotics is equivalent to asymptotic stability.

Filippov [5, 6] generalized this result to homogeneous generalized differential equations.

Ladis [7] showed that in the general case this result does not apply to periodic systems. For nonau-
tonomous homogeneous systems (of order k£ = 1), uniform asymptotic stability is equivalent to exponential
stability (see, for example, [8]). Morozov [9] obtained a similar result for periodic generalized differential
equations.

The goal of the present paper is to study the connection between the uniform asymptotic stability and
the power-law (exponential) asymptotics of the solutions of infinite-dimensional systems. This problem
is studied and solved within the framework of general dynamical systems with infinite-dimensional phase
space. The general results obtained are applied to various differential equations with infinite-dimensional
phase spaces (such as ordinary differential equations in Banach spaces, functional differential equations,
some types of evolution partial differential equations, and completely solvable multidimensional differential
equations).

§1. Abstract dynamical systems

Throughout the following, we shall use the notation and terminology from [10, 11]. Recall some of the
terms. Suppose that (X, p) is a complete metric space, R (Z) is the group of real numbers (integers),
S=RorZ,and T=5; ={s:s€8, s>0}. Let p(xz,A) be the distance from the point = to the
set A, let C(X) be the set of all nonempty compact sets from X, and let 2% be the family of all bounded
closed subsets of X equipped with the Hausdorff metric.

By a dispersive dynamical system on X we mean a triple (X, T, f), where f is a mapping of T x X
into C'(X) satisfying the following conditions:

1) f(z,0) == (z € X);

2) f(f(:l?,tl), t2) = f(il?, t1 +t2) (CU €X, t1,lx € T);

3) B(f(z,t), f(zo,t0)) = 0 as @ — xy and ¢t — to, where 3(A, B) = sup{p(a, B) : a € A}.
A continuous one-to-one mapping ¢,: T — X is said to be a motion of a dispersive dynamical system
(X,T, f) issuing from a point x € X if

a) ¢z(0) =z;

b) (pw(tQ) € f((px(h),tg — t1) for any t1,t2 €T (tQ > tl).

The set of all motions issuing from a point = € X is denoted by ®,, and we write ®(f) = J{P, :
rzeX}.
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A dispersive dynamical system (X,T, f) is said to be a system with uniqueness (or an ordinary dy-
namical system) if for all x € X and ¢ € T the set f(x,t) is a singleton, i.e., a unique trajectory of the
dynamical system (X, T, f) passes through each point = € X .

By a nonautonomous dispersive dynamical system we mean a triple (X, T, f),(Y,T, o), h), where
(X,T, f) is a dispersive dynamical system on X, (Y, T, o) is an ordinary dynamical system on Y, and
h is a homomorphism of (X, T, f) onto (Y,T, o), i.e., a continuous mapping of X onto Y satisfying
the condition h(f(z,t)) = o(h(z),t) forall z € X and t € T.

Let (X,h,Y) be a locally trivial vector bundle with fiber E. An autonomous dynamical system
(X,Ry, f) is said to be homogeneous of order k € R if for any z € X, A > 0, and any ¢, € ®,, the
function ¢: T — X defined by the relation ¢ (t) = X, (A\¥~'t) is a motion of (X, T, f) issuing from the
point Az € X | ie., ¢ € )y, .

A nonautonomous dynamical system (X, T, f), (Y, T, o), h) is said to be homogeneous of order k =1
if the autonomous dynamical system (X ,T, f) is homogeneous of order k = 1.

Everywhere below we assume that the fiber bundle (X, h,Y") is normed. Set |A| = sup{|a| : a € A} if
A C X is bounded. Let X* be the stable manifold of the homogeneous system (X, T, f),(Y,T,0),h),
ie.,

s __ . H —
X° = {:U.a:EX, tlg_noo|f(m,t)| —0},

and © = {6, : y € Y}, where 8, is the zero element of X, is the zero section of the fiber bundle (X, h,Y").
Lemma 1.1. Let a nonautonomous system (X, T, f),(Y,T, o), h) be homogeneous of order k =1.
Then the following assertions are equivalent:

a) the zero section © of the fiber bundle (X, h,Y") is stable, i.e., for any ¢ > 0 there exists a d(g) > 0
such that |z| < § implies |f(z,t)| <e for all t > 0;
b) there exists a positive number N such that

|f(z, )] < Nlz| (1)
forall x € X and t > 0.

