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Abstract. This is a systematic study of global pullbackattractors of C�analy-
tic cocycles. For the large class of C�analytic cocycles we give the description
of structure of their pullback attractors. Particularlywe prove that it is trivial,
i.e. the �bers of these attractors contain only one point. Several applicationsof
these results are given (ODEs, Caratheodory`s equations with almost periodic
coe�cients, almost periodic ODEs with impulse).

1. Introduction

lim{ lim{ One of the most studied classes of nonlinear ODEs is the class of C -
analytic di�erential equations, i.e. the equations

dz

dt
= f(t; z);(1)

where the right hand side f is a holomorphic function with respect to complex
variable z 2 C d . Let �(t; f; z) be a unique solution of equation (??) with initial
condition �(0; f; z) = z and be de�ned on R+. In virtue of fundamental theory of
ODEs with holomorphic right hand side (see, for example [?] and [?]) the mapping
� possesses the following properties:

1. �(0; f; z) = z.

2. �(t+ �; f; z) = �(t; f� ; �(�; f; z)) for every t; � 2 R+ and z 2 C d , where f� is
a � - translation of function f .

3. � is continuous.

4. �(t; f; �) : C d ! C d is holomorphic for every t and f .

The properties 1.-4. will be the basis of our research of abstract C�analytic nonau-
tonomous dynamical system.
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The dissipative periodic equation (??)was studied by I.L.Zinchenko [?] and he
proved that in this case the equation (??) admits a unique periodic globally uni-
formly asymptotically stable solution. This result was generalized for almost peri-
odic equations (??) by D.N.Cheban [?] and [?]. He studied this problem within the
framework of general C - analytic nonautonomous dynamical systems.

In this paper we study the structure of global pullback attractors of general C -
analytic cocycles with noncompact base (in terminology of equation (??): the right
hand side f is unbounded with respect to time t 2 R).

Our paper is organized as follows. In section 2 we recall some notions of dynamical
systems and introduce the class of C� analytic cocycle, which is studied detailed
in this paper.

In section 3 we establish some general facts about nonautonomous dynamical sys-
tems. We introduce the semigroup E+

! ; E
�
! and E! acting on the �ber X! of strat-

i�cation (X;h;
). These semigroups are subsemigroups of Ellis semigroup (in the
case of compact base 
) and play an important role in the study of nonautonomous
dynamical system.

Section 4 is devoted to positively uniformly stable cocycles. For this class of cocycles
we prove that on every compact invariant set the corresponding cocycle can be
prolonged uniquely in the negative direction.

In section 5 we study the structure of compact global pullback attractor of C�
analytic cocycles with compact base. The main result in this section is Theorem ??
which states that for considered class of cocycles the pullback attractor fI!j! 2 
g
is trivial, i.e. the section I! contains a single point.

Section 6 is devoted to study of the uniform dissipative cocycles with noncompact
base. For this class of cocycles we prove the triviality of its global pullback attractor
(see Theorem 6.5).

In section 7 we introduce the class of cocycles possessing the property of dissipativity
(nonuniform) with noncompact base. The main result in this section is Theorem
7.7 which describes the structure of compact pullback attractor of mentioned class
of cocycles. In particular its triviality is proved.

Section 8 is devoted to application of our general results, obtained in sections 3-
7 to study of di�erential equations (ODEs, Caratheodory equations with almost
periodic coe�cients, almost periodic ODEs with impulse).

2. C - analytic cocycles.

Let 
 be a complete metric space, let T, the time set, be either R or Z, T+ =
ft 2 Tj t � 0g (T� = ft 2 Tj t � 0g), let (
;T; �) be an autonomous two-
sided dynamical system on 
 and Ed be a d-dimensional real (Rd) or complex (C d )
Euclidean space with the norm j � j.

De�nition 2.1. (Cocycle on the state space Ed with the base (
;T; �)). The triplet
hEd; �; (
;T; �)i(or briey �) is said to be a cocycle (see, for example, [?] and [?])
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on the state space Ed with the base (
;T; �) if the mapping � :T+�
�Ed ! Ed

satis�es the following conditions:

i) �(0; !; u) = u for all u 2 Ed and ! 2 
.

ii) �(t+ �; !; u) = �(t; ��!; �(�; !; u)) for all t; � 2T+; u 2 Ed and ! 2 
.

iii) the mapping � is continuous.

De�nition 2.2. (Skew-product dynamical system). Let hEd; �; (
;T; �)i be a cocy-
cle on Ed; X := Ed �
 and � is a mapping from T+�X to X de�ned by equality
� = (�; �), i.e. �(t; (u; !)) = (�(t; !; u); �t!) for all t 2 T+ and (u; !) 2 Ed � 
,
the triplet (X;T+; �) is an autonomous dynamical system and it is called [?] a
skew-product dynamical system.

De�nition 2.3. (Nonautonomous dynamical system). Let T1 � T2 be two sub-
semigroup of group T; (X;T1; �) and (
;T2; �) are two autonomous dynamical sys-
tems and h : X ! 
 is a homomorphism from (X;T1; �) to (
;T2; �) (i.e. h(�(t; x))
= �t(h(x)) for all t 2 T1, x 2 X and h is continuous), then the triplet h(X;T1; �);
(
;T2; �); hi is called (see [?] and [?]) nonautonomous dynamical system. In this
connection (
;T2; �) is called the factor of dynamical system (X;T1; �) and (X;T1; �)
is called the extension of dynamical system (
;T2; �) (see, for example, [?]).

Example 2.4. (The nonautonomous dynamical system generated by cocycle �).
Let hEd; �; (
;T; �)i be a cocycle, (X;T+; �) be a skew-product dynamical system
(X = Ed � 
; � = (�; �)) and h = pr2 : X ! 
; then the triplet h(X;T+; �);
(
;T; �); hi is a nonautonomous dynamical system.

Denote byHC(C d�
; Cd ) the space of all the continuous functions f : C d�
! C d

holomorphic in z 2 C d and equipped by compact-open topology. Consider the
di�erential equation

dz

dt
= f(z; �t!); (! 2 
)(2)

where f 2 HC(C d � 
; Cd ): Let �(t; !; z) be the solution of equation (??) passing
through the point z for t = 0 and de�ned onR+. The mapping � : R+�
�C d ! C d

has the following properties (see, for example, [?] and [?]):

a) �(0; !; z) = z for all z 2 C d .

b) �(t+ �; !; z) = �(t; ��!; �(�; !; z)) for all t; � 2 R+; ! 2 
 and z 2 C d :

c) the mapping � is continuous.

d) the mapping �(t; !) := �(t; !; �) : C d ! C d is holomorphic for any t 2 R+ and
! 2 
:

De�nition 2.5. (C -analytic cocycle). The cocycle hC d ; �; (
;T; �)i is called [?],[?]
C -analytic if the mapping �(t; !) : C d ! C d is holomorphic for all t 2 T+ and
! 2 
.

Example 2.6. Let (HC(R�Cd ; Cd );R; �) be a dynamical system of translations on
HC(R�Cd ; Cd ) (Bebutov's dynamical system (see, for example, [?])). Denote by F
the mapping from C d �HC(R�Cd ; Cd ) to C d de�ned by equality F (z; f) := f(0; z)
for all z 2 C d and f 2 HC(R� Cd ; C d ): Let 
 be the hull H(f) of a given function
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f 2 HC(R� C d ; Cd ), that is 
 = H(f) := ff� j� 2 Rg, where f� (t; z) := f(t+ �; z)
for all t; � 2 R and z 2 C d : Denote the restriction of (HC(R� C d ; C d );R; �) on

 by (
;R; �). Then, under appropriate restriction on the given function f 2
HC(R� C d ; Cd ) de�ning 
, the di�erential equation dz

dt = f(t; z) = F (z; �tf)
generates a C�analytic cocycle.

