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Abstract

One special class of the nonautonomous dynamical systems with

the global attractor in the paper is studies. These systems model the

properties of differential equations with convergence, i.e. the equations

having the global limit regime.

Introduction

In this paper we study the limit regimes of almost periodic equations

x′ = f(t, x), (0.1)

where x ∈ E((E, | · |) is a Banach space ), f : R × E → E is a closed

mapping and for any t0 ∈ R and x0 ∈ E the equation (0.1) admits a unique

solution x(t; t0, x0) defined for all t ≥ t0 and satisfying the initial condition

x(t; t0, x0) = x0.

A bounded (compact) solution p : R → E is said to be limit regime

if it is globally asymptotic stable ( see, for example [1]). There are many

works [1-4], where one studies systems with convergence, i.e. systems which

admit the limit regime. The majority of these works are devoted to the
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study of periodic equations and only in the last 15-20 years one starts to

study systematically the nonperiodical systems with convergence (see, for

exemple [5-13]). It is necessary to underline that the notion of system with

convergence is not satisfactory in the nonperiodical case.

In this paper we propose a more general point of view on the notion of

system with convergence (0.1). We study the systems with convergence in

the liame of general nonautonomous dynamical systems admitting the global

compact attractor with special property.

1 Nonautonomous dynamical systems with con-

vergence.

Let (X, ρ) and (Y, d) be complete metric spaces, R(Z) be a group of real

(integer) numbers, S = R or Z, S+ = {t ∈ S|t ≥ 0} and T(S+ ⊆ T) be a

subgroup of group S .

By (X, T, π) we denote a dynamical system on X and xt = π(t, x) = πtx.

Dynamical system (X, T, π) is called [14-17] compact dissipative, if there

exists a nonempty compact K ⊆ X such that

lim
t→+∞

ρ(xt, K) = 0 (1.1)

for all x ∈ X, moreover equality (1.1) holds uniformly with respect to x ∈ X

on each compact from X. In this case the set K is called attractor of family

of all compacts C(X) from space X .

We denote

J = Ω(K) =
⋂
t≥0

⋃
τ≥t

πτK,

then [14-17] the set J does not depend of the choice of attractor K and is

characterized by the properties of dynamical system (X, T, π) . The set J is

called [18] Levinson’s center of dynamical system (X, T, π).
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Let us mention some facts, which we will use below.

Will say that a space X has property (S), if for any compact K ⊆ X

there exists a connected set M ⊆ X such that K ⊆ M .

Theorem 1.1 [14-17] If (X, T, π) is a compact dissipative dynamical system

and J is its Levinson’s center, then:

1.J is invariant, i.e. πtJ = J for all t ∈ T ;

2. J is orbitally stable, i.e. for all ε > 0 there exists δ(ε) > 0 such that

ρ(x, J) < δ implies ρ(xt, J) < ε for all t ≥ 0;

3. J is attractor for the family of all compact subsets of X;

4. J is maximal compact invariant set of (X, T, π);

5. J is connected if the space X possesses the (S)-property.

Let Y be a compact metric space and (X, T1, π)((Y, T2, σ)) be a dynamical

system on X(Y ), (T1 ⊆ T2) and h : X → Y be a homomorphism of (X, T1, π)

onto (Y, T2, σ), then the triple < (X, T1, π), (Y, T2, σ), h > is called [13,19-20]

a nonautonomous dynamical system.

Let W and Y be complete metric spaces, (Y, S, σ) be a group dynamical

system on Y and < W,ϕ, (Y, S, σ) > be a skew product [21] (cocycle [22-23])

over (Y, S, σ) with fibre W , i.e. ϕ is a continuous mapping of W ×Y ×T into

W , satisfying the following conditions: ϕ(0, w, y) = w and ϕ(t + τ, w, y) =

ϕ(t, ϕ(τ, w, y), σ(τ, y)) for all t, τ ∈ T, w ∈ W and y ∈ Y .

We denote X = W ×Y and define on X a dynamical system (X, T, π) by

the equality π = (ϕ, σ) i.e. π(t, (w, y)) = (ϕ(t, w, y), σ(t, y)) for all t ∈ T and

(w, y) ∈ W × Y ,then the triple < (X, T, π), ((Y, S, σ), h >, where h = pr2,

is a nonautonomous dynamical system.

For any two bounded subsets A and B from X we denote by β(A, B)

the semi-deviation of A to B , i.e. β(A, B) = sup{ρ(a, B)|a ∈ A} and

ρ(a, B) = inf{ρ(a, b)|b ∈ B}.
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The skew product over (Y, S, σ) with fibre W is called [16] compact dis-

sipative, if there exists a nonempty compact K ⊆ W such that

lim
t→+∞

sup{β(U(t, y)M, K) : y ∈ Y } = 0 (1.2)

for all M ∈ C(W ), where U(t, y) = ϕ(t, ·, y).

Lemma 1.2 In order for the skew product < W,ϕ, (Y, S, σ) > over (Y, T, σ)

with fibre W to be compact dissipative, it is necessary and sufficiently that

the autonomous dynamical system (X, T, π) (X = W × Y and π = (ϕ, σ))

should be compact dissipative.

By an entire trajectory of semi-group dynamical system (X, T, π) (of skew

product < W,ϕ, (Y, S, σ) > over (Y, T, σ) with fibre W ), passing through

point x ∈ X ( (u, y) ∈ W×Y ) we mean a continuous mapping γ : S → X(ν :

S → W ) satisfying conditions : γ(0) = x(ν(0) = w) and γ(t + τ) = πtγ(τ)

(γ(t + τ) = ϕ(t, ν(τ), yτ)) for all t ∈ T and τ ∈ S.

Theorem 1.3 [16] Let Y be a compact, < W,ϕ, (Y, S, σ) > be compact dissi-

pative and K be a non-empty compact, appearing in the equality (1.2), then:

1. Iy = Ωy(K) 6= ∅, is compact, Iy ⊆ K and

lim
t→+∞

β(U(t, y−t)K, Iy) = 0

for every y ∈ Y , where

Ωy(M) =
⋂
t≥0

⋃
τ≥t

U(τ, y−τ )M

and y−τ = σ(−τ, y);

2. U(t, y)Iy = Iyt for all y ∈ Y and t ∈ T;

3.

lim
t→+∞

β(U(t, y−t)M, Iy) = 0 (1.3)
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for all M ∈ C(W ) and y ∈ Y ;

4.

lim
t→+∞

sup{β(U(t, y−t)M, I) : y ∈ Y } = 0

whatever is M ∈ C(W ), where I =
⋃
{Iy : y ∈ Y } ;

5. I = pr1J and Iy = pr1Jy, where J is a center of Levinson of (X, T, π)

and Jy = J
⋂

Xy;

6. the set I is compact ;

7. the set I is connected if the space W × Y has property (S).

A nonautonomous dynamical system < (X, T1, π), (Y, T2, σ), h > is said

to be convergent if the following conditions are valid:

a. the dynamical systems (X, T1, π) and (Y, T2, σ) are compact dissipa-

tive;

b. the set JX

⋂
Xy contains no more than one point for all y ∈ JY , where

Xy = h−1(y) = {x|x ∈ X, h(x) = y} and JX(JY ) is a Levinson’s centre of

dynamical system (X, T1, π)((Y, T2, σ)).

Let M ⊆ X and M×̇M = {(x1, x2)|x1, x2 ∈ M, h(x1) = h(x2)}.

Lemma 1.4 Let < (X, T1, π), (Y, T2, σ), h > be a nonautonomous dynamical

system, K ⊆ X be a compact invariant set and M = h(K). If the equality

lim
t→+∞

sup
(x1,x2)∈K×̇K

ρ(x1t, x2t) = 0 (1.4)

takes place, then the set Ky = K
⋂

Xy contains a single point for all y ∈ M .

Proof. Suppose that there exists y0 ∈ M such that Ky0 contains at least

two points x̄1 and x̄2(x̄1 6= x̄2). Since set K is invariant, then there exists

a trajectory ϕi, passing trough the point x̄i(i = 1, 2) such that ϕi(S) ⊆ K.