Proof. Let us show that a) implies b). Let &g = 1 and dy > 0 be such that |z| < Jp implies
|f(z,t)] <1 forall |z <d and t > 0. Now let € X and ¢, € ®,. Then, in view of the homogeneity
of the system (X, T, f), we have &o|z| Ly, € ®s5,12-12, and since f(x,t) = {p.(t) : pr € .} (see, for
example, [10]), from (1) we obtain |f(z,t)| < &, '|=| for all £ > 0 and = € X . The converse implication
is obvious. The lemma is proved. O

Lemma 1.2. Let the assumptions of Lemma 1.1 be valid. Then the following assertions are equivalent:

a) the zero section (X, h,Y) is uniformly asymptotically stable; i.e., © is stable, and there exists a
v > 0 such that
lim sup |f(z,t)| =0; (2)

Eoteo )<y

b) the following relation is valid:

lim sup |f(z,t)] =0, (3)

t—+o0 lo|<1
and there exists an N > 0 such that

sup |f(z, )] <N
lel<1

forall t > 0.
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Proof. Let usshow that a) implies b). By Lemma 1.1, it suffices to show that (2) implies (3). Let z € X
(lz] < 1), and let ¢, € ®,; then, in view of the homogeneity of (X, T, f), we have y|z|~ ¢, € @5 -1,,
and since f(z,t) = {pz(t) : pr € Y}, from (2) we obtain

sup |f(z,t)] <y~ sup |f(y,t)] =0
|z|<1 ly| <~

as t = +o00. In a similar way, we can prove the converse implication. The lemma is thereby proved. O
Remark 1.1. Lemma 1.1 and 1.2 are also valid for autonomous homogeneous (of order k > 1) systems.

Lemma 1.3. Let 9 be a family of functions m: Ry — Ry satisfying the conditions:

a) there exists an M > 0 such that 0 < m(t) < M for all t >0 and m € IM;
b) m(t) — 0 as t — +oo uniformly in m € M, ie., for any € > 0 and m € M there exists an
L(e, m) > 0 such that m(t) < e forall t > L(e,m).

Then we have the following assertion:
1) if m(t+ 1) < m(t)m(r) for all t,7 >0 and m € I, then there exist positive numbers N and v
such that m(t) < Ne="t for all t >0 and m € 9M;
2) if m(t+71) <m(t)m(rm*(t)) (> 1) forall t,7 >0 and m € M, then there exist positive
numbers a and b such that
m(t) < M(a+ bt)~'/ (=1 (4)
forall t > 0 and m € 9.
Proof. The first assertion of the lemma is an insignificant modification of a lemma due to Massera and

Sheffer [12, p. 167]. Let us prove the second assertion of the lemma. Let 7 > 0 be such that m(t) < 1/2
for all t > 7 and m € 9. Since

0<m(t) <M and m(t+7) < m(t)ym(rm®~'(t)) for all t,7 >0 and m € M,
we have

m(t) <M, 0<t<gqr, ¢g=2*"", (5)

and 1
m(t)§§, qr <t < 400, (6)
for all m € M. Set to =0 and t;41 =t; + 7q; (¢; = ¢*), and note that
mt) < 5 i1, (7
for all m € M. Indeed, according to (6), we have m(t;) < 2~! Moreover,
m(tiy1) = m(t; + 7q;) < m(t;)m(rg;m®~"(t;)) (8)

for all m € M. Suppose that (7) is valid for all i < n; then it follows from (8) that m(¢,41) < 1/2""1, since
g, m*~L(t,) > 7 (for any m € 9M) in view of the choice of ¢, and the inductive assumption (7). Thus it
follows from (5) and (7) that m(t) < 1/2" forall ¢t > t, and n > 1. Note that t, 11 = 7(¢"**—1)(¢—1)71,

and therefore
20471 -1 —1/(a-1)
27" = 2<7tn+1 + 1> .
T

Now let t € [tn, tnt1); then we have

2a71 -1 —1/(a=1)
775) .

27" <2 (1 +
-
It follows from (5) and (9) that

1— 21—a )‘1/(0‘_1)
—t

m(t) < M (21—6' +
-

for all £ >0 and m € M. By setting a = 2~ and b =7"1(1 — 2'79), we obtain the required assertion.
The lemma is proved. [
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Theorem 1.1. Let the dispersive nonautonomous dynamical system ((X,T, f), (Y ,T,0), h) be ho-
mogeneous of order k = 1. Then the following assertions are equivalent:

a) the zero section of the fiber bundle (X, h,Y’) is uniformly asymptotically stable;
b) there exist positive numbers N and v such that |f(z,t)] < Ne "|z| for all x € X and t > 0.