Remark 2.7. Analogously as above every di�erence equation with holomorphic
right hand side generates a C-analytic cocycle with discrete time Z+.

3. Some general facts about nonautonomous dynamical systems.

De�nition 3.1. (Poisson stability). The point ! 2 
 is called (see, for example,
[?] and [?]) positively (negatively) stable in the sense of Poisson if there exists a
sequence tn ! +1(tn ! �1 respectively) such that �tn! ! !: If the point ! is
Poisson stable in both directions, in this case it is called Poisson stable.

Denote by N! = fftngj�tn! ! !g, N+
! := fftng 2 N!jtn ! +1g and N�! :=

fftng 2 N!jtn !�1g:

De�nition 3.2. (Conditional compactness). Let (X;h;
) be a �ber space, i.e. X
and 
 be two metric spaces and h : X ! 
 be a homomorphism from X into 
. The
subset M � X is said to be conditionally precompact, if the preimage h�1(
0)

T
M

of every precompact subset 
0 � 
 is a precompact subset of X, in particularly
M! = h�1(!)

T
M is precompact for every !. The set M is called conditionally

compact if it is closed and conditionally precompact.

Example 3.3. Let K be a compact space, X := K � 
, h = pr2 : X ! 
; then
the triplet (X;h;
) be a �ber space, the space X is conditionally compact, but not
compact.

Let h(X;T+; �); (
;T; �); hi be a nonautonomous dynamical system and ! 2 
 be
a positively Poisson stable point. Denote by

E+
! := f�j 9ftng 2 N

+
! such that �tn jX!

! �g;

where X! := fx 2 Xj h(x) = !g and ! means the pointwise convergence.

Lemma 3.4. Let ! 2 
 be a positively Poisson stable point, h(X;T+; �);
(
;T; �); hi be a nonautonomous dynamical system and X be a conditionally com-
pact space, then E+

! is a nonempty compact subsemigroup of the semigroup XX!
!

(w.r.t. composition of mappings).

Proof. Let ftng 2 N+
! , then �tn!! ! and, consequently, the set

Q :=
[
f�tn(X!)jn 2 Ng

is compact, because X is conditionally compact. Thus f�tnjX!
g � QX! and ac-

cording to Tyhonov's Theorem this sequence is precompact. Let � be a limit point
of f�tn jX!

g, then � 2 E+
! and, consequently, E+

! 6= ;:

We note that E+
! � XX!

! and, consequently, E+
! is precompact. Let now �1; �2 2

E+
! , we will prove that �1 ��2 2 E

+
! . Since �1; �2 2 E+

! , then there are two sequences
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fting 2 N
+
! (i = 1; 2) such that

�t
i
n jX!

! �i (i = 1; 2):

Denote by � := �1 ��2 2 XX!
! � QX! , then we have �tn ��2 ! �1 ��2 = � as n! +1:

Let U� � XX!
! be an arbitrary open neighborhood of point � in XX!

! , then from
relation (??) results that there exists a number n1(�) 2 N such that �tn � �2 2 U�
for all n � n1(�): Now we �x n � n1(�); then there exist an open neighborhood

U
�t

1
n ��2

� U� of point �t
1

n � �2 2 QX! and a number mn 2 N such that

�t
1

n � �t
2

m jX!
2 U

�t
1
n
� �2

for any n � n1(�) and m � mn(�) and, consequently,

�t
1

n � �t
2

m jX!
2 U�

for any n � n1(�) and m � mn(�): Thus from sequence f�t
1

n+t
2

m jX!
g it is possible to

extract a subsequence f�t
1

nk
+t2

mk jX!
g (t1nk+t

2
mk

! +1) such that �t
1

nk
+t2

mk jX!
!

� and, consequently, � = �1 � �2 2 E+
! : The Lemma is proved.

Corollary 3.5. Let ! 2 
 be a negatively Poisson stable point, h(X;T; �);
(
;T; �); hi be a two-sided nonautonomous dynamical system and X be a condi-
tionally compact space, then E�! = f�j 9ftng 2 N�! such that �tn jX!

! �g is
a nonempty compact subsemigroup of semigroup XX!

! .

This assertion follows from Lemma ?? by change of time t!�t.

Lemma 3.6. Let ! 2 
 be a two-sided Poisson stable point, h(X;T; �);
(
;T; �); hi be a two-sided nonautonomous dynamical system and X be a condi-
tionally compact space, then E! = f�j 9ftng 2 N! such that �tn jX!

! �g is a
nonempty compact subsemigroup of the semigroup XX!

! .

Proof. This assertion can be proved using the same type of arguments as well as in
the proof of Lemma ?? and therefore we omit the details.

Corollary 3.7. Under the conditions of Lemma ?? E+
! and E�! are two nonempty

subsemigroups of the semigroup E!.

Lemma 3.8. Under the conditions of Lemma ?? the following assertions hold:

1. if �1 2 E�! and �2 2 E+
! ; then �1 � �2 2 E

�
!

T
E+
! :

2. E�!
T
E+
! is a subsemigroup of the semigroup E�! ; E

+
! and E!.

3. E�! �E! � E�! and E+
! �E! � E+

! , where A1 �A2 := f�1 ��2j�i 2 Ai (i = 1; 2)g
and Ai � E!.

4. if at least one of the subsemigroups E�! or E+
! is a group, then E�! = E+

! = E!.

Proof. Let �1 2 E�! and �2 2 E+
! , then there are t1n !�1 and t2n ! +1 such that

�tin! ! ! and �t
i
n jX!

! �i(i = 1; 2): Using the same type arguments as well as in
the proof of Lemma ??we may choose the subsequence ft1nk+t

2
mk
g � ft1n+t

2
mg with

the following properties: a) t1nk + t2mk
� k or t1nk + t2mk

� �k and b) �t
1

nk
+t2mk !

�1 � �2; i.e. �1 � �2 2 E+
!

T
E�! :
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The second statement follows from the �rst one.

Let �1 2 E+
! (E�! ; respectively) and �2 2 E!, then there exist two sequences

t1n ! +1 (or �1, respectively) and t2n such that �t
i
n ! �i (i = 1; 2): Then we

may choose a subsequence ft1nk + t2mk
g with the following properties:

a)t1nk + t2mk
� k (� �k; respectively) and b)�t

1

nk
+t2mk ! �1 � �2;

and consequently, �1 � �2 2 E+
! (E�! , respectively).

Finally, let E�! be a subgroup of the semigroup E!. According to the third state-
ment of Lemma ?? E�! � E! � E�! . Since E�! is a nonempty compact invariant
set w.r.t. E!, then in E�! exists a compact minimal subset I � E�! ; i.e. I 6= ;;
compact and u �E! = I for every u 2 I: Let now u 2 I be an idempotent element
of right ideal I of semigroup E!, then u is an unit element (u(x) = x 8x 2 X!)
of I because I � E�! and E�! according to conditions of Lemma ?? is a subgroup
of the semigroup E!. Thus we have E! = u � E! = I � E�! and, consequently,
E�! = E!. Analogously E+

! = E!. The theorem is proved.

Lemma 3.9. Let ! 2 
 be a two-sided Poisson stable point, h(X;T; �);
(
;T; �); hi be a two-sided nonautonomous dynamical system and X be a condi-
tionally compact space and

inf
n2N

�(x1tn; x2tn) > 0(3)

for all ftng 2 N�! and x1; x2 2 X! (x1 6= x2); then E�! is a subgroup of the
semigroup E!.