Let 0 < ε < ρ(x̄1,x̄2)
2

and L(ε) > 0, so that ρ(x1t, x2t) < ε for all t ≥ L(ε) and

(x1, x2) ∈ K×̇K. Thus, we have
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ρ(x̄1, x̄2) = ρ(πtϕ1(−t), πtϕ2(−t)) < ε (1.5)

for all t ≥ L(ε). The obtained contradiction shows that Ky contains a single

point for all y ∈ M. The lemma is proved.

A dynamical system (X, T, π) is said to be satisfying condition (A) if the

set
⋃
{πtK|t ≥ 0} is relatively compact for every K ∈ C(X) = {K|K ⊆ X

and K is compact }.
We denote by LY = {x|x ∈ X, so that at least one entire trajectory of

dynamical system (X, T, π) passes through x}.

Remark 1.5 For a compact dissipative system (X, T, π) we have LX = JX ,

where JX is a Levinson’s centre of (X, T, π) .

Theorem 1.6 Let (X, T, π) be a dynamical system satisfying the condition

(A) and (Y, T, σ) be compact dissipative, then the following conditions are

equivalent:

1. the set LX

⋂
Xy contains no more than one point for all y ∈ JY ;

2. every semi-trajectory Σ+
x = {xt| t ≥ 0} is asymptotically stable, i.e.

2.a. for all ε > 0 and p ∈ X there exists δ(ε, p) > 0 such that ρ(x, p) <

δ(h(x) = h(p)) implies ρ(xt, pt) < ε for any t ≥ 0.

2.b. there exists γ(p) > 0 such that ρ(x, p) < γ(p)(h(x) = h(p)) implies

lim
t→+∞

ρ(xt, pt) = 0.

3. a. for all ε and K ∈ C(X) there exists δ(ε, K) > 0 such that

ρ(x1, x2) < δ(h(x1) = h(x2), x1, x2 ∈ K) implies ρ(x1t, x2t) < ε for all t ≥ 0.

b. lim
t→+∞

ρ(x1t, x2t) = 0 for all (x1, x2) ∈ X×̇X

4. the equality (1.4) takes place for all K ∈ C(X).

Proof. We will prove that 1. implies 2.. Really, if we suppose that it is not

correct, then there are p0 ∈ X, ε0 > 0, pn → p0(h(pn) = h(p0)) and tn → +∞
so that

ρ(pntn, p0tn) ≥ ε0. (1.6)
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Since (X, T, π) satisfies the condition (A), then we may suppose that the

sequences {pntn} and {p0tn} are convergent. Letting p̄ = lim
n→+∞

pntn, p̄0 =

lim
n→+∞

p0tn and taking into consideration (1.6) we will have p̄ 6= p̄0. On the

other hand h(p̄) = lim
n→+∞

h(pn)tn = lim
n→+∞

h(p0)tn = h(p̄0) = ȳ ∈ JY and

according to the lemma 4 [10] p̄, p̄0 ∈ LX

⋂
Xȳ, but in virtue of condition 1.

we have p̄ = p̄0. The obtained contradiction proves the necessary affirmation.

Now we will note that 1. implies 2.b.. To prove this implication it is

sufficient to show that

lim
t→+∞

ρ(x1t, x2t) = 0 (1.7)

for all (x1, x2) ∈ X×̇X. Assuming the contrary we obtain

ρ(x0
1tn, x

0
2tn) ≥ ε0. (1.8)

Dynamical system (X, T, π) satisfies the condition (A) and, consequently,

we may assume that sequences {x0
i tn}(i = 1, 2) and {y0tn}(y0 = h(x0

1) =

h(x0
2)) are convergent. We denote by x̄0

i = lim
n→+∞

x0
i tn and ȳ0 = lim

n→+∞
y0tn,

then x̄0
1, x̄

0
2 ∈ LX

⋂
Xȳ0 and according to condition 1. x̄0

1 = x̄0
2. The last

equality and inequality (1.8) are contradictory. This contradiction proves

the necessary affirmation.

We will show that 2. implies 3. . Note that

lim
t→+∞

ρ(xt, pt) = 0 (1.9)

for all p ∈ X and x ∈ Xq(q = h(p)). In fact, we denote by Gq = {x|x ∈ X

such that the equality (1.9) takes place } and suppose that Gq 6= Xq. In virtue

of condition 2. Gq is open in the Xq. Let Γq = ∂Gq(∂Gq is the boundary

of Gq) and p̄ ∈ Γq, then B(p̄, γ(b̄))
⋂

(Xq \ Gq) 6= ∅(B(p̄, γ(b̄)) = {x|h(x) =

h(p̄), ρ(x, p̄) < γ(p̄)}. It is easy to see that the last relations are not satisfied

simultaneously and, consequently, Γq = ∅ for all q ∈ Y , i.e. Xq = Gq. Let

K ∈ C(X) and ε > 0, then there exists δ(ε, K) > 0 such that ρ(x1, x2) <

δ(h(x1) = h(x2), x1, x2 ∈ K) implies ρ(x1t, x2t) < ε for any t ≥ 0. Assuming
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the contrary, we obtain K0 ∈ C(X), ε0 > 0, δn → 0(δn > 0), {xi
n} ⊆ K0(i =

1, 2) and tn → +∞ such that ρ(x1
n, x

2
n) < δn and

ρ(x1
ntn, x

2
ntn) ≥ ε0 (1.10)

Since K0 is a compact we may suppose that sequences {xi
n}(i = 1, 2) are

convergent and we denote by x̄ = lim
n→+∞

x1
n = lim

n→+∞
x2

n(x̄ ∈ K0). According

to condition 2. for ε0 > 0 and x̄ ∈ K0 there exists δ( ε0

3
, x̄) > 0 so that

ρ(x, x̄) < δ( ε0

3
, x̄)(h(x) = h(x̄)) implies ρ(xt, x̄t) < ε0

3
for all t ≥ 0. Since

xi
n → x̄(i = 1, 2), then there exists n̄ such that ρ(xi

n, x̄) < δ( ε0

3
, x̄)(n ≥ n̄)

and, consequently,

ρ(x1
nt, x

2
nt) ≤

2ε0

3
(1.11)

for all t ≥ 0 and n ≥ n̄. But the inequalities (1.10) and (1.11) are contradic-

tory. Thus we showed that 2. implies 3. .

We will prove that 3. implies 4.. If we suppose the contrary, then there

exist ε0 > 0, K0 ∈ C(X), tn → +∞ and {xi
n} ⊆ K0(i = 1, 2; h(x1

n) = h(x2
n))

such that the inequality (1.10) takes place. We may assume without loss

of generality that sequences {xi
n}(i = 1, 2) are convergent, because K0 is

compact. Let xi = lim
n→+∞

xi
n, 0 < ε < ε0 and δ( ε

3
, K0) > 0 be chosen according

to condition 3.a.. Since h(x1) = h(x2) and x1, x2 ∈ K0, then for ε
3

there

exists L( ε
3
, x1, x2) > 0 so that ρ(x1t, x2t) < ε

3
for all t ≥ L( ε

3
, x1, x2) and,

consequently,

ρ(x1
ntn, x

2
ntn) ≤ ρ(x1

ntn, x
1tn) + ρ(x1tn, x

2tn) + ρ(x2tn, x
2
ntn) < ε (1.12)

for sufficiently large n. The inequalities (1.12) and (1.10) are contradictory.

Thus the necessary affirmation is proved.

Finally, we note that 4. implies 1. . In fact, if we suppose that there exists

y0 ∈ JY such that LX

⋂
Xy0 contains at least two points x1 and x2(x1 6= x2)

and denoting by K a compact invariant set such that x1, x2 ∈ K, we will

have x1, x2 ∈ Ky0 = K
⋂

Xy0 . On the other hand, according to lemma 1.4
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Ky0 contains no more than one point. The obtained contradiction proves the

theorem 1.2 .

Corollary 1.7 Let (X, T, π) and (Y, T, σ) be two compact dissipative dynam-

ical systems, then the following conditions are equivalent:

1. a nonautonomous dynamical system < (X, T, π), (Y, T, σ), h > is con-

vergent;

2. every semi-trajectory
∑+

x (x ∈ X) is asymptotically stable;

3. 3.a and 3.b from theorem 1.6 are fulfilled;

4. the equality (1.4) takes place for all K ∈ C(X).