Proof. For the proof of Theorem 1.1, it suffices to establish the implication a)==-b), since the converse
assertion is obvious. Set

m(t) = sup |f(z,t)|. (10)
lz|<1
By Lemma 1.2, the mapping m: Ry — Ry is well defined by (10); moreover, 0 < m(t) < M (M >
m(0) = 1) and m(t) - 0 as t — +oo. Further, note that, in view of the first-order homogeneity of the
system (X, T, f),(Y,T,o),h), we have

miAr) 1 b)) =

sup |f(f(z,1),7)|

m(t) m(t) g1<1 m(t) lz|<1
su f@,t) T su z,T)| =m(r
§z£f<mw,ﬂémgw,ﬂ (")

for all ¢t,7 > 0. Now let z € X (|z| # 0). Then, since the system ((X,T,n),(Y,T,o),h) is homoge-
neous, we can write

1
10| < sup (£, 0] =m0,
|| l|<1

ie, |f(z,t)] <m(t)|z| for all £ >0 and = € X. Next, to complete the proof of the theorem, it suffices
to refer to Lemma 1.3. The theorem is proved. O

Theorem 1.2. For an autonomous homogeneous (of order k > 1) dispersive dynamical system
(X, R4, f) the following assertions are equivalent:

1) the zero motion (X, Ry, f) is uniformly asymptotically stable;
2) there exist positive numbers a and (3 such that

£ D] < (alal' = + p)=H/ =D (11)
forall t >0 and x € X .
Proof. Let us show that under the conditions of Theorem 1.2 assumption 1) implies 2). Let z € X

(z #0). Then, in view of the homogeneity of order k > 1 of the system (X,R;, f), we have

1 _ _
|—|f(w,t)| < sup |f(y, tlz|*")| = m(t|z*"),
z| lyl<1

and therefore
|f(z, t)] < |z m(t|z*") (12)

for all € X and t > 0, where m: Ry — Ry is defined by relation (10). According to Lemmas 1.1
and 1.2, and also Remark 1.1, the function m satisfies the assumptions of Lemma 1.3. Moreover, note
that

m(t-l-T)_ 1 su T T :LSU T ) = su L r -
w0 = i S M 7 = s s (70,7 = s (60, 7)
su f@,1) rmk1 m(rmk1
= \z\gp1 f( m(t) ’ (t)>‘ < ( (t))a
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o m(t+71) < m(t)m(T mk_l(t))

for all ¢,7 > 0. Now, to complete the proof of the required assertion, note that, by Lemma 1.3, there
exist numbers a, b > 0 for which inequality (4) holds, and (12) and (4) implies (11) if we set a = M *a
and g = M"'""Fp.
Let us now show that 2) implies 1). To this end, note that the function w: Ry x Ry — Ry defined by
the relation
w(r,t) = (art % + ﬂt)*l/(kfl)

is monotone increasing with respect to r for each ¢ > 0, and for a given r > 0 we have the relation

lim w(r,t)=0.

t——+oo
Since |f(z, t)] < w(r,t) for all |z| <r and t > 0, it follows that
m(t) = sup{|f(z,?)| : 2| <1} <w(1,1),

and therefore m is bounded and tends to 0 as t — +o00. By Lemma 1.2 and Remark 1.1, the zero motion
(X,Ry, f) is uniformly asymptotically stable. The proof of the theorem is complete. O

§2. Dynamical systems with multidimensional time

Recall that a set G C E is called a cone in a Banach space E if —t ¢ G whenever ¢t € G\ {0} and
the inclusion ¢t € G implies A\t € G for all A > 0.

Let G be a closed convex cone in E. A semigroup dynamical system (X, G, 7) is said to be a dynamical
system with multidimensional time.

A dynamical system (X,G, ) with multidimensional time G C E is called homogeneous of order k
(k>1)if n(Az,t) = Am(z, \¥1t) forall A\ >0, € E and t € G.

