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1 Introduction

A de�ning characteristic of an autonomous dynamical system is its dependence on
the time that has elapsed only and not on the absolute time itself. Consequently
limiting objects, such as attractors, actually exist for all time as invariant sets un-
der the evolution of the autonomous system. Although such concepts can also be
used for general nonautonomous systems, where the absolute starting time is as
important as the time elapsed since starting, they are often too restrictive and ex-
clude many interesting types of dynamical behaviour. A simple example is that
of an asymptotically stable solution that is neither constant nor periodic. What
are the limiting or attracting points here? What are the corresponding invariant
sets, and, important for numerical considerations, how can one assure convergence
to a particular point in such an invariant set? The forwards running convergence
of an asymptotically stable solution is of little direct use in constructing the lim-
iting solution since this solution may itself be changing with increasing time. An
alternative is to use pullback convergence, that is to hold �xed an absolute time
instant and to consider the limiting values at this time instant of other solutions
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that start progressively early in absolute time. The limiting sets now depend on ab-
solute time and are invariant under the evolution of the system, that is, are carried
forward onto each other as time increases. This idea was introduced several years
ago in the context of random dynamical systems [7, 8, 9, 16], which are intrinsically
nonautonomous, but had been used already in the 1960s by M. Krasnoselskii [14] to
establish the existence of solutions of deterministic systems that are bounded over
the entire time axis. It has also been applied recently [12, 13] to investigate variable
timestep (hence nonautonomous) numerical approximations of global attractors of
autonomous systems governed by dissipative ordinary di�erential equations.

Another key idea in [7, 8, 9, 16] is to formulate the nonautonomous dynamics
on IRd in terms of a cocycle mapping � that is driven by an underlying autonomous
sytem � on some parameter set P . At its simplest, P is just the absolute time
set IR and � is the shift operator that essentially resets the starting time to the
current absolute time value. More useful is to consider for P a function space of
admissible vector �elds as proposed by Sell [17] or as a probability sample space as
in [7, 8, 9, 16], where the current parameter value takes the role of absolute time and
is adjusted by � with the passage of time. The advantage here is, in the �rst case
at least, that the parameter space can be topologized (often as a compact space)
and the product system (�; �) is an autonomous semi{dynamical system known as
as skew product 
ow on the new product state space P � IRd. The extensive theory
of autonomous dynamical systems can then be applied to such skew product 
ows,
in particular concepts such as invariant sets, limit sets and attractors, but just how
these manifest themselves in terms of the original dynamics on the original state
space IRd and what relationship, if any, they have with pullback convergence need
to be clari�ed.

In this paper we investigate the e�ect of time discretization on the pullback
attractor of a nonautonomous ordinary di�erential equation for which the vector
�elds depend on a parameter that varies in time rather than depending directly on
time itself. The parameter space is assumed to be compact so the skew product

ow formalism as well as cocycle formalism also applies and the vector �elds have
a strong dissipative structure that implies the existence of a compact set that ab-
sorbs all compact sets under the resulting nonautonomous dynamics. The numerical
scheme considered is a general 1{step scheme such as the Euler scheme with vari-
able timesteps. Our main result is to show that the numerical scheme interpreted
as a discrete time nonautonomous dynamical system, hence discrete time cocycle
mapping and skew product 
ow on an extended parameter space, also possesses a
cocycle attractor and that its component subsets converge upper semi{continuously
to those of the cocycle attractor of the original system governed by the di�erential
equation. This is a nonautonomous analogue of a result of Kloeden and Lorenz
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[11] on the discretization of an autonomous attractor; see also [10, 21]. We will
also see that the corresponding skew product 
ow systems have global attractors
with the cocycle attractor component sets as their cross-sectional sets in the original
state space IRd. Finally, we investigate the periodicity and almost periodicity of the
discretized pullback attractor when the parameter dynamics in the ordinary di�er-
ential equation is periodic or almost periodic and the pullback attractor consists of
singleton valued component sets, i.e. the pullback attractor is a single trajectory.

The paper is organised as follows. Pullback attractors, cocycles and skew product

ows are de�ned in Section 2 and a theorem is stated, summarising results from the
literature on the relationship between pullback attractors and global attractors of
skew product 
ows. The class of nonautonomous di�erential equations and the
corresponding variable timestep 1{step schemes to be considered are introduced in
Section 3 and their cocycle formalism is then established in Section 4. The main
result, Theorem 6, is formulated in Section 5 and then proved in Section 6. Section 7
is devoted to periodic and almost periodic behaviour when the pullback attractor is
a single trajectory. Finally, the Appendix contains the proof of a lemma used earlier,
which compares the cocycle mappings of the original continuous time system and of
the discrete time numerical systems.

2 Nonautonomous dynamical systems and pull-

back attractors

Consider an autonomous dynamical system on a metric space P described by a
group � = f�tgt2IT of mappings of P into itself, where the time set IT is either IZ
(discrete time) or IR (continuous time).