Theorem 1.8 Let < (X, T, π), (Y, T, σ), h > be a nonautonomous dynami-

cal system, (Y, T, σ) be compact dissipative and its Levinson’s centre JY be

minimal ( i.e. every semi-trajectory
∑+

y (y ∈ JY ) is dense in JY ), then the

following conditions are equivalent:

1. nonautonomous dynamical system < (X, T, π), (Y, T, σ), h > is con-

vergent;

2. dynamical system (X, T, π) satisfies condition (A) and for every K ∈
C(X) the equality (1.4) takes place.

Proof. In virtue of the corollary 1.7, 1. implies 2. . We will show the

converse assertion. Let K ∈ C(X), then
∑+

K =
⋃
{
∑+

x |x ∈ K} is relatively

compact and according to lemma 4 [10] the set

Ω(K) =
⋂
t≥0

⋃
τ≥t

πτK

is nonempty, compact, invariant and, consequently, h(Ω(K)) ⊆ Ω(h(K)) ⊆
JY , because JY is a maximal compact invariant set in Y . Thus JY is minimal,

then the equality

h(Ω(K)) = JY (1.13)
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takes place. We note that Ω(K1) = Ω(K2) for all K1 and K2 from C(X).

In fact, since M = Ω(K1)
⋃

Ω(K2) is compact and invariant and in virtue

of minimality of JY , we have h(M) = JY . On the other hand, according to

lemma 1.4 the set My = M
⋂

Xy contains a single point for every y ∈ JY .

We have Ω(Ki)
⋂

Xy ⊆ M
⋂

Xy(i = 1, 2) and Ω(K1)
⋂

Xy = Ω(K2)
⋂

Xy =

M
⋂

Xy for any y ∈ JY and, consequently, Ω(K1) = Ω(K2) for all K1 and K2

from C(X). From this it follows that (X, T, π) is compact dissipative and ac-

cording to theorem 1.6 < (X, T, π),

(Y, T, σ), h > is convergent.

Corollary 1.9 Let < (X, T, π), (Y, T, σ), h > be a nonautonomous dynam-

ical system, (Y, T, σ) be compact dissipative, JY be minimal and (X, T, π)

satisfies the condition (A), then the conditions 1.-4. from corollary 1.7 are

equivalent.

Theorem 1.10 Suppose that the following conditions are fulfilled:

1. let < (X, T, π), (Y, T, σ), h > be a nonautonomous dynamical system ;

2. (Y, T, σ) is compact dissipative;

3. (X, T, π)is locally compact, i.e. for all x ∈ X there exist δ = δx > 0

and l = lx > 0 such that πlB(x, δx) is relatively compact.

In order for nonautonomous dynamical system < (X, T, π), (Y, T, σ), h >

to be convergent it is necessary and sufficient that every semi-trajectory
∑+

x

of dynamical system (X, T, π) should be relatively compact and that system

< (h−(JY ), T, π), (JY , T, σ), h > be convergent, where JY is Levinson’s centre

of system (Y, T, σ).

Proof. The necessity of theorem is evident. Now we will show that under the

conditions of theorem system (X, T, π) is point dissipative. To this end it is

sufficient to show that the set ΩX =
⋃
{ωx|x ∈ X} is compact. We note that

h(ωx) ⊆ ωh(x) ⊆ JY and, consequently, ωx ⊆ h−1(JY ). Since ωx is compact
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and invariant, then ωx ⊆ J̄ , where J̄ is the Levinson’s centre of dynamical

system (h−1(JY ), T, π). Thus ΩX ⊆ J̄ and, consequently, ΩX is compact.

In virtue of theorem 1.3.1 [13], the point dissipativeness and compact dis-

sipativeness for the locally compact dynamical systems are equivalent and,

consequently,(X, T, π) is compact dissipative. Let JX be a Levinson’s center

of (X, T, π) , then h(JX) ⊆ JY and, consequently, JX ⊆ h−1(JY ). Since J̄

is a maximal compact invariant set in h−1(JY ), then JX ⊆ J̄ . From this it

results that JX

⋂
Xy ⊆ J̄

⋂
Xy for all y ∈ JY and, consequently, JX

⋂
Xy

contains no more than one point for any y ∈ JY . The theorem is proved.

Theorem 1.11 Suppose that the following conditions are fulfilled:

1. let < (X, T, π), (Y, T, σ), h > be a nonautonomous dynamical system ;

2. (Y, T, σ) is compact dissipative;

3. there exists a point y0 ∈ Y such that Y = H+(y0). A nonautonomous

dynamical system < (X, T, π), (Y, T, σ), h > will be convergent if and only if

the following conditions are fulfilled:

a. dynamical system (X, T, π) satisfies the condition (A);

b. set LX

⋂
Xy contains no more than one point for any y ∈ JY = ωy0 .

Proof. The necessity of theorem is evident. Let x0 ∈ Xy0 , then h(H+(x0)) =

H+(y0) and h(ωx0) = ωy0 . We denote that h(ΩX) ⊆ ΩY ⊆ JY = ωy0 and since

ωx0 ⊆ ΩX , then h(ΩX) = ωy0 . Since ΩX ⊆ LX and LX

⋂
Xy contains no

more than one point for every y ∈ JY = ωy0 , we have ωx0

⋂
Xy = ΩX

⋂
Xy

for all y ∈ JY and, consequently, ΩX = ωx0 . Thus ΩX = ωx0 is compact

and, consequently, the dynamical system (X, T, π) is point dissipative. We

have that (X, T, π) is point dissipative and satisfies the condition (A) and

according to the theorem 1.5 [24] (X, T, π) is compact dissipative. We denote

by JX a Levinson’s centre of dynamical system (X, T, π) , then JX ⊆ LX and,

consequently, JX

⋂
Xy contains no more than one point for any y ∈ JY . The

theorem is proved.
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A point y0 ∈ Y is called [24-26] asymptotically stationary (asymptoti-

cally ω- periodic, asymptotically almost periodic, asymptotically recurrent)

if there exists a stationary ( ω− periodic , almost periodic, recurrent ) point

q ∈ Y such that

lim
t→+∞

d(y0t, qt) = 0. (1.14)

Remark 1.12 a. Let Y = H+(y0) = {y0t|t ≥ 0} be compact, then the dy-

namical system (Y, T, σ) is compact dissipative and JY = ωy0(ωy0 =
⋂ ⋃

τ≥t

στy0).

b. Let y0 be asymptotically stationary (asymptotically ω- periodic, asymp-

totically almost periodic, asymptotically recurrent) and Y = H+(y0), then

(Y, T, σ) is compact dissipative and the set JY = ωy0 is minimal.

A point x ∈ X is called [25,26] comparable with regard to the recurrence

property in the limit with a point y ∈ Y if the inclusion Ly ⊆ Lx takes place,

where Ly = {{tn}|tn → +∞ and {ytn} is convergent}.
It is known [25,26] that if Ly ⊆ Lx, then the point x possesses the same

character of recurrence property in the limit as point y ∈ Y. In particular,

if the point y ∈ Y is asymptotically stationary (asymptotically ω- periodic,

asymptotically almost periodic, asymptotically recurrent) and Ly ⊆ Lx, then

the point x will be asymptotically stationary (asymptotically ω- periodic,

asymptotically almost periodic, asymptotically recurrent) .

Theorem 1.13 Let y ∈ Y be asymptotically stationary (asymptotically ω-

periodic, asymptotically almost periodic, asymptotically recurrent) and Y =

H+(y0), then the nonautonomous dynamical system < (X, T, π), (Y, T, σ), h >

will be convergent if and only if the following conditions are fulfilled:

a. the dynamical system (X, T, π) satisfies condition (A);

b. every point x ∈ X is comparable with regard to the recurrence prop-

erty in the limit with a point y = h(x) and, in particular, x is asymptoti-

cally stationary (asymptotically ω- periodic, asymptotically almost periodic,

asymptotically recurrent);
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c. for any ε > 0 and K ∈ C(X) there exists δ = δ(ε, K) > 0 such that

ρ(x1, x2) < δ(h(x1) = h(x2); x1, x2 ∈ K) implies ρ(x1t, x2t) < ε for all t ≥ 0.

d. the equality lim
t→+∞

ρ(x1t, x2t) = 0 takes place for all (x1, x2) ∈ X×̇X;

Proof. The necessity of conditions a.,c. and d. is assured by corollary 1.7 .