Lemma 2.1. Let m: G - Ry, 0 <m(t) < M (M > 1) and m(t) — 0 as ||t|| = +oo. Then the
following assertions are valid:

1) if m(t+ 1) <m(t)m(r) for all t,7 € G, then there exist positive numbers N and v such that
m(t) < Ne It (13)
for all t € G,
2) if m(t+71) < m(r)m(rm*='(t)) (a > 1) for all t,7 € G, then there exist positive numbers a

and b such that
m(t) < M(a+b|t]) "1/ (14)

forall t € G.

Proof. Set H = {h: h € G, ||h|| = 1} and my(A) = m(Ah) for all h € H and A > 0. Then the
family of functions 9t = {my, : h € H} satisfies the assumptions of Lemma 1.3, and therefore there exist
positive numbers a and b such that

mp(A) < M(a+ b))~
forall h € H and A > 0. Now let ¢t € G\ {0} and h = ¢t||t||"!. Then
m(t) = m(|[t][h) = mp([[¢]]) < M(a+ blJt) =/~

for all t € G. The lemma is proved. O
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Theorem 2.1. Let X be a Banach space, and let (X,G, ) be a homogeneous (of order k > 1)
dynamical system with multidimensional time. Then the following assertions are equivalent:

1) the zero motion (X, G, w) is uniformly asymptotically stable, i.e., for any € > 0 there exists a
d(e) > 0 such that ||z|| < ¢ implies ||n(z,t)|| < € for all t € G, and there exists a v > 0 such
that

lim ||7x(z,¢)|| =0
ll¢]]—=+o0

uniformly with respect to ||z|| < v;
2a) if k =1, then there exist positive numbers N and v such that

(e, )] < Ne~Il]jz]] (15)

forall x € X and t € G;
2b) if k > 1, then there exist positive numbers a and b such that

[l (a, t)]| < (allz(|** + sllel) /Y (16)
forall x € X and t € G.
Proof. Let us show that under the assumptions of Theorem 1.3 1) implies 2). Let x # 0. Then, in
view of the homogeneity (X, G, w) of order k (k > 1), we have

[l (e, O = ] -

(el H < Jlall m(elall*1) (17)

for all x € X and t € G, where
m(t) = sup |[n(z, ).
llzll<1

Note that the uniform asymptotic stability of the zero motion of the dynamical system (X, G, w) implies
that the function m: G — Ry defined by relation (17) satisfies the assumptions of Lemma 2.1, and
therefore it satisfies inequality (13) for £ =1 and (14) for k£ > 1. Inequalities (13), (14), and (17) imply
inequalities (15) and (16).

The proof of the fact that 2) implies 1) is carried out using the same reasoning as in Theorem 1.2. The
proof of the theorem is complete. [

Let (X,G, ) and (Y, G, o) be two dynamical systems with multidimensional time, and let h: X — Y
is a homomorphism from (X, G,n) to (Y, G, o). Then the triple (X,G, ), (Y,G,0),h) is called a
nonautonomous dynamical system with multidimensional time.

The nonautonomous dynamical system with multidimensional time ((X, G, w), (Y, G, 0), h) is said to
be homogeneous of order k = 1 if the triple (X, h,Y) is a vector fiber bundle and the autonomous system
(X, G, m) is homogeneous of order k =1.

Theorem 2.2. Let ((X,G,w),(Y,G,0),h) be a nonautonomous dynamical system with multidi-
mensional time. If (X,G,n), (Y, G, o), h) is homogeneous of order k = 1, then the following conditions
are equivalent:

a) the zero section of the fiber bundle (X, h,Y’) is uniformly asymptotically stable, i.e.,
al) for any € > 0 there exists a 6(¢) > 0 such that |z| < § implies |r(z,t)| <e for all t € G;
a2) there exists a v > 0 such that

|m(x, )] =0 (18)

lim
lIt]|—+o0

for |z| < 7; moreover, (18) holds uniformly in x;
b) there exist positive numbers N and v such that |n(z,t)] < Ne~"IItl|z| forall z € X and t € G.
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Proof. It is obvious that b) implies a); therefore, to complete the proof of Theorem 1.4, it suffices to
show that a) implies b). Set
m(t) = sup |m(x, )| (19)
o<1