Proof. Indeed, if u 2 E�! is an arbitrary idempotent element of E�! , then u2 = u
and there exists a sequence ftng 2 N�! such that �tn ! u. According to (??) we
have u(x1) 6= u(x2) for all x1 6= x2 (x1; x2 2 X!): On the other hand u2(x) = u(x)
for all x 2 X! and, consequently, u(x) = x for all x 2 X!. Thus every idempotent
of semigroup E�! is an unit element of E! (in particular E�! ) and, consequently,
E�! is a group (see, for example [?]).

Lemma 3.10. Let ! 2 
 be a two-sided Poisson stable point, h(X;T; �);
(
;T; �); hi be a two-sided nonautonomous dynamical system and X be a con-
ditionally compact space and the condition (??) holds for all ftng 2 N�! and
x1; x2 2 X!(x1 6= x2); then inequality (??) is ful�lled for any ftng 2 N+

! and
x1; x2 2 X!(x1 6= x2):

Proof. According to Lemma ?? under the conditions of Lemma ?? we have E�! =
E+
! = E! and E! is a group. Suppose that for some sequence ftng 2 N+

!

inf
n2N

�(x1tn; x2tn) = 0:(4)

Since �tn! ! ! and the space X is conditionally compact, the sequence f�tnjX!
g

is precompact in QX! , where Q :=
S
f�tn(X!)jn 2 Ng and, consequently, we may

assume that it is convergent. Let � = lim
n!+1

�tn jX!
; then from equality (??) results

that �(x1) = �(x2) (x1 6= x2); but � 2 E! and E! is a group and, consequently, �
is a one-to-one mapping. The obtained contradiction proves our assertion.
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De�nition 3.11. (Entire trajectory) Let hEd; �; (
;T; �)i ((X;T+; �)) be a co-
cycle (onesided dynamical system, respectively). The continuous mapping � : T!
Ed ( :T! X, respectively) is called an entire trajectory of cocycle � (of dynam-
ical system (X;T+; �)) passing through point (!; u) 2 
 � Ed (x 2 X) for t = 0 if
�(t; �s!; �(s)) = �(t+s) and �(0) = u (�t(s) = (t+s) and (0) = x; respectively)
for all t 2T+and s 2T:

Lemma 3.12. Let ! 2 
 be a positively Poisson stable point, h(X;T; (
;T; �); hi
be a nonautonomous dynamical system, generated by cocycle � (see example ??),
pr1(

S
t�0

�tX!) be precompact and

A!(X!) := (
\
t�0

[
��X!)

\
X! ;

then for any x 2 A!(X!) there exists an entire trajectory of dynamical system
(X;T+; �) passing through point x for t = 0 and pr1((T)) ((T) := f(t)jt 2 Tg)
is precompact.

Proof. Let A!(X!), then there are ftng 2 N! and xn 2 X! such that x =
lim
n!1

�tnxn; �tn! ! ! and tn ! +1. We consider the sequence fng � C(T;M ),

where M :=
S
t�0

�tX! ; de�ned by equality

n(t) = �t+tnxn; if t � �tn and n(t) = xn for t � tn:

Now we will prove that the sequence fng is equicontinuous on every segment
[�l; l] �T: If we suppose that it is not true, then there exist "0; l0 > 0; tin 2 [�l0; l0]
and �n ! 0 (�n > 0) such that

jt1n � t2nj � �n and �(n(t
1
n); n(t

2
n)) � "0:(5)

We may suppose that tin ! t0 (i = 1; 2): From (??) we obtain

"0 � �(n(t
1
n); n(t

2
n)) = �(�t

1

n+l0 (�tn�l0xn); �
t2n+l0 (�tn�l0xn))(6)

for su�ciently large n (tn � l0). Note that the sequence f�tn�l0xng is precompact
and h(�tn�l0xn) = �tn�l0h(xn) = �tn�l0! ! ��l0!: Let �x = lim

n!1
�tn�l0xn; then

passing to limit in the inequality (??) we obtain "0 � 0: The obtained contradiction
proves our assertion.

Now taking into account the conditional compactness of set K we can a�rm that
fng is a precompact sequence of C(T;M ). Let  be a limit point of sequence
fng, then there exists a subsequence fkng such that (t) = lim

n!1
kn (t) uniformly

on every segment [�l; l] � T: In particular  2 C(T;M ). We note that �t(s) =
lim
n!1

�tkn (s) = lim
n!1

kn(s + t) = (s + t) for all t 2 T+ and s 2 T. Finally, we

see that (0) = lim
n!1

kn (0) = lim
n!1

�tknxkn = x; i.e.  is an entire trajectory of

dynamical system (X;T+; �) passing through point x. The Lemma is completely
proved.
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4. Positively uniformly stable cocycles

Let Ed be a d�dimensional real (Rd) or complex (C d ) Euclidean space with the
norm j � j; � be the distance generated by this norm, 
 be a metric space and the
triplet hEd; �; (
;T; �)i be a cocycle on the state space Ed.

De�nition 4.1. (Compact global pullback attractor). The family of compact sets
fI!j! 2 
g (I! � Ed is nonempty compact for every ! 2 
) is called (see,
for example [?]) the compact global pullback attractor of cocycle � if the following
conditions are ful�lled:

1. The set I :=
S
fI!j ! 2 
g is precompact.

2. fI!j ! 2 
g is invariant w.r.t. the cocycle �; i.e. �(t; !; I!) = I�t! for all
t 2 T+ and ! 2 
:

3. The equality lim
t!+1

�(�(t; ��t!)K; I!) = 0 holds for every nonempty compact

K � Ed and ! 2 
; where �(A;B) := sup
a2A

�(a;B) is the semi distance of Hausdor�.

Remark 4.2. If fI!j ! 2 
g is a compact global pullback attractor, then the set
J :=

S
fJ!j ! 2 
g; where J! := I! � !; is the maximal conditionally compact

invariant set of skew-product system (X;T+; �) and, consequently the for the given
cocycle � there exists at most one compact global pullback attractor.

Remark 4.3. It is clear that � is an entire trajectory of a cocycle � passing through
point (!; u) if and only if  = (�; Id
) is an entire trajectory of the skew-product
dynamical system, passing through the point x = (!; u).

De�nition 4.4. (Positively uniformly stable cocycles) The cocycle � is called posi-
tively uniformly stable on the family of compact sets K := fK!j! 2 
g (K! � Ed)
if for arbitrary " > 0 there exists a �(";K) > 0 such that ju1 � u2j < � implies
j�(t; !; u1)� �(t; !; u2)j < " for all t � 0; ! 2 
 and u1; u2 2 K!: The cocycle � is
called positively uniformly stable if it is positively uniformly stable on every family
of compact sets from Ed.

Theorem 4.5. Let hEd; �; (
;T; �)i be a cocycle with the following properties:

1) It admits a conditionally precompact invariant set fI!j ! 2 
g (i.e.
S
fI! j! 2


0g is precompact subset of Ed for any precompact subset 
0 of 
).

2) The cocycle � is positively uniformly stable on fI!j ! 2 
g.

Then all motions on J :=
S
fJ!j ! 2 
g (J! := I! � f!g) may be continued

uniquely to the left and de�ne on J a two-sided dynamical system (J;T; �), i.e.
the skew-product system (X;T+; �) generates on J a two-sided dynamical system
(J;T; �).

Proof. First step: we will prove that the set J � X is distal in the negative direction
w.r.t. the nonautonomous dynamical system h(X;T+; �); (
;T; �); hi (see example
??), i.e. for all ! 2 
 and u1; u2 2 I!(u1 6= u2) the following inequality holds

inf
t�0

�(1(t); 2(t)) > 0(7)
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for all i 2 �(!;ui)(i = 1; 2); where by �(!;u) it is denoted the family of all the
entire trajectories of (X;T+; �) passing through point (!; u) and belonging to J . If
it is not true, then there exist !0 2 
; u0i 2 I!0 (u01 6= u02); 

0
i 2 �(!0;u0i )(i = 1; 2)

and �tn !�1 such that

�(01 (�tn); 
0
2(�tn))! 0(8)

as n ! 1. Let " := �(u01; u
0
2) > 0 and � = �(") > 0 be chosen from positively

uniformly stability of cocycle � on family of compact subsets fI!j! 2 
g, then for
su�ciently large n from (??) we have �(01 (�tn); 

0
2(�tn)) < � and, consequently,

" = �(u01; u
0
2) = �(�tn01(�tn); �

tn02(�tn)) < ": The obtained contradiction proves
our assertion.