Now we will show that under the conditions of theorem the condition b. takes

place. Let x ∈ X and y = h(x), then according to the convergence of nonau-

tonomous dynamical system < (X, T, π), (Y, T, σ), h > the set H+(x) =

{xt|t ≥ 0} is compact. We note that ωx

⋂
Xq ⊆ JX

⋂
Xq for all q ∈ ωy and

since

< (X, T, π), (Y, T, σ), h > is convergent, then ωx

⋂
Xq contains a single point.

According to theorem 1 [27] the point x is comparable with regard to the re-

currence property in the limit with point y. If y ∈ H+(y0), then it is evident

that point y will be asymptotically stationary (asymptotically ω- periodic,

asymptotically almost periodic, asymptotically recurrent) and, consequently,

the point x possesses the same character of recurrence property in the limit

as point y does.

We will show that the conditions a., b., c. and d. imply the convergence

of nonautonomous dynamical system < (X, T, π), (Y, T, σ), h >. First of all,

according to condition b. we have that ωx 6= ∅ is compact, minimal and

h(ωx) = ωy0 for all x ∈ X. We note that ωx

⋂
Xq contains a single point for

every q ∈ ωy0 . In the opposite case there exist q0 ∈ ωy0 , p1, p2 ∈ ωx

⋂
Xq0(p1 6=

p2) and tin → +∞(i = 1, 2) such that xtin → pi(i = 1, 2) as n → +∞. We

note that ytin → q0(i = 1, 2) as n → +∞, where y = h(x). Let t̄2n−1 = t1n and

t̄2n = t2n for every n ∈ N, then {t̄n} ∈ Ly and, consequently, {t̄n} ∈ Lx, i.e.

{xtn} is convergent, therefore p1 = p2. The last equality contradicts to the

choice of points p1 and p2. The obtained contradiction proves the necessary

assertion. Now we will prove that ωx1

⋂
Xq = ωx2

⋂
Xq for all x1, x2 ∈ X

and q ∈ ωy0 . Let q ∈ ωy0 , {pi} = ωxi

⋂
Xq(i = 1, 2) and {tn} ∈ Lq such that

qtn → q. In virtue of condition c. and minimality of ωxi
(i = 1, 2) we have
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ρ(p1tn, p2tn) → 0 as n → +∞ and, consequently, p1 = p2. Thus, ωx1 = ωx2

for all x1, x2 ∈ X and, consequently, (X, T, π) is point dissipative and since

(X, T, π) satisfies the condition (A), then according to the theorem 1.5 [24]

(X, T, π) is compact dissipative. To finish the proof of the theorem it is

sufficient to apply the theorem 1.6 and remark 1.5 .

Corollary 1.14 Under the conditions of theorem 1.10 if the space X is lo-

cally compact, then the condition a. results from conditions b., c. and d.

.

Theorem 1.15 Let (Y, T, σ) be compact dissipative and h(LX) = JY . In

order that nonautonomous dynamical system < (X, T, π), (Y, T, σ), h > be

convergent it is necessary and if JY = Y , then it is also sufficient that the

following conditions be fulfilled:

1.
∑+

x is relatively compact for all x ∈ X;

2. LX is relatively compact;

3. LX

⋂
Xy contains a single point for every y ∈ Y ;

4. for any ε > 0 there exists δ(ε) > 0 so that ρ(x, xy) < δ({xy} =

LX

⋂
Xy and h(x) = y ∈ JY ) implies ρ(xt, xyt) < ε for all t ≥ 0 and x ∈ X.

Proof. Necessity. Let < (X, T, π), (Y, T, σ), h > be convergent, then (X, T, π)

is compact dissipative and JX = LX . It is evident that the conditions 1.,2.

and 3. are fulfilled. We will prove that the condition 4. takes place. Suppose

that it is not true, then there are ε0 > 0, δn → 0(δn > 0), {xn}, {yn} ⊆ JY

and tn → +∞ such that ρ(xn, xyn) < δn(yn = h(xn)) and

ρ(xntn, xyntn) ≥ ε0. (1.15)

Thus JY and JX are compacts, then we may assume without loss of generality

that sequences {yn} and {xyn} are convergent. Let y0 = lim
n→+∞

yn, then

xy0 = lim
n→+∞

xyn = lim
n→+∞

xn.In virtue of compact dissipativeness of dynamical
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system (X, T, π) we may suppose that the sequence {xntn} is convergent.

We denote by x̄ = lim
n→+∞

xntn . Since JY is compact, then we may suppose

that the sequence {yntn} ⊆ JY is convergent and then we denote by ȳ =

lim
n→+∞

yntn . We note that h(x̄) = lim
n→+∞

h(xn)tn = lim
n→+∞

yntn = ȳ, x̄ ∈ JX

and, consequently, x̄ ∈ JX

⋂
Xȳ = {xȳ}, i.e. x̄ = xȳ. On the other hand,

passing to the limit in (1.15) as n → +∞ we have ρ(x̄, xȳ) ≥ ε0. This

contradiction proves the necessary assertion.

Sufficiency. Suppose that conditions 1.-4. are fulfilled. In order to prove

that nonautonomous dynamical system < (X, T, π), (Y, T, σ), h > is con-

vergent under the conditions of theorem 1.15 it is sufficient to show that

the dynamical system (X, T, π) is compact dissipative. In virtue of condi-

tions of theorem 1.15 the dynamical system (X, T, π) is point dissipative

and ΩX ⊆ LX . We note that set LX is closed. We will show that LX

is orbitally stable. Suppose that this assertion is not true, then there are

ε0 > 0, xn → x0 ∈ LX and tn → +∞ such that

ρ(xntn, LX) ≥ ε0. (1.16)

Since yn → y0 = h(x0)(yn = h(xn)) then under the conditions of theorem 1.15

xyn → xy0 = x0 and, consequently, ρ(xn, xyn) → 0. From the last relation

and the condition 4. of theorem 1.15 it results that ρ(xntn, xyntn) → 0 as

n → +∞. But the last relation contradicts the inequality (1.16). Thus,

LX is compact, invariant and orbitally stable. Taking into account that

ΩX ⊆ LX , we have J+(ΩX) ⊆ LX . We will show that J+(ΩX) = LX . Really,

let x̄ ∈ LX and ϕ : S → LX be the whole trajectory of dynamical system

(X, T, π) passing through the point x̄. We denote by αϕ
x̄ =

⋂
t≤0

⋃
τ≤t

ϕ(τ), then

ΩX

⋂
αϕ

x̄ 6= ∅. Let p ∈ ΩX

⋂
αϕ

x̄ and tn → −∞ such that ϕ(tn) → p, then

π−tnϕ(tn) = ϕ(0) = x̄, i.e. x̄ ∈ J+
p ⊆ J+(ΩX) and, consequently, LX =

J+(ΩX) is compact and orbitally stable and in virtue of theorem 2.5 [28] the

dynamical system (X, T, π) is compact dissipative. The theorem is proved.
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Theorem 1.16 Let < (X, T, π), (Y, ,σ), h > be a nonautonomous dynamical

system and Y is a compact minimal set, then the following conditions are

equivalent:

1. < (X, T, π), (Y, T, σ), h > is convergent;

2. every semi-trajectory
∑+

x (x ∈ X) is relatively compact and asymptot-

ically stable;

3.a. every semi-trajectory
∑+

x (x ∈ X) is relatively compact .

3.b. lim
t→+∞

ρ(x1t, x2t) = 0 for all (x1, x2) ∈ X×̇X .

3.c. for any ε > 0 and K ∈ C(X) there exists δ(ε, K) > 0 such that

ρ(x1, x2) < δ(h(x1) = h(x2); x1, x2 ∈ K) implies ρ(x1t, x2t) < ε for all t ≥ 0.