Since the zero section of the dynamical system ((X,G,n), (Y, G, o), h) is uniformly asymptotically
stable and the system itself is homogeneous of order & = 1, the function m: G — R; satisfying the
assumptions of Lemma 2.1 is well defined by relation (19). Moreover, it follows from the fact that the
system ((X,G,n),(Y,G,0o),h) is homogeneous of order k =1 that

m(t + 1) < m(t)m(r) and |7 (z, t)| < |z|m(t)

for all t,7 € G and ¢ € X. According to the first assertion of Lemma 2.1, the function m satisfies
inequality (13), and therefore

|m(x,t)] < |zlm(t) < Ne "Itljz|  forall ze X and ted.
The proof of the theorem is complete. [

83. Ordinary differential equations in a Banach space

Let E be a real or complex Banach space with norm || - ||. Denote by C(R x E, E) the family of all
continuous functions F: R x E — E equipped with the open-compact topology. Consider the differential
equation

z=F(t, x), (20)

where F € C(R x E, E). Along with Eq. (20), we shall also consider the family of equations
y=Glt,y), (21)

where G € H(F) = {F, : 7 € R}, F, is the translation of the function F along t by 7, and the bar
denotes the closure in C(R x E, E).
A function F € C(R x E, E) is said to be regular if the following conditions are satisfied:

a) whatever v € E and G € H(F), Eq. (21) has a unique solution defined on Ry and issuing from
the point v at ¢ = 0; we denote this solution by ¢(t,v,G);
b) the mapping ¢: Ry x E x H(F) — E is continuous.
Note that condition a) also implies the following relation:
c) pt+7,v,G) =, p(r,v,G),G;) forall t, 7€ Ry, ve E and G € H(F).

As is well known (see, for example, [13-15]), Eq. (20) with a regular right-hand side determines the
nonautonomous dynamical system ((X,T, f),(Y,T,0),h), where Y = H(F), and (Y, R, o) is the
dynamical system of translations on H(F), X = ExY, f: Ry x ExY — E is the mapping defined
by the relation f(r, (v,G)) = (¢(t,v,G),G,) (1>0,v€E E,and G € H(F)),and h=pry: X - Y.
Applying Theorems 1.1 and 1.2 to the nonautonomous dynamical system thus constructed, we obtain the
corresponding assertions for equations of the form (20).

Theorem 3.1. Let FF € C(RX E, E) and F(t,\x) = AF(t,z) forallt e R, x € E and A > 0. Then
the following assertions are equivalent:

a) the zero solution of Eq. (20) is uniformly asymptotically stable;
b) there exist positive numbers N and v such that

le(t, v, G)II < Ne™||v]]

forallt >0, ve€ E, and G € H(F).
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Theorem 3.2. Suppose that Eq. (20) is autonomous, i.e., the right-hand side F' is independent of
t € R, and F(Ax) = \F(x) (k> 1) forall x € E and A > 0. Then the following assertions are
equivalent:

a) the zero solution of the equation & = F(z) is uniformly asymptotically stable;
b) there exist positive numbers « and 8 such that

lle(t, 2)|| < (af|lz||'=* + gt) ="/ k=D
forall t >0 and z € E.

Remark 3.1. a) Theorem 3.1 and 3.2 are also valid for differential equations with nonunique solutions
as well as for generalized differential equations, since, under certain regularity conditions for the right-
hand side F', the generalized differential equation & € F(t,z) determines a nonautonomous dispersive
dynamical system (for more details, see [11]).

b) Theorem 3.1 for generalized differential equations with right-hand side periodic in ¢ in a finite-
dimensional space was proved in [9].

c¢) Theorem 3.2 for finite-dimensional differential equations was proved in [1-4], and for generalized
differential equations in a finite-dimensional space it was proved in [5, 6].

d) Theorems 2.1 and 2.2 imply the existence of analogs of Theorems 3.1 and 3.2 also for completely
solvable differential equations in Banach spaces [16].

§4. Functional differential equations

Let r > 0, and let C([a, b], R") be the Banach space of all continuous functions ¢: [a, b] = R" with

norm sup. If [a,b] = [-r,0], then we set C = C([—r,0], R”). Suppose that ¢ € R, A > 0, and
ueC(lo—r,o0+ A],R"). For any t € [0, 0 + A], let us define u; € C' by the relation
ue(0) = u(t +6), —r <6 <0.