Second step: we will prove that for any ! 2 
 and u 2 I! the set �(!;u) contains
only one entire trajectory of (X;T+; �) belonging to J . Let � :=

S
f�(!;u)j(!; u) 2

Jg � C(T; X), where C(T;X) is a space of all the continuous functions f :T! X
equipped with compact-open topology and (C(T;X);T; �) is Bebutov's dynamical
system (dynamical system of translations (see, for example, [?, ?])). It is easy to
verify that � is a closed and invariant subset of dynamical system (C(T;X);T; �)
and, consequently, induces on the set � the dynamical system (�;T; �). Let H be
a mapping from � into 
, de�ned by equality H() := h((0)); then it is possible
to verify (see [?]) that the triplet h(�;T; �); (
;T; �);Hi is a nonautonomous dy-
namical system. Now we will show that this nonautonomous dynamical system is
distal on the negative direction, i.e.

inf
t�0

�(t1; 
t
2) > 0

for all 1; 2 2 �! (1 6= 2) and ! 2 
. Indeed, otherwise there exist !0; 1; 2 2
�!0(1 6= 2) and tn ! +1 such that �(�tn1 ; �tn2 )! 0 (where � := �(; � ); i.e.
� (s) := (� + t) for all s 2T) as n!1 and, consequently,

j1(�tn)� 2(�tn)j � �(�tn1 ; �tn2 )! 0:(9)

Since 1 6= 2, then there exists t0 2 T such that 1(t0) 6= 2(t0). Let ~i(t) :=
i(t+ t0) for all t 2T, then ~i 2 �!0 and from inequality (??) we have

j~1(�tn)� ~2(�tn)j ! 0:(10)

as n!1;�tn�t0 !�1:Thus we found !0 := h(i(t0)) and ui := pr1i(t0) (i =
1; 2); u1; u2 2 I!0 (u1 6= u2) and the entire trajectories ~i 2 �(!;ui)(i = 1; 2)
such that ~1 and ~2 are proximal (see (??)). But (??) and (??) are contra-
dictory. Thus the negative distality of the nonautonomous dynamical system
h(�;T; �); (
;T; �);Hi is proved.

Now we can prove that for any ! 2 
 and u 2 I! the set �(!;u) contains a unique
entire trajectory. In fact, if it is not true, then there exists (!0; u0) 2 
� Ed and
two di�erent trajectories 1; 2 2 �(!0;u0)(1 6= 2): In virtue of above 1 and 2
are negatively distal with respect to h(�;T; �); (
;T; �);Hi, i.e.

�(1; 2) := inf
t�0

�(t1; 
t
2) > 0

and, consequently, �(1(t); 2(t)) � �(1; 2) > 0 for all t � 0. In particular
1(0) 6= 2(0): The obtained contradiction proves our statement.
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Third step: let now ~� be a mapping from T� J into J de�ned by equality

~�(t; x) = �(t; x) if t � 0 and x(t) if t < 0

for all x 2 J , where x is a unique entire trajectory of the dynamical system
(X;T+; �) passing through point x and belonging to J . To prove that (J;T;~�) is
a two-sided dynamical system on J it is su�cient to verify the continuity of the
mapping ~�. Let x 2 J; t 2 T�; xn ! x and tn ! t; then there is a l0 > 0 such
that tn 2 [�l0; l0] and, consequently,

�(~�(tn; xn); ~�(t; x)) = �(�tn+l0xn (�l0); �
t+l0x(�l0)) �(11)

�(�tn+l0xn (�l0); �
tn+l0x(�l0)) + �(�tn+l0x(�l0); �

t+l0x(�l0)):

Reasoning as in the proof of Lemma ?? it is possible to establish that the sequence
fxng is precompact inC(T; J) and that every limit point of this sequence  2 � and
(0) = x: Taking into account the result of the second step we claim that xn ! x
uniformly on every segment [�l; l] � T(l > 0): In particular, xn (�l0) ! x(�l0):
Passing now to limit in inequality (??) when n ! 1 we obtain the continuity of
mapping ~� in the point (t; x). The theorem is completely proved.

Remark 4.6. Theorem ?? is true and in the case if we replace the condition 2)
by the following: 2.1) for arbitrary " > 0 there exist two positive numbers �(") and
L(") such that

�(�(t; !; u1); �(t; !; u2)) < "(12)

for all ! 2 
; t � L(") and u1; u2 2 I! with condition �(u1; u2) < �.

5. The compact global pullback attractors of C�analytic cocycles

with compact base

In this section we suppose that hC d ; �; (
;T; �)i is a C�analytic cocycle and 
 is a
compact space.

Theorem 5.1. Let hC d ; �; (
;T; �)i be a C�analytic cocycle admitting a compact
global pullback attractor fI!j! 2 
g; then:

1. The compact invariant set J =
S
fJ!j! 2 
g of the skew-product dynamical

system (X;T+; �) (X := C d � 
; � := (�; �)) is asymptotically stable.

2. There exists a positive number �0 such that the cocycle � is positively uniformly
stable on the compact set B[I; �] :=

S
fB[I!; �]j ! 2 
g, where B[I!; �] := fz 2

C d j �(z; I!) � �g; for all 0 < � < �0:

3. The skew-product dynamical system (X;T+; �) generates on J a group dy-
namical system (J;T; �).

Proof. Denote by X = C d � 
 and by (X;T+; �) the skew-product dynamical
system. Then under the conditions of the theorem the set J =

S
fJ!j! 2 
g is a

nonempty compact invariant set and according to Theorem 4.1 [?] is asymptotically
stable with respect to (X;T+; �): In particular there exists a �0 > 0 such that the
set B[J; �0] := fx 2 Xj�(x; J) � �0g is positively invariant. Since 
 is compact
and �t(u; !) = (�(t; !; u); �t!), then there exists a positive number C = C(�0) such
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that j�(t; !; u)j � C for all ! 2 
 and u 2 B[I!; �0]. Taking into account the
connectedness of set I! (see, for example [?]) according to Cauchy's Theorem for
all � < �0 there exists a positive number L(�) such that

j�(t; !; u1) � �(t; !; u2)j � L(�)ju1 � u2j(13)

for all ! 2 
; t 2 R+ and u1; u2 2 B[I! ; �]. It is easy to see that from inequality
(??) results the positively uniformly stability of set B[I; �] for every 0 < � < �0.
Particularly the set I :=

S
fI!j! 2 
g will be positively uniformly stable and to

�nish the proof of Theorem it is su�ciently to apply Theorem ?? to our situation
for the skew-product system (X;T+; �). The Theorem is completely proved.

De�nition 5.2. (Linear cocycle) The cocycle hEd ; �; (
;T; �)i is called linear (see,
for example, [?],[?] and [?]) if the mapping �(t; !) : Ed ! Ed is linear for every
t 2 T+ and ! 2 
.

Theorem 5.3. ([?],[?] and [?]) Let hC d ; �; (
;T; �)i be a linear cocycle, then the
following conditions are equivalent:

1. lim
t!+1

j�(t; !; u)j= 0 for all u 2 Ed and ! 2 
.