Let X be a complete metric space and consider a continuous mapping � : IT+ �
P �X ! X satisfying the properties

�(0; p; �) = idX ; �(� + t; p; x) = �(�; �tp; �(t; p; x))

for all t, � 2 IT+, p 2 P and x 2 X. The mapping � is called a (continuous) cocycle
on X with respect to �. Then the mapping � : IT+ � P �X ! P �X de�ned by

�(t; p; x) := (�tp; �(t; p; x))

for all t 2 IT+, (p; x) 2 P �X forms an autonomous semi{dynamical system on the
state space P �X, i.e. the set of mappings f�(t; �; �)gt2IT+ of P �X into itself is a
semi{group, which is called a continuous skew product 
ow [17].

The usual concept of a global attractor for the autonomous semi{dynamical
system � on the state space P �X can be used here. It is the maximal nonempty
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compact subset A of P �X which is �{invariant, that is

�(t;A) = A for all t 2 IT+;

and attracts all compact subsets of P �X, that is

lim
t!1

H�
P�X (�(t;D);A) = 0 for all D 2 K(P �X);

where K(P �X) is the space of all nonempty compact subsets of P �X and H�
P�X

is the Hausdor� pseudo{metric on K(P �X).
Another type of attractor, called a pullback attractor , consists of subsets of

the original state space X, which is advantageous for discretizations of the nonau-
tonomous system.

De�nition 1 A family bA = fApgp2P of nonempty compact sets of X is called a
pullback attractor of the cocycle � if it is �{invariant, that is

�(t; p;Ap) = A�tp for all t 2 IT+; p 2 P;
and pullback attracting, that is

lim
t!1

H�
X (�(t; ��tp;D); Ap) = 0 for all D 2 K(X); p 2 P:

In the sequel we will require the following theoremwhich combines several known
results.

Theorem 2 Let � be a continuous cocycle on X with respect to a group � of con-
tinuous mappings on P and let � = (�; �) be the corresponding skew product 
ow on
P �X. In addition, suppose that there is a nonempty compact subset B of X and
for every D 2 K(X) there exists a T (D) 2 IT+, which is indepedent of p 2 P , such
that

�(t; p;D) � B for all t > T (D): (1)

Then

1. there exists a unique pullback attractor bA = fApgp2P of the cocycle � on X,
where

Ap =
\

�2IT+

[
t>�
t2IT+

� (t; ��tp;B): (2)

2. there exists a global compact attractor A of the autonomous semi{dynamical
system � on P �X, where

A =
\

�2IT+

[
t>�
t2IT+

� (t; P �B):
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3. assertions 1 and 2 above are equivalent and

A =
[
p2P

fpg �Ap:

See Crauel and Flandoli [7] and Schmalfu� [16] for the proof of Assertion 1 and
Cheban and Fakeeh [5] and Hale [10] for the proof of Assertion 2. Assertion 3 has
been proved by Cheban [4].

Remark: Assertion 1 true remains under weaker conditions. For instance, the
sets D in the absorbing condition (1) could be parameter dependent, the parameter
space P need not be compact nor the mappings �t continuous (which is the situation
in random dynamical systems, see Arnold [1]). Note that the validity of Assertion 3
for nonuniform absorbing times, a situation which occurs in important applications,
remains open. See [6] for a systematic investigation of the relationship between the
pullback and forwards attractors of the cocycle system and the global attractor of
the associated skew product 
ow.

3 Nonautonomous quasilinear di�erential equa-

tion

We consider a nonautonomous quasilinear di�erential equation

_x = A(p)x+ f(p; x) (3)

on IRd where p 2 P , on which there exists a group of mappings �t : P ! P for all
t 2 IR. A solution x(t) = �(t; p; x0) of (3) with initial value x(t) = x0 satis�es the
equation

d�

dt
(t; p; x0) = A(�tp)�(t; p; x0) + f(�tp; �(t; p; x0)):

Our assumptions are

D1. P is a compact metric space and (t; p) 7! �tp is continuous.

D2. p 7! A(p) is continuous and satis�es

(A(p)x; x) � ��(p) jxj2

for all (p; x) 2 P � IRd.
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D3. (p; x) 7! f(p; x) is continuous, is locally Lipschitz in x uniformly in p 2 P
and satis�es

(f(p; x); x) � a(p) jxj2 + c(p)

for all (p; x) 2 P � IRd.

D4. �(p) > 0, �(p) � a(p) � �0 > 0 and c(p) � c0 < 1 for all p 2 P .

Remark. The mapping f in D3 denotes the remaining part of the di�erential
equation. It may also contain linear terms that has not been included in linear part
with the matrix A(p). Though seemingly super
uous, it is sometimes convenient to
distinguish the