4. every semi-trajectory
∑+

x (x ∈ X) is relatively compact and the equality

(1.4) takes place for all K ∈ C(X).

Proof. In [27,29] the equivalence of conditions 1., 2. and 3. is proved .

According to the theorem 1.2 1. implies 4. . To finish the proof of theorem

is sufficient to establish that the condition 4. implies, for example, 3. . We

note that from the condition 4. follow 3.a and 3.b . We will show that from

the condition 4. results condition 3.c . In fact, if we suppose that it is not

true, then there are ε0 > 0, K0 ∈ C(X), δn → 0, {xi
n} ⊆ K0(i = 1, 2; h(x1

n) =

h(x2
n)) and tn → +∞ such that ρ(x1

n, x
2
n) < δn and

ρ(x1
ntn, x

2
ntn) ≥ ε0. (1.17)

According to the equality (1.4) for compact K0 ∈ C(X) there exists L( ε0

2
, K0) >

0 such that

ρ(x1
nt, x

2
nt) <

ε0

2
. (1.18)

for all t ≥ L( ε0

2
, K0). But the inequalities (1.17) and (1.18) are contradictory.

The obtained contradiction proves the theorem.
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Theorem 1.17 Let < (X, T, π), (Y, T, σ), h > be a nonautonomous dynam-

ical system, M 6= ∅ be a compact and positive invariant. Suppose that the

following conditions are fulfilled:

1. h(M) = Y ;

2. M
⋂

Xy contains a single point for all y ∈ Y ;

3. M is globally asymptotically stable, i.e. for any ε > 0 there exists

δ(ε) > 0 such that ρ(x, p) < δ(x ∈ Xy, p ∈ My = M
⋂

Xy) implies ρ(xt, pt) <

ε for all t ≥ 0 and lim
t→+∞

ρ(xt, Mh(x)t) = 0 for all x ∈ X.

Then the nonautonomous dynamical system < (X, T, π), (Y, T, σ), h > is

convergent.

Proof. We note that under the conditions of theorem the dynamical system

(X, T, π) is point dissipative and ΩX ⊆ M. We will show that set M is

orbitally stable in (X, T, π) . Suppose that it is not true, then there are

ε0 > 0, δn → 0, xn ∈ B(M, δn) and tn → +∞ such that

ρ(xntn, M) ≥ ε0. (1.19)

Since M is compact, then we may suppose that the sequence {xn} is conver-

gent. Let x0 = lim
n→+∞

xn, xyn ∈ Myn , ρ(xn, M) = ρ(xn, xyn) and y0 = h(x0),

then x0 = lim
n→+∞

xyn and x0 ∈ My0 . Let qn = h(xn) and we note that

ρ(xn, xqn) ≤ ρ(xn, xyn) + ρ(xyn , xqn) → 0 (1.20)

as n → +∞, because qn → y0 and xqn → x0. Taking into account (1.20) and

the asymptotical stability of set M we have

ρ(xntn, xqntn) = ρ(xntn, xqntn) → 0. (1.21)

But the equality (1.21) and inequality (1.19) are contradictory. Hence, the set

M is orbitally stable in (X, T, π) and in virtue of lemma 7 [29] the dynamical

system (X, T, π) is compact dissipative and JX ⊆ M . To finish the proof of
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theorem is sufficient to note that h(JX) = JY and for all y ∈ JY we have

JX

⋂
Xy ⊆ M

⋂
Xy and, consequently, JX

⋂
Xy contains a single point for

any y ∈ JY . The theorem is proved.

Remark 1.18 If there exists y0 ∈ Y such that Y = H+(y0) , then it is

evident that the theorem 1.17 is invertible. To this end we may take set

H+(x0), where x0 ∈ Xy0 , in the quality of set M, which figures in the theorem.

Theorem 1.19 Let (X, T, π) and (Y, T, σ) be two compact dissipative dy-

namical systems, then the following conditions are equivalent:

1. nonautonomous dynamical system < (X, T, π), (Y, T, σ), h > is con-

vergent ;

2. there exists a continuous function V : X×̇X → R+ which satisfies the

following conditions:

2.a. V is positive definite, i.e. V (x1, x2) = 0 if and only if x1 = x2;

2.b. V (x1t, x2t) ≤ V (x1, x2) for all t ≥ 0 and (x1, x2) ∈ X×̇X;

2.c. V (x1t, x2t) = V (x1, x2) for any t ≥ 0 if and only if x1 = x2;

3. there exists a continuous function V : X×̇X → R+ which satisfies the

following conditions:

3.a. V is positive definite;

3.b. V (x1t, x2t) < V (x1, x2) for all t > 0 and (x1, x2) ∈ X×̇X \ ∆X ,

where ∆X = {(x, x)|x ∈ X}.

In the case when JY is minimal the theorem 1.19 is proved in [12]. In

general case the same type argument that in [12] proves the theorem 1.19

utilizing the results given above.

Theorem 1.20 Suppose that the following conditions are fulfilled:

1. (X, T, π) and (Y, T, σ) are two compact dissipative dynamical systems;

2. there exists a continuous function V : X×̇X → R+ which satisfies the

following conditions:
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2.a. V is positive definite;

2.b. V (x1t, x2t) ≤ ω(V (x1, x2), t) for all t ≥ 0 and (x1, x2) ∈ X×̇X,

where ω : R+ × R+ → R+ is a non-decreasing function with respect to first

variable and ω(x, t) → 0 as t → +∞ for every x ∈ R+.

Then < (X, T, π), (Y, T, σ), h > is convergent.

Proof. According to corollary 1.7 in order for the nonautonomous dynamical

system < (X, T, π)

, (Y, T, σ), h > to be convergent it is necessary and sufficient that the equality

(1.4) takes place for all K ∈ C(X). First of all we will show that

lim
t→+∞

sup
(x1,x2)∈K×̇K

V (x1t, x2t) = 0 (1.22)

for any K ∈ C(X). In fact, in virtue of compactness K there exists α > 0

so that V (x1, x2) ≤ α for all (x1, x2) ∈ K×̇K and V (x̄1, x̄2) = α for certain

(x̄1, x̄2) ∈ K×̇K and, consequently,

V (x1t, x2t) ≤ ω(V (x1, x2), t) ≤ ω(α, t). (1.23)

Taking into account that ω(α, t) → 0 as t → +∞ we note that (1.23) implies

(1.22). We will show that (1.22) implies (1.4). If we suppose that it is not

true, then there are K ∈ C(X), ε0 > 0, {xi
n} ⊆ K(i = 1, 2) and tn → +∞

such that

ρ(x1
ntn, x

2
ntn) ≥ ε0. (1.24)

Without loss of generality we may assume that the sequences {xi
ntn}(i = 1, 2)

are convergent because (X, T, π) is compact dissipative. Let x̄i = lim
n→+∞

xi
ntn,

then according to (1.24) we have x̄1 6= x̄2. On the other hand, according

to (1.23) we have 0 ≤ V (x1
ntn, x

2
ntn) ≤ ω(α, tn) → 0 as n → +∞ and,

consequently, V (x̄1, x̄2) = lim
n→+∞

V (x1
ntn, x

2
ntn) = 0. Therefore the equality

x̄1 = x̄2 takes place. The contradiction obtained proves the theorem.
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Remark 1.21 a. Let V (x1t, x2t) ≤ Ne−νtV (x1, x2) for all t ≥ 0 and (x1, x2) ∈
X×̇X, then the condition 2. of theorem 1.20 is fulfilled and in this case

ω(x, t) = Nxe−νt.

b. If the inequality V (x1t, x2t) ≤ (V 2−α(x1, x2)+(α−2)t)
1

2−α (α > 2) takes

place for all (x1, x2) ∈ X×̇X and t ≥ 0, then the condition 2. of theorem

1.20 is satisfied with function ω(x, t) = (x2−α + (α− 2)t)
1

2−α .

c. All the results from § 1 are true also in the case when spaces X and Y

are not metric, but pseudometric.

d. The nonautonomous dynamical systems with convergence are the sim-

plest among nonautonomous dissipative dynamical systems. If < (X, T, π), (Y, T, σ), h >

is a nonautonomous dynamical system with convergence and JX(JY ) is a

Levinson’s centre of dynamical system (X, T, π)

((Y, T, σ)), then JX and JY are homeomorphic. In spite of the fact that

Levinson’s centre JX of nonautonomous dynamical system with convergence

admits a complete description, it is necessary to note that the structure of JX

may be very complicated ( for example, JX may be a strange attractor [12]).