2. There exist positive numbers N; � such that j�(t; !; u)j � N exp (��t)juj for
all t 2T+; ! 2 
 and u 2 Ed.

Theorem 5.4. Let hC d ; �; (
;T; �)i be a C�analytic cocycle admitting a compact
pullback attractor fI!j ! 2 
g, and let every point ! 2 
 be positively Poisson
stable. Then the following assertions hold:

1. For every ! 2 
 the set I! consists of a unique point �(!).

2. �(�t!) = �(t; !; �(!)) for all ! 2 
 and t 2T+.

3. The mapping ! ! (!) is continuous, where  := (�; Id
).

4. Every point (!) is positively Poisson stable.

5. The continuous invariant section � is uniformly asymptotically stable, i.e.

5.a) for arbitrary " > 0 there exists �(") > 0 such that �(z; �(!)) < � implies
�(�(t; !; z); �(�t!)) < " for all t � 0 and ! 2 
:

5.b) There exists �0 > 0 such that

lim
t!+1

�(�(t; !; z); �(�t!)) = 0

for all ! 2 
 and z with the condition �(z; �(!)) � �0:

Proof. Under the conditions of Theorem ?? there exists a positive number �0 such
that the setM := B[J; �0] is a compact and positively invariant set of skew-product
system (X;T+; �) (see the proof of Theorem ??), where B[I; �0] :=

S
fB[I!; �0]�

f!g j ! 2 
g: Denote by E = E(M;T+; �) the Ellis semigroup of the dynamical
system (M;T+; �), E! := f� 2 Ej�M! �M!g, whereM! := f(u; !)j (u; !) 2Mg
and E+

! := f� 2 E!j 9ftng 2 N+
! such that �tn jM!

! �g. According to Theorem
?? and Lemma ?? E+

! is a nonempty compact subsemigroup of the Ellis semigroup
E. Note that every mapping � 2 E+

! ; which maps B[I!; �0] into I! , is holomorphic
because, according to Theorem ??, the convergence �tn jM!

! � is uniform on
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M!: Consider an idempotent v 2 E+
! , then v(v(u)) = v(u) for all u 2 M! and,

consequently, v(p) = p for every p 2 v(M!) = v(I!): Since v is holomorphic and
v(I!) is a compact connected set, then [?] v(I!) contains only one point �(!). On
the other hand we have v(v(u)) = v(u) for all u 2 M!, i.e. v(�(!)) = v(u): Thus
there exists a sequence tn ! +1 such that

j�(tn; !; u)� �(tn; !; �(u))j = 0(14)

for all u 2M!. Taking into account the positively uniformly stability of cocycle �
from (??) we obtain the equality

j�(t; !; u)� �(t; !; �(u))j= 0(15)

for all u 2 B(I! ; �0) := fu 2 C d j�(u; I!) < �0g: Now we will prove that I! = f�(!)g
for every ! 2 
. Let 0 < � < �0; u 2 I! and h 2 C d with condition jhj < �; then
according to equality (??) we have

lim
t!+1

sup
jhj��

j�(t; !; u+ h) � �(t; !; u)j = 0(16)

for all ! 2 
 and u 2 I!. In virtue of Cauchy's formula (see [?] and also [?])

U (t; (u; !))w =(17)

1

(2�i)d

Z

jv1j= �
2

�::: �
Z

jvdj= �
2

�(t; !; u+ v) � �(t; !; u)

v1 � ::: � vd

dX
k=1

wk
vk
dv1 � ::: � dvd;

where U (t; (u; !)) := @�(t;!;u)
@u for all (u; !) 2M and t 2 T+: From (??) and (??) it

follows that lim
t!+1

kU (t; (u; !))k = 0 for all (u; !) 2 M: According to Theorem ??

there exist positive numbers N and � such that

kU (t; (u; !))k � N exp (��t)(18)

for any (u; !) 2M . Let now u1; u2 2 I! and  : [0; 1]! B(I! ; �) be a continuously
di�erentiable function with properties:  (0) = u1 and  (1) = u2: Consider the
function �(s) := �(t; !;  (s)); then according to Lagrange's formula we have

�(1)��(0) = �0(� );(19)

where 0 < � < 1: Hence from (??) and (??) we have

j�(t; !; u1)� �(t; !; u2)j � N1 exp (��t)ju1 � u2j(20)

for all t 2T+; ! 2 
 and u1; u2 2M!; where N1 = N �m and m = max
0�s�1

j 0(s)j:

To �nish the proof of theorem it is su�cient to remark that according to Theorem ??
on set J there is de�ned a two-sided dynamical system (J;T; �) and, in particular,
through every point u 2 I! passes a unique entire trajectory of cocycle �, i.e. the
function �(t; !; u) (u 2 I! and ! 2 
) is de�ned on T. If u1 6= u2 (u1; u2 2 I!);
then from (??) follows that

j�(�t; !; u1)� �(�t; !; u2)j � N1 exp (�t)ju1 � u2j

for all t 2 T+. But the trajectories �(t; !; ui) 2 I�t!(i = 1; 2; t 2 T) are bounded
on T. The obtained contradiction proves our assertion. Thus we have I! = f�(!)g:
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Now it is easy to see that the mapping !! (!) is continuous, where  = (�; Id
),
and �t(!) = (�t!) for all ! 2 
 and t 2 T+ and, consequently, �(�t!) =
�(t; !; �(!)) for all ! 2 
 and t 2T+:

Next we will note that every point (!) is positively Poisson stable. Indeed, let
ftng 2 N!, then �tn(!) = (�tn!) ! (!) and, consequently, ftng 2 N(!).
Finally, the uniformly asymptotically stability of continuous and invariant section
� results from Theorem ??. The theorem is completely proved.

6. The uniform dissipative cocycles with noncompact base

Let 
 be a completemetric space (generally speaking noncompact), hEd; �; (
;T; �)i
be a cocycle on the state space Ed and (X;T+; �) be the corresponding skew-
product dynamical system, where X = Ed �
 and � = (�; �).

De�nition 6.1. (Dissipative cocycle) The cocycle hEd; �; (
;T; �)i is said to be
dissipative if for any ! 2 
 there is a positive number r! such that

lim
t!+1

sup j�(t; !; u)j< r!

for all ! 2 
 and u 2 Ed; i.e. for all u 2 Ed and ! 2 
 there exists a positive
number L(!; u) such that j�(t; !; u)j < r! for all t � L(!; u):

De�nition 6.2. (Uniformly dissipative cocycle) The cocycle hEd; �; (
;T; �)i is
said to be uniformly dissipative if there exists a positive number r (r is not de-
pendant upon ! 2 
) such that for any R > 0 there is a positive number L(R) such
that j�(t; !; u)j< r for all ! 2 
 and juj � R and t � L(R):

Theorem 6.3. ([?, ?, ?]) Let hEd; �; (
;T; �)i be an uniformly dissipative cocycle,
then it admits a compact global pullback attractor fI!j ! 2 
g with juj � r for all
u 2 I! and ! 2 
; where r is the positive number in de�nition ??.

Theorem 6.4. Let hC d ; �; (
;T; �)i be a C�analytic uniformly dissipative cocycle,
then the following statements hold:

i). The cocycle � admits a compact global pullback attractor fI!j ! 2 
g with
juj � r for all u 2 I! and ! 2 
; where r is the positive number in condition (??).

ii). For any R > 0 there exist positive constants C = C(R) and L(R) such that

�(�(t; !; u1); �(t; !; u2)) � C�(u1; u2)(21)

for all t � L(R); ! 2 
 and u1; u2 2 C d with the condition juij � R (i = 1; 2):

iii). For arbitrary " > 0 there exist L(") > 0 and �(") > 0 such that

j�(t; !; u+ h) � �(t; !; u))j < "

for all t � L("), u 2 I!; ! 2 
 and jhj < �.

iv). The set J of (X;T+; �) is negatively distal, i.e.

inf
t�0

�(1(t); 2(t)) > 0;

where i (i=1,2) is a entire trajectory passing through point (ui; !) 2 J; u1 6= u2
and i(S)� J .
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v). On the set J there is de�ned a two-sided dynamical system (J;T; �) generated
by skew-product system (X;T+; �).