Denote by C(R x C', R™) the space of all continuous functions F: R x C — R™, equipped with open-
compact topology. Consider the differential equation

& =F(t, ), (22)
where F' € C(R x C, R"). Along with Eq. (22), consider the family of equations
y= G(ta yt)a (23)

where G € H(F) = {F; : 7 € R} . It follows from the general properties of functional differential equa-
tions [17] that Eq. (22) with a regular right-hand side F' naturally determines a nonautonomous dynamical
system (for more details, see [13]), which is constructed as follows. Set Y = H(F). By (Y, R, o) denote
the dynamical system of translations on YV, X = C x Y, and let (X, Ry, f) be a dynamical system
on X, where f7(z) = fT(v,G) = (¢ (-v,G),G;) forall 7 >0, ve C,and G € H(F); here ¢(-v, Q)
is the unique solution of Eq. (23) under the condition ¢(0, v, G) =v. Then

(X, Ry, f), (Y, R, 0), h)

is the nonautonomous dynamical system determined by Eq. (22), where h = pry: X — Y. Applying
Theorems 1.1 and 1.2 to the nonautonomous dynamical system thus constructed, we obtain the following
assertions.

Theorem 4.1. Let F € C(R x C,R"™) be regular, and let F(t, \z) = AF(t,z) forall te R, z € C,
and \ > 0. Then the following assertions are equivalent:

a) the zero solution of Eq. (22) is uniformly asymptotically stable;
b) there exist positive numbers N and v such that

lle(t, v, G)Il < Ne™""||v]
forallt >0, veC,and G € H(F).
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Theorem 4.2. For the autonomous functional differential equation
i = F(z) (24)
with a regular right-hand side F satisfying the condition F(Azx) = \FF(z) (k > 1) for all + € C and
A > 0, the following assertions are equivalent:
a) the zero solution of Eq. (24) is uniformly asymptotically stable;
b) there exist positive numbers « and 3 such that
lle(t, o)l < (allo]|*~* + gty /D
forall t >0 and v € C.
Remark 4.1. Theorems 4.1 and 4.2 also hold for functional differential equations with nonunique

solutions and for generalized functional differential equations if their the right-hand sides have certain
regularity.

§5. Quasilinear parabolic equations

Let E be a Banach space, and let A: D(A) — E be a linear closed operator with dense domain. An
operator A is called [18] sectorial if for some ¢ € (0,7/2), some M > 1, and some real a, the sector

Sa,w:{)‘:503|a‘rg(>‘_a)|s7ra )‘#a}

lies in the resolvent set p(A4) and [|[(IA—A)7!|| < M|A—a|~! forall A € S, ,. If A is a sectorial operator,
then there exists an a; > 0 such that Reo(A + a;I) > 0 (0(A) = C\ p(A4)). Let Ay = A+ aiI. For
0 < a < 1, one defines the operator [18]

sin T

+oo
AT = / AT+ Ap)7hd,
0

™

which is linear, bounded, and one-to-one. Set X® = D(A%), and let us equip the space X* with the
graph norm ||z||, = ||A¢z]] (z € X?), X? = E, and X! = D(A). Then X is a Banach space with
norm || - ||o and is densely and continuously embedded in E.
Consider the differential equation
T+ Ax=F(t,z), (25)

where F € C(R x X% FE) and C(R x X%, E) is the space all continuous functions equipped with open-
compact topology.
Along with Eq. (25), consider the family of equations

v+ Ay =G(t,y), (26)

where G € H(F) = {F, : 7 € R}. Regularity conditions for F are given in Theorems 3.3.3, 3.3.4, 3.3.6,
and 3.4.1 in [18].

Assuming that F' is regular, a nonautonomous dynamical system can be associated in a natural way
with Eq. (25). Namely, we set Y = H(F') and by (Y, R, o) denote the dynamical system of translations
on Y. Further,let X = X®xY ,andlet (X, R}, f) be the dynamical system on X defined by the relation
fT(v,G) ={p(r,v,G),G;), where p(r,v,G) is the unique solution of (26) defined on R* and satisfying
the condition ¢(0,v,G) = v. Finally, by setting h = pr,: X — Y, we obtain the nonautonomous system
(X, Ry, f),(Y,R, 0),h) determined by Eq. (25). Applying Theorem 1.1 to the last system, we obtain
the following assertion.

Theorem 5.1. Let F € C(Rx X%, E) be regular, and let F(t, \x) = AF(t,x) forallt e R, x € X%,
and A > 0. Then the following two assertions for Eq. (25) are equivalent:

a) the zero solution of Eq. (25) is uniformly asymptotically stable;
b) there exist positive numbers N and v such that

le(t, v, @)lla < Nem|v]la
forall t >0 and v € X¢.
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