2 The periodic, almost periodic and recur-

rent limit regimes of some class of nonau-

tonomous differential equations.

2.1 Let (E, | · |) be a Banach space, C(R×E, E) is a space of all continuous

mappings from R×E into E equipped with the topology of convergence on

every compact (open-compact topology ). For f ∈ C(R × E, E) and τ ∈ R
we denote by fτ the τ translation of f with respect to t, i.e. fτ (t, x) =

f(t + τ, x), H+(f) = {fτ |τ ∈ R+} and ωf = {g|∃τn → +∞, g = lim
n→+∞

fτn}.
Consider the differential equation

x′ = f(t, x), (2.1)
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where f ∈ C(R× E, E), and a family of equations

y′ = g(t, y) (2.2)

with g ∈ H+(f) or ωf . Throughout this section we suppose that f ∈ C(R×
E, E) is regular, i.e. for all g ∈ H+(f) and x ∈ E the equation (2.2) admits

a unique solution ϕ(t, x, g) defined on R+ with condition that ϕ(0, x, g) = x

and mapping ϕ : R+ × E ×H+(f) → E is continuous.

The solution ϕ(t, x0, f) is called uniformly stable, if for any ε > 0 there

exists δ(ε) > 0 so that |ϕ(t0, x, f) − ϕ(t0, x0, f)| < δ implies |ϕ(t, x, f) −
ϕ(t, x0, f)| < ε for all t ≥ t0 ≥ 0.

The solution ϕ(t, x0, f) is called globally asymptotically stable, if ϕ(t, x0, f)

is uniformly stable and for all ε > 0 and K ∈ C(X) there is T (ε, K) > 0 so

that |ϕ(t, x, f)− ϕ(t, x0, f)| < ε for all t ≥ t0 + T (ε, K)(ϕ(t0, x, f) ∈ K).

We will call the equation (2.1) convergent if it admits at least one compact

solution on R+ which is globally asymptotically stable.

Remark 2.1 We note that the notion of convergence generalized above is

the well known concept of convergence ( see, for example [1]). We note that

the equation x′ = −x + e−t is convergent according to our definition, but is

not convergent by usual definition [1].

Lemma 2.2 If the equation (2.1) is convergent, then for all g ∈ ωf the

equation (2.2) admits a single compact solution defined on R, which is globally

asymptotically stable.

The proof of lemma 2.2 is similar to the proof theorem A (see [30, p.176-

177]).

Example 2.3 Let Y = H+(f) and (Y, R+, σ) be a dynamical system of

translations, i.e. σ(g, τ) = gτ . Let X = E × Y and we will define on X

the dynamical system (X, R+, π) in the following way: π = (ϕ, σ) , i.e.
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π(< x, g >, τ) =< ϕ(τ, x, g), gτ > for all τ ∈ R+, x ∈ X and g ∈ H+(f),

then the triple < (X, R+, π), (Y, R+, σ), h >, where h = pr2 : X → Y is a

nonautonomous dynamical system, generated by equation (2.1).

Applying the theorems 1.6, 1.17 and the lemma 2.2 to the so-constructed

nonautonomous dynamical system we will obtain the following assertion.

Theorem 2.4 Let f ∈ C(R×E, E) be a regular function and H+(f) be com-

pact. In order for equation (2.1) to be convergent it is necessary and sufficient

that the nonautonomous dynamical system < (X, R+, π), (Y, R+, σ), h >, gen-

erated by equation (2.1) (see example 2.1 ) is convergent.

A function f ∈ C(R × E, E) is called stationary ( ω− periodic, almost

periodic, recurrent, asymptotically stationary, asymptotically ω− periodic,

asymptotically almost periodic, asymptotically recurrent ) with respect to t ∈
R uniformly with respect to x on every compact from E, if the motion σ(f, τ)

possesses the same property in the dynamical system (C(R×E, E), R, σ) of

translations, i.e. σ(f, τ) = fτ .

Applying the results from § 1 to the constructed in example 2.3 nonau-

tonomous dynamical system constructed in example 2.3 we obtain the fol-

lowing results.

Theorem 2.5 Let E be a finite dimensional space, f ∈ C(R × E, E) be a

regular function and asymptotically stationary ( asymptotically ω− periodic,

asymptotically almost periodic, asymptotically recurrent) with respect to t ∈ T
uniformly with respect to x on every compact from E, then the following

conditions are equivalent:

1. the equation (2.1) is convergent;

2. all the solutions of equation (2.1) are bounded on R+ and for any

g ∈ ωf the equation (2.2) admits a single bounded solution defined on R
which is globally asymptotically stable;
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3. for all g ∈ H+(f) every solution of equation (2.2) is bounded on R+

and is asymptotically stable.

Theorem 2.6 If the function f ∈ C(R×E, E) is regular and almost periodic

( recurrent ) with respect to t ∈ R uniformly with respect to x on every

compact from E, then the following conditions are equivalent:

1. the equation (2.1) is convergent;

2. for any g ∈ H+(f) = ωf the equation (2.2) admits a single compact

solution , defined on R which is asymptotically stable;

3. for all g ∈ H+(f) = ωf every solution of equation (2.2) is defined on

R+ , compact and is asymptotically stable.

2.2. Let (H, < ·, · >) be a Hilbert space and f ∈ C(R × H, H) be a

function satisfying the condition

Re < x1 − x2, f(t, x1)− f(t, x2) >≤ −κ|x1 − x2|α (2.3)

for all t ∈ R+ and x ∈ H (κ > 0 and α > 2). We note that every function

g ∈ H+(f) satisfies the condition (2.3) with the same constants κ and α.

According to the results of [31] if the function f satisfies condition (2.3),

then it is regular.

Lemma 2.7 If the function f ∈ C(R × H, H) satisfies the condition (2.3)

and H+(f) is compact, then :

1. for every u ∈ H the solution ϕ(t, u, f) of equation (2.1) is compact on

R+, i.e. the set ϕ(R+, u, f) is relatively compact in H;

2. for any t ≥ 0 and x1, x2 ∈ H we have

|ϕ(t, x1, f)− ϕ(t, x2, f)| ≤ (|x1 − x2|2−α + (α− 2)t)
1

2−α . (2.4)

Proof. Suppose that the conditions of lemma 2.7 are fulfilled and f ∈
C(R × H, H) , then we will define the function F ∈ C(R × H, H) in the

following way
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F (t, x) =

{
f(t, x) if (t, x) ∈ R+ ×H

f(0, x) if (t, x) ∈ R+ ×H

It is easy to see that function F possesses the following properties:

a. {Fτ |τ ∈ R} is relatively compact in C(R×H, H);

b. Re < x1 − x2, F (t, x1)− F (t, x2) > ≤ −κ|x1 − x2|α for all t ∈ R and

x1, x2 ∈ H.

In virtue of theorem 2.2.3.1 [31] the equation x′ = F (t, x) admits a single

solution ϕ(t, x0, F ) compact on R and for all x1, x2 ∈ H and t ≥ 0 we have

|ϕ(t, x1, F )− ϕ(t, x2, F )| ≤ (|x1 − x2|2−α + (α− 2)t)
1

2−α . (2.5)

and, consequently, lim
t→+∞

|ϕ(t, x, F )−ϕ(t, x0, F )| = 0 for all x ∈ H. From the

last relation it follows that every solution of equation (2.1) is compact on

R+, because ϕ(t, x, f) = ϕ(t, x, F ) for all t ≥ 0. The lemma is proved.

Corollary 2.8 Under the conditions of lemma 2.7 we have

|ϕ(t, x1, g)− ϕ(t, x2, g)| ≤ (|x1 − x2|2−α + (α− 2)t)
1

2−α (2.6)

for all g ∈ H+(f), t ∈ R+ and x1, x2 ∈ H.