Proof. The �rst assertion of theorem results from Theorem ??. Let now R > 0 and
R0 > R; according to uniformly dissipativity of cocycle � there exists L(R0) > 0
such that j�(t; !; u)j< r for all t � L(R0); ! 2 
 and juj � R0: In virtue of Cauchy's
formula for R < R0 there is a constant C(R) > 0 such that j@�@u (t; !; u)j � C(R) for
all t � L(R); ! 2 
 and juj � R and, consequently the inequality (??) holds.

The third assertion we will prove by method of contradiction. If it is not true, then
there exist "0 > 0; �n ! 0 (�n > 0); jhnj < �n (hn 2 C d ); tn � n; !n 2 
 and
un 2 I!n such that

j�(tn; !n; un + hn) � �(tn; !n; un))j � "0

Let now R > r and C(R); L(R) be positive constants �guring in the inequality
(??), then we have the following inequality

"0 � j�(tn; !n; un + hn)� �(tn; !n; un))j � C(R)jhnj � C(R)�n:(22)

Passing to limit in the inequality (??) as n !1 we obtain "0 � 0. The obtained
contradiction proves our assertion.

The fourth and �fth statements follow from Theorem ?? (see also Remark ??)
because from condition iii) results that for arbitrary " > 0 there exist two positive
constants �(") and L(") satisfying the inequality (??). The Theorem is completely
proved.

Theorem 6.5. Let hC d ; �; (
;T; �)i be a C�analytic uniformly dissipative cocycle
and every point ! 2 
 be positively Poisson stable, then:

1. The set I! consists of only one point �(!) for every !.

2. The mapping ! ! (!) is continuous, where  := (�; Id
).

3. �(�t!) = �(t; !; �(!)) for all ! 2 
 and t 2T+.

4. lim
t!+1

�(�(t; ��t!)z; �(!)) = 0 for every ! 2 
 uniformly with respect to z in

compact subsets of C d .

5. Every point (!) is positively Poisson stable.

6. lim
t!+1

�(�(t; !; z); �(�t!)) = 0 for all ! 2 
 and z 2 C d ; i.e. every positive

semi trajectory �(t; !; z) is asymptotically Poisson stable in positive direction.

Proof. Let hC d ; �; (
;T; �)i be a C�analytic uniformly dissipative cocycle, then
according to Theorem ?? this cocycle has the properties i)-v). Let fI!j ! 2 
g
be the compact global pullback attractor of cocycle � and let (X;T+; �) be the
skew-product dynamical system. Denote by

E+
! := f�j 9ftng 2 N

+
! ; �

tn jX!
! �g:

Since the cocycle � possesses the property ii), then the pointwise convergence
�tn jX!

! � coincides with uniform convergence on every compact subset of X! =
C d � f!g and, consequently, every mapping � 2 E+

! is holomorphic. As well as in
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Lemma ?? it is possible to show that E+
! is a nonempty compact semigroup w.r.t.

composition of mappings. Consider the idempotent element v of semigroup E+
! .

We will show that v(X!) � I! : Indeed, v 2 E+
! and, consequently, there exists a

sequence ftng 2 N+
! such that v = lim

n!1
�tn jX!

: Let �x 2 v(X!); i.e. �x = v(x) for

some x 2 X! : This means that �x = lim
n!1

�tnx: According to Lemma ?? there exists

an entire trajectory  of the skew-product system (X;T+; �) passing through the
point �x for t = 0 and (T) := f(t)jt 2 Tg is conditionally precompact. Taking
into account that J is a maximal invariant set of (X;T+; �) with precompact pr1J
(see remark ??) we have �x 2 J!; i.e. v(X!) � J!: Since X! = C d � f!g and
v is holomorphic by virtue of Liouville's Theorem the holomorphic function v is
a constant, i.e. there exists (!) 2 J! such that v(X!) = f(!)g: We note that
v2 = v and, consequently, v(v(x)) = v(x) for all x 2 X!; i.e. v((!)) = v(x): Thus,
there exists a sequence tn ! +1 such that

lim
t!+1

�(�tn(!); �tnx) = 0:(23)

Taking into consideration the property ii) of cocycle � we obtain from (??) the
equality

lim
n!1

�(�(t; !; z); �(t; !; �(!))) = 0(24)

for all z 2 C d ; where  := (�; Id
).

Now we will show that there exists �0 > 0 such that for arbitrary " > 0 there is
L(") > 0 with the property

j�(t; !; u+ h)� �(t; !; u)j < "(25)

for all (u; !) 2 J , t � L(") and uniformly w.r.t. jhj � �0: If it is not true, then
there are � ! +0; "0 > 0; jhnj � �n; !n 2 
; un 2 I!n and tn � n such that

j�(tn; !n; un + hn)� �(tn; !n; un)j � "0:

On the other hand, according to property ii), there exists C(R) > 0 (R > sup
n2N

�n)

such that for su�ciently large n we have

"0 � j�(tn; !n; un + hn) � �(tn; !n; un)j � C(R)�n:(26)

Taking into account that �n ! 0 from (??) it follows that "0 � 0: The obtained
contradiction prove our assertion.

From equality (??) and inequality (??) it follows that

lim
t!+1

kU (t; (u; !))k = 0(27)

uniformly with respect to (u; !) 2B[J; �0]: Denote by

m(t) := supfkU (t; (u; !))k j(u; !) 2B[J; �0]g;

then

a) m(t)! 0 as t! +1.

b) 9L > 0 such that m is bounded on [L;+1).

c) m(t + � ) � m(t)m(� ) for all t; � � L:
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From a)-c) it follows (see, for example, [?]) that there exist N;� > 0 such that
m(t) � N exp (��t) for all t � L and, consequently, from (??) we have

kU (t; (u; !))k � N exp (��t)

for all (u; !) 2 B[J; �0] and t � L: Using the same arguments as well as as in the
proof of Theorem ?? we conclude that I! = f�(!)g for all ! 2 
:

Now we will prove that the mapping ! ! (!) is continuous. Let !n ! ! and
consider the sequence f(!n)g � J . Since J is conditionally compact, this sequence
is precompact. Let �x be a limit point of f(!n)g; then it is easy to see that
�x 2 J! = f(!)g and, consequently, (!) is a unique limit point of precompact
sequence f(!n)g. Hence (!n)! (!):

The equality �(�t!) = �(t; !; �(!)) follows from invariance of J and from equality
J! = f(!)g for all ! 2 
, taking into account that �(!) = pr1(!):

The equality 4 follows from equality J! = f(!)g = f(�(!); !)g and from the fact
that f�(!)j ! 2 
g is a compact global pullback attractor of cocycle �.

The stability in the sense of Poisson in the positive direction of point (!) follows
from the continuity of  and the equality �t(!) = (�t!) for all t 2T+ and ! 2 
:

The sixth assertion follows from (??) and the equality �(t; !; �(!)) = �(�t!) for all
t 2 T+ and ! 2 
: The Theorem is completely proved.

7. The compact and local dissipative cocycles with noncompact base

De�nition 7.1. (compact dissipative cocycle) The cocycle hEd; �; (
;T; �)i is said
to be compactly dissipative if for any nonempty compact 
0 � 
 there is a positive
number r
0 such that for arbitrary R > 0 there exists a positive number L(R;
0)
with the following property

j�(t; !; u)j < r
0(28)

for all ! 2 
0; juj � R and t � L(R;
0):

De�nition 7.2. (Local dissipative cocycle) The cocycle hEd; �; (
;T; �)i is said to
be locally dissipative if for any ! 2 
 and R > 0 there are positive numbers r!; �!
and L(R;!) such that

j�(t; ~!; u)j < r
0(29)

for all ~! 2 B(!; �!) := f~! 2 
j �(~!; !) < �!g; juj � R and t � L(R;!):

Lemma 7.3. Every locally dissipative cocycle � is compactly dissipative.

Proof. Suppose that � is locally dissipative and let 
0 � 
 be a nonempty compact
set. According to locally dissipativity of � for every ! 2 
; and R > 0 there exist
r!; L(R;!) > 0 and �! > 0 such that the inequality (??) holds. Considering the
open covering

S
fB(!; �!)j! 2 
0g of compact set 
0, we may extract the �nite

sub covering
S
fB(!i; �!i)ji = 1; kg. Let L(R;
0) := maxfL(R;!i)ji = 1; kg; then

it is clear that inequality (??) holds for all ! 2 
0; juj � R and t � L(R;
): The
Lemma is proved.
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Remark 7.4. Compact dissipativity, generally speaking, does not imply locally dis-
sipativity.

Lemma 7.5. Let hEd; �; (
;T; �)i be a compactly dissipative C�analytic cocycle.
Then for any nonempty compact 
0 � 
 and R > 0 there exist L(
0; R) and
C = C(
0; R) > 0 such that

�(�(t; !; u1); �(t; !; u2)) � C(
0; R)�(u1; u2)(30)

for any ! 2 
0; juij � R (i = 1; 2) and t � L(
0; R):

Proof. Let R > 0 and R0 > R, then according to the compact dissipativity of
cocycle � for nonempty compact 
0 � 
 and R0 > 0 there exist r
0 > 0 and
L(
0; R0) > 0 such that j�(t; !; u)j < r
0 for all ! 2 
; juj � R0 and t � L(
0; R0):
In view of Cauchy`s formula for R < R0 there exists a constant C = C(R;
) > 0
such that j@�@u(t; !; u)j � C(R;
0) for all t � L(R0;
0); ! 2 
0 and juj � R and,
consequently, the inequality (??) holds for ju1j; ju2j � R;! 2 
0 and t � L(
0; R) :=
inffL(
0; R0)jR0 > Rg:

Lemma 7.6. Let hEd; �; (
;T; �)i be a compactly dissipative C�analytic cocycle,
and 1; 2 are two entire bounded trajectories passing through point (u1; !) and
(u2; !) for t = 0 respectively, then the following assertions hold:

1. If ! 2 
 is negatively Poisson stable and ftng 2 N�! , then

inf
n2N

�(1(tn); 2(tn)) > 0(31)

if u1 6= u2.

2. If ! 2 
 is positively Poisson stable and ftng 2 N+
! , then the equality

inf
n2N

�(�(tn; !; u1); �(tn; !; u2)) = 0(32)

implies

lim
t!+1

�(�(t; !; u1); �(t; !; u2)) = 0:(33)

Proof. Let ! 2 
 be a negative Poisson stable point, ftng 2 N�! and u1 6= u2: If
the equality (??) is not true, then �(1(tn); 2(tn))! 0 as n!1: Denote by R :=
sup
t2T

maxfj1(t)j; j2(t)jg > 0;
0 := f�tn!jn 2 Ng � 
 and let C(
0; R); L(
0; R) be

the corresponding constants �guring in the inequality (??), then we obtain

�(u1; u2) = �(�(�tn; �tn!; 1(tn)); �(�tn; �tn!2(tn)))(34)

� C(
0; R)�(1(tn); 2(tn))

for su�ciently large n (�tn � L(
0; R)). Passing to limit in the inequality (??) as
n! 1 we have �(u1; u2) � 0, but u1 6= u2: The obtained contradiction prove the
�rst statement of Lemma ?? .

Let now ! 2 
 be a positive Poisson stable point and ftng 2 N+
! such that the

inequality (??) holds, then for arbitrary " > 0 there exists n0 = n0(") such that

�(�(t; !; u1); �(t; !; u2)) <
"

2C(
0; R)
(35)



18 DAVID N. CHEBAN

and, consequently, according to Lemma ?? we obtain

�(�(t; !; u1); �(t; !; u2)) = �(�(t� tn; �tn!; �(tn; !; u1));(36)

�(t � tn; �tn!; �(tn; !; u2)) � C(
0; R)�(�(tn; !; u1); �(tn; !; u2))

for all t � tn + L(
0; R); where R := supfmaxfj�(t; !; u1)j; j�(t; !; u2)jgjt 2 T+g:
Denote by L(") := tn0(")+L(
; R); then from inequalities (??) and (??) we obtain

�(�(t; !; u1); �(t; !; u2)) < "

for all t � L(") and, consequently, (??) holds. The lemma is proved.

Theorem 7.7. Let hEd; �; (
;T; �)i be a compactly dissipative C�analytic cocycle
admitting a compact pullback attractor fI!j ! 2 
g and every point ! 2 
 be
two-sided Poisson stable, then the following assertions hold:

1. The set I! consists of only one point �(!), i.e. I! = f�(!)g for every ! 2 
:

2. The mapping ! ! (!) is continuous, where  = (�; Id
).

3. �(�t!) = �(t; !; �(!)) for all ! 2 
 and t 2 T+:

4. The point (!) is Poisson's stable for all ! 2 
:

5. lim
t!+1

�(�(t; ��t!)K; �(!)) = 0 for all compact subsets K of C d , where �(A;B)

is the semi-distance of Hausdor� between A and B.

6. lim
t!+1

j�(t; !; z)� �(�t!)j = 0 for all ! 2 
 and z 2 C d :

Proof. To prove the �rst assertion of Theorem ?? we consider the nonautonomous
dynamical system h(�;T; �); (
;T; �);Hi constructed in the proof of Theorem ??.
Using the same type of argument as in Theorem ?? and taking into consideration
the Lemma ?? we may state that the system h(�;T; �); (
;T; �);Hi possesses the
following properties:

a) � is conditionally compact invariant set.

b) for every ! 2 
; 1; 2 2 �!(1 6= 2) and ftng 2 N�! holds

inf
n2N

�(tn1 ; 
tn
2 ) > 0:

Then according to Lemmas ??-?? we have that E�! = E+
! = E! is a group. Par-

ticularly there are two sequences t1n ! +1 and t2n !�1 such that

lim
n!1

t
i
n =  (i = 1; 2):(37)

for all  2 �!; i.e. every entire trajectory  of global pullback attractor fI!j! 2 
g
is two-sided Poisson stable. On the other hand according to Lemma ?? we have

lim
t!+1

�(1(t); 2(t)) = 0:(38)

From (??) and (??) we obtain

�(1(t); 2(t)) = lim
n!1

�(1(t+ t1n); 2(t+ t1n)) = 0

for all t 2 T; i.e. 1 = 2: Thus there exists a unique entire trajectory ~! 2 �!; i.e.
�! = f~!g and, consequently, I! = f~!(0)g := f(!)g; where (!) := ~!(0):
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The proof of item 2)-6) of Theorem ?? uses the same type of arguments as in
Theorem ??. The Theorem is proved.

8. Applications

8.1. Ordinary di�erential equations. We consider the equation

dz

dt
= f(t; z);(39)

where f 2 CH(R� C d ; C d ) and the family of equations

dz

dt
= g(t; z);(40)

where g 2 H(f) := ff� j� 2 Rg and f� is a ��translation of function f w.r.t.
variable t, i.e. f� (t; z) := f(t + �; z) for all t 2 R and z 2 Cd . Denote by �(t; g; z)
the solution of equation (??) with the initial condition '(0; g; z) = z, then � is a
C�analytic cocycle on C d .