Theorem 2.9 If a function f ∈ C(R × H, H) satisfies the condition (2.3)

and H+(f) is compact, then the equation (2.1) is convergent.

Proof. According to lemma 2.7 all solutions of equation (2.1) are compact

on R+ and in virtue of corollary 2.8 every solution ϕ(t, x, f) of equation (2.1)

is uniformly asymptotically stable.

Corollary 2.10 If the function f ∈ C(R×H, H) satisfies the condition (2.3)

and is asymptotically stationary (asymptotically ω− periodic, asymptotically

almost periodic, asymptotically recurrent ) with respect to t ∈ R uniformly
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with respect to x on every compact from H, then any solution of equation

(2.1) is asymptotically stationary (asymptotically ω− periodic, asymptotically

almost periodic, asymptotically recurrent ) and for all t ≥ 0 and x1, x2 ∈ H

the inequality (2.4) takes place.

Example 2.11 . Consider the equation

x′ = −x|x|+ p(t), (2.7)

where p ∈ C(R, H). It is easy to see that function f(t, x) = −x|x| + p(t)

satisfies the condition (2.3) with κ = 1
2

and α = 3. In fact,

< x1 − x2, f(t, x1)− f(t, x2) >=< x1 − x2,−x1|x1|+ x2|x2| >

=< x1−x2,−x1(|x1|+|x2|)+x2(|x1| > +|x2|) > + < x1−x2, x1|x2|−x2|x1| >

= −|x1 − x2|2(|x1|+ |x2|) +
1

2
(|x1|+ |x2|)(2|x1||x2| − 2 < x1, x2 > . (2.8)

In virtue of Schwart’s inequality < x1−x2, x1|x2|−x2|x1| >≤ 1
2
|x1−x2|2(|x1|+

|x2|), consequently, we have

< x1 − x2, f(t, x1)− f(t, x2) >≤ −1

2
|x1 − x2|2(|x1|+ |x2|) ≤ −1

2
|x1 − x2|3.

(2.9)

Thus, the theorem 2.9 and corollary 2.10 are applicable for equation (2.7) .

Remark 2.12 We note that in the case when α = 2 the convergence of

equation (2.1) is proved in [8].

2.3 Let H be a real Hilbert space. Recall [31-33] that an operator A :

D(A) → H(D(A) ⊆ H) is called uniformly monotone if there exists α > 0

so that

< Au− Av, u− v > ≥ α|u− v|2 (2.10)

for all u, v ∈ D(A).
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Example 2.13 Consider the differential equation

x′ + Ax = f(t), (2.11)

where f ∈ C(R, H) and A is a maximal monotone operator. It is known [33]

that for all x0 ∈ D(A) there exists a unique weak solution ϕ(t, x0, f) of equa-

tion (2.11) satisfying the condition ϕ(0, x0, f) = x0 and defined on R+. Let

Y = H+(f) and (Y, R+, σ) be a dynamical system of translations on Y . We

denote by X = D(A)×Y and by (X, R+, π) a dynamical system on X where

π(< v, g >, t) =< ϕ(t, v, g), gt >, then the triple < (X, R+, π), (Y, R+, σ), h >

(h = pr2 : X → Y ) is a nonautonomous dynamical system [34], generated by

equation (2.11). Applying the results from § 1 to the so-constructed nonau-

tonomous dynamical system we will obtain the following results for equation

(2.11).

Theorem 2.14 Let H+(f) be compact, then the equation (2.11) is conver-

gent, i.e. the equation (2.11) admits at least one compact solution on R+

which is globally asymptotically stable.

Proof. Modifying the results from [8,34], we obtain that under the conditions

of theorem 2.14 all the solutions of equation (2.11) are compact on R+. On

the other hand, in virtue of condition (2.10) we have

|ϕ(t, x1, f)− ϕ(t, x2, f)| ≤ e−αt|x1 − x2| (2.12)

for all t ≥ 0 and x1, x2 ∈ H. And what is more, if g ∈ H+(f), than for the

solutions of equation

y′ + Ay = g(t) (2.13)

the following estimation

|ϕ(t, y1, g)− ϕ(t, y2, g)| ≤ e−αt|y1 − y2| (2.14)
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takes place for all t ≥ 0 and y1, y2 ∈ H. From inequality (2.12) it follows

that every solution of equation (2.11) is globally asymptotically stable. The

theorem is proved.

Remark 2.15 We note that the equation (2.1) is convergent if and only

if the nonautonomous dynamical system < (X, R+, π), (Y, R+, σ), h > con-

structed in the example 2.13 possesses the same property of convergence.

Corollary 2.16 Let f ∈ C(R, H) be asymptotically stationary (asymptoti-

cally ω− periodic, asymptotically almost periodic, asymptotically recurrent ),

then every solution of equation (2.11) is asymptotically stationary (asymptot-

ically ω− periodic, asymptotically almost periodic, asymptotically recurrent )

and globally asymptotically stable.

Example 2.17 Consider the equation

∂2u

∂t2
= ∆u− φ(

∂u

∂t
) + f(t) (2.15)

in the open set Ω ⊂ Rn with condition u|∂Ω = 0 on the boundary ∂Ω of Ω.

Suppose that the function φ : R → R satisfies the conditions : φ(0) = 0

and 0 < c1 ≤ φ′(ξ) ≤ c2(ξ ∈ R). Then the equation may be rewritten in the

following way {
∂u
∂t

= v
∂v
∂t

= ∆u− φ(v) + f(t)
. (2.16)

We denote by H = W 1,2
0 (Ω) × L2(Ω) and we will define on H the scalar

product

< (u, v), (u∗, v∗) >=

∫
Ω

[vv∗ + ∆u∆u∗ + λuv∗ + λu∗v]dx,

where λ is a certain positive constant independent of c1 and c2. It is possible

to verify (see, for example, [35]) that to the system (2.16) the theorem 2.14

and corollary 2.16 may be applied.
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2.4 Let I ⊆ R, D(I, R) be a space of all infinitely differentiable func-

tions ϕ : I → H with compact support and [H] be the algebra of all linear

operators on H.

Consider the equation∫
R

[< u(t), ϕ′(t) > + < A(t)u(t), ϕ(t) > + < f(t), ϕ(t) >]dt = 0, (2.17)

where A ∈ C(R, [H]) and f ∈ C(R, H). A function u ∈ C(I, H) is called

the solution of equation (2.17) if the equality (2.17) takes place for all ϕ ∈
D(I, H).

Let x ∈ H, ϕ(t, x, A, f) be a solution of equation (2.17) defined on R+

and satisfying the condition ϕ(0, x, A, f) = x and∫
R

[< u(t), ϕ′(t) > + < B(t)u(t), ϕ(t) > + < g(t), ϕ(t) >]dt = 0 (2.18)

is a family of equations, where (B, g) ∈ H+(A, f) = {(Aτ , fτ )|τ ∈ R+}. We

will suppose that the operator-function A ∈ C(R, [H]) is self-adjoint and

negative defined, i.e. A(t) = −A1(t) + iA2(t) for all t ∈ R, where A1(t) and

A2(t) are self-adjoint and

< A1(t)u, u > ≥ α|u|2 (2.19)

for all t ∈ R and u ∈ H, where α > 0.

Lemma 2.18 [36] We have

1

2

d

dt
|ϕ(t, x, A, f)|2 = − < A1(t)ϕ(t, x, A, f), ϕ(t, x, A, f) >

+Re < f(t), ϕ(t, x, A, f) > (2.20)

for all t > 0.
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Lemma 2.19 The following inequality

|ϕ(t, x, A, f)| ≤ |x|+
∫ t

0

|f(t)|dτ (2.21)

takes place for all t ≥ 0.

Proof. In virtue of equality (2.20) we have

1

2

d

dt
|ϕ(t, x, A, f)|2 ≤ |f(t)||ϕ(t, x, A, f)|.

Let v(t) = |ϕ(t, x, A, f)|2, then dv
dt
≤ 2|f(t)|

√
v(t) and, consequently,

√
v(t)−

√
v(τ) ≤

∫ t

τ

|f(s)|ds

from which the inequality (2.21) follows.