De�nition 8.1. The equation (??) is called dissipative if there exists a positive
number r such that lim

t!+1
sup j�(t; g; z)j < r for all z 2 C d and g 2 H(f).

De�nition 8.2. The function f 2 CH(R� Cd ; Cd ) is called positively (negatively)
Poisson stable in t 2 R uniformly w.r.t. z on compact subsets of C d [?],[?] if there
exists tn ! +1 (tn !�1, respectively) such that f(t+ tn; z)! f(t; z) as n!1
uniformly on every compact subsets of R� C d :

Theorem 8.3. Suppose that the following conditions hold:

1. The set H(f) � CH(R� C d ; Cd ) is compact.

2. Every function g 2 H(f) is positively Poisson stable (in this case function f
is called [?],[?] quasi recurrent).

3. The equation (??) is dissipative.

Then every equation (??) admits a unique bounded on R and positively Poisson
stable solution. This solution is globally uniformly asymptotically stable.

Proof. We consider the dynamical system of translations (Bebutov's system [?],[?])
(CH(R� C d ; Cd );R; �). Since H(f) is invariant and closed subset of CH(R�
C d ; C d ), then on set H(f) it is induced a dynamical system (H(f);R; �). Let

 := H(f), then on space C d it is de�ned a C�analytic cocycle hC d ; �; (
;R; �)i;
generated by equation (??). According to the general properties of equation (??)
with holomorphic right hand side f , the cocycle � will be C�analytic (see, for
example, [?]). To �nish the proof of this theorem it is su�cient to apply to cocycle
� the Theorem ??.

De�nition 8.4. (Bohr's almost periodic function) The function f 2 CH(R�
C d ; C d ) is called almost periodic (in the sense of Bohr) in t 2 R uniformly w.r.t. z
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on compact subsets of C d [?, ?, ?] if for every " > 0 and nonempty compact subset
K � C d the set

T("; f;K) := f� 2 Rjmax
z2K

jf(t+ �; z)� f(t; z)j < "g

is relatively dense on R, i.e. there is a number l = l("; f;K) > 0 such that

T("; f;K)
\

[a; a+ l] 6= ;

for all a 2 R.

De�nition 8.5. The equation (??) is called pullback dissipative if for every g 2
H(f) there exists a positive number rg such that for all R > 0

lim
t!+1

sup jj�(t; g�t; z)j < rg

uniformly w.r.t. jzj � R:

Theorem 8.6. Let f 2 CH(R� C d ; Cd ) be an almost periodic function in t 2 R
uniformly w.r.t. z on compact subsets of C d and the equation (??) be pullback
dissipative, then every equation (??) admits a unique bounded solution �g(t), which
is almost periodic and satis�es the following conditions:

1. �g(t) is uniformly asymptotically stable (locally).

2. lim
t!+1

sup
jzj�R

j�(t; !�t)z � �g(0)j = 0:

Proof. The proof of this theorem uses the same type of argument as the proof of
Theorem ?? and is based on the Theorem ??.

8.2. Caratheodory di�erential equations. Consider now the equation (??)
with right hand side f satisfying the conditions of Caratheodory (see, for example,[?]
) and holomorphic w.r.t. variable z 2 C d . The space of all the Carateodory func-
tions we denote by CH(R�Cd ; Cd ). The topology on this space is de�ned by family
of semi-norm (see [?])

pn;m(f) :=

Z n

�n
max
jzj�m

jf(t; z)jdt:

This space is metrizable and on CH(R� C d ; C d ) the dynamical system of transla-
tions (CH(R� C d ; C d );R; �) can be de�ned.

Using the standard arguments for ODEs (see,for example, [?] and [?]) one can prove
that every equation (??) admits a unique solution �(t; g; z) with initial condition
�(0; g; z) = z and supplementary the mapping �(t; g) := �(t; g; �) : C d ! C d

is holomorphic. Thus if the solutions �(t; g; z) are de�ned on R+; the mapping
� : R+ � H(f) � C d ! C d de�nes a C�analytic cocycle on C d with the base
H(f), where H(f) := ff� j� 2 Rg and the bar denotes the closure in the space
CH(R� C d ; C d ). Hence we may apply the general results from sections 2-7 to
cocycle �, generated by equation (??) with Caratheodory's right hand side, and
we will obtain some results for this type of equations. For example the following
assertion holds.
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Theorem 8.7. Let f 2 CH(R� C d ; C d ) be an almost periodic function in t 2 R
(in the sense of Stepanov [?]) uniformly w.r.t. z on compact subsets of C d , i.e. for
every " > 0 and compact subset K � C d the set

T("; f;K) := f� 2 Rj
Z 1

0
max
x2K

jf(t + � + s; z)� f(t + s; z)jds < "g

is relatively dense on R. Suppose that the equation (??) is dissipative, then every
equation (??) admits a unique almost periodic (in the sense of Bohr) solution �g(t)
which is globally uniformly asymptotically stable.

8.3. ODEs with impulses. Let ftngn2Zbe a sequence of real numbers, infftn+1�
tnj n 2 Zg > 0, p : R! C d be a continuously di�erentiable function on every
interval (tn; tn+1), continuous to the right in every point t = tn, almost periodic in
the sense of Stepanov and

p0(t) =
X
n2Z

sn�tn ;

where sn := p(tn + 0) � p(tn � 0) (i.e. the function p is piecewise constant). More
information about the function described above can be found in the books [?] and
[?].

Consider the equation with impulses

dz

dt
= f(t; z) +

X
n2Z

sn�tn(41)

or equivalently

dz

dt
= f(t; z) + p0(t):(42)

At the same time we consider the family of equations

dz

dt
= g(t; z) + q0(t);(43)

where (g; q) 2 H(f; p) := f(f� ; p� )j� 2 Rg and by the bar we denote the closure in
the product-space CH(R� C d ; Cd ) � C(R;Cd ).

Denote by �(t; g; q; z) the unique solution of equation (??) (see [?] and [?]) satisfying
the initial condition �(0; g; q; z) = z: This solution is continuous on every interval
(tn; tn+1) and continuous to the right in every point t = tn (see [?] and [?]).

De�nition 8.8. The equation (??) is called dissipative if there exists a number
r > 0 such that lim

t!+1
sup j�(t; g; q; z)j < r for every (g; q) 2 H(f; p) and z 2 C d :

Using the transformation w := z + q(t) we can transform the equation (??) into
the equation

dw

dt
= g(t; w + q(t)):(44)

Remark 8.9. Denote by ~�(t; g; q; z) the cocycle de�ned by the family of equations
(??), then it is clear that the cocycle � generated by (??) is dissipative if and only
if the cocycle ~� generated by (??) is dissipative.
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Theorem 8.10. Let f 2 CH(R� C d ; C d ) be a Bohr's almost periodic function in
t 2 R uniformly with respect to z on every compacts subsets of C d , locally Lipshitz
in z uniformly w.r.t. t 2Tand p 2 C(R; Cd ) be a Stepanov almost periodic function
bounded on R. If the equation (??) is dissipative, then for every (g; q) 2 H(f; p) the
equation (??) admits a unique Stepanov almost periodic solution and this solution
is globally uniformly asymptotically stable .

Proof. Let �(t; g; q; z) be the cocycle generated by equation (??) and let ~�(t; g; q; w)
be the cocycle generated by equation (??). Then we have the following equality

�(t; g; q; z) = q(t) + ~�(t; g; q; z � q(0)):(45)

Under the conditions of Theorem ?? the cocycle ~� is dissipative, C�analytic and
the right hand side of equation (??) under the conditions of Theorem ?? is Stepanov
almost periodic in t 2 R uniformly on every compact of C d w.r.t. z. To �nish the
proof of this theorem we apply the Theorem (??) to the equation (??) and take
into consideration the relation (??). The theorem is proved.
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