Lemma 2.20 Let l, r and β > 0, x0 ∈ H, A ∈ C(R, [H]) and f ∈ C(R, [H]),

then there exists M = M(f, l, r, β, x0) > such that

|ϕ(t, x, B, g)− ϕ(t, x0, A, f)| ≤ |x− x0|+

M

∫ t

0

‖B(t)− A(t)‖dτ +

∫ t

0

|g(τ)− f(τ)|dτ (2.22)

for all t ∈ [0, l] and x ∈ B(x0, r) = {x|x ∈ H, |x−x0| ≤ r} if |g(t)−f(t)| ≤ β

and Re < B(t)x, x >≤ 0 for any t ∈ [0, l] and x ∈ H.

Proof. We denote by v(t) = ϕ(t, x, B, g)− ϕ(t, x0, A, f), then∫
R

[< v(t), ϕ′(t) > + < A(t)v(t), ϕ(t) > +

< B(t)− A(t))v(t), ϕ(t) > + < g(t)− f(t), ϕ(t) >]dt = 0

for any ϕ ∈ D(R, H). In virtue of lemma 2.18

1

2

d

dt
|v(t)|2 = Re < A(t)v(t), v(t) >
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+Re[< (B(t)− A(t))ϕ(t, x, B, f), v(t) > + < g(t)− f(t), v(t) >]

and according to lemma 2.19 we have

|v(t)| ≤ |v(0)|+
∫ t

0

|(B(τ)− A(τ))ϕ(τ, x, B, g) + g(τ)− f(τ)|dτ

≤ |v(0)|+
∫ t

0

‖B(τ)− A(τ)‖|ϕ(τ, x, B, g)|dτ +

∫ t

0

|g(τ)− f(τ)|dτ. (2.23)

On the other hand according to lemma 2.19 for ϕ(t, x, B, g) we have

|ϕ(t, x, B, g)| ≤ |x|+
∫ t

0

|g(τ)|dτ ≤ |x0|+ r + βl

+l max
0≤t≤l

|f(t)| = M(f, l, r, β, x0). (2.24)

Taking into account the inequalities (2.23) and (2.24) we obtain (2.22). The

lemma is proved.

Let X̄ = H×H+(A, f) and we denote by X the set of all < u, (b, g) >∈ X̄

such that through the point u ∈ H passes a solution ϕ(t, u, B, g) of equation

(2.18) defined on R+.

Lemma 2.21 The set X ⊆ H ×H+(A, f) is closed in H ×H+(A, f).

Proof. Let < x, (A, f) >∈ X̄, then there exists a sequence < xk, (Bk, gk) >∈
X such that xk → x in space H, Bk → A in C(R, [H]) and gk → f in C(R, H).

Let l, ε > 0 are such that

|xk − xm| < ε, |fk(t)− fm(t)| < ε and ‖Bk(t)−Bm(t)‖ < ε (2.25)

for all t ∈ [0, l] and k, l ≥ k0. Denote r = sup{|xk| : k ∈ N}, then according

to lemma 2.20

|ϕ(t, xk, Bk, fk)− ϕ(t, xm, Bm, fm)| ≤ |xk − xm|+ M

∫ t

0

‖Bk(τ)−Bm(τ)‖dτ

+

∫ t

0

|fk(τ)− fm(τ)|dτ ≤ ε + Mεl + εl (2.26)
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for all t ∈ [0, l] and k, m ≥ k0, where M is a positive constant which is

independent of r, l and f. Taking into account that space C(R+, H) is com-

plete and inequality (2.26), we conclude that the sequence {ϕ(t, xk, Bk, fk)}
is convergent in C(R+, H) and according to inequality (2.26) ϕ(t, x, A, f) =

lim
k→+∞

ϕ(t, xk, Bk, fk). The lemma is proved.

Lemma 2.22 The mapping ϕ : R+ × X → H(ϕ : (t, < u,B, g >) →
ϕ(t, u,G, g)) is continuous.

Proof. Let tn → t, xk → x, Bk → B and gk → g then

|ϕ(t, xk, Bk, gk)− ϕ(t, x, B, g)| ≤ |ϕ(t, xk, Bk, gk)− ϕ(tk, x, B, g)|

+|ϕ(tk, x, B, g)− ϕ(t, x, B, g)| ≤ max
0≤t≤l

|ϕ(t, xk, Bk, gk)− ϕ(t, x, B, g)|

+|ϕ(tk, x, B, g)− ϕ(t, x, B, g)|. (2.27)

In virtue of inequality (2.27) and lemma 2.20 we obtain the necessary asser-

tion. The lemma is proved.

Lemma 2.23 For all (B, g) ∈ H+(A, f) and x1, x2 ∈ H we have

|ϕ(t, x1, B, g)− ϕ(t, x2, B, g)| ≤ e−αt|x1 − x2| (2.28)

for any t ∈ R+.

Proof. If the operator-function A(t) is negative defined, then every operator-

function B ∈ H+(A) is negative defined and Re < B(t)u, u > ≥ α|u|2 (t ∈
R, u ∈ H), where α > 0 is the same constant as that one figuring in (2.19)

for operator-function A(t). Let ω(t) = ϕ(t, x1, B, g) − ϕ(t, x2, B, g), then

according to lemma 2.18 we have

1

2

d

dt
|ω(t)|2 = Re < B(t)ω(t), ω(t) > ≤ −α|ω(t)|2 (2.29)

and, consequently, |ω(t)| ≤ |ω(0)|e−αt for all t ∈ R+. The lemma is proved.
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Example 2.24 We will define on X a dynamical system in the following

way: π(x, t) = π(< u, (b, g) >, t) =< ϕ(t, u, B, g), (Bt, gt) > for all <

u, (B, g) >∈ X and R+. Let Y = H+(A, f) and (Y, R+, σ) be a dynam-

ical system of translations on Y and h = pr2 : X → Y , then the triple

< (X, R+, π), (Y, R+, σ), h > is a nonautonomous dynamical system, gener-

ated by equation (2.17).

We will call the equation (2.17) convergent if it admits a compact solution

on R+ which is globally asymptotically stable. According to the results of

§ 1 the equation (2.17) will be convergent if and only if the nonautonomous

dynamical system < (X, R+, π), (Y, R+, σ), h > generated by equation (2.17)

( see example 2.24 ) will be convergent.

Theorem 2.25 Let A ∈ C(R, [H]), f ∈ C(R, H) and H+(A, f) be compact,

then the equation (2.17) is convergent.

Proof. According to the results from [8,34] all the solutions of equation

(2.17) are compact on R+ and in virtue of lemma 2.23 every solution of

equation (2.17) is globally asymptotically stable.

Corollary 2.26 Let A ∈ C(R, [H]) and f ∈ C(R, H) be asymptotically sta-

tionary (asymptotically ω− periodic, asymptotically almost periodic, asymp-

totically recurrent), then all the solutions of equation (2.17) are asymptoti-

cally stationary (asymptotically ω− periodic, asymptotically almost periodic,

asymptotically recurrent) and globally asymptotically stable.

We note that in the case when A and F are almost periodic the corollary

2.26 generalizes the results from [36].

Example 2.27 Consider the equation

∂u

∂t
= Lu + f(t, x) (u|t=0 = ϕ(x), u|∂Ω = 0), (2.30)
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where Lu =
∑n

i,j=1
∂

∂xi
(aij(t, x) ∂u

∂xj
)−a(t, x)u is an uniformly elliptic operator,

i.e. the following inequality

λ|ξ|2 ≤
n∑

i,j=1

ai,jξiξj ≤ µ|ξ|2

(λ, µ > 0) takes place for all ξ ∈ Rn. It is known [36] that the equation (2.30)

may be rewritten in form (2.17) if we denote by H = L2(Ω) , where Ω is a

bounded domain in Rn and ∂Ω is its boundary with operator-function A(t)

defined by equality

< A(t)u, ϕ >= −
∫
Ω

[
n∑

i,j=1

aij(t, x)
∂u

∂xj

∂ϕ

∂xi

+ a(t, x)uϕ]dx.

Hence, to equality (2.30) the theorem 2.25 and corollary 2.26 may be applied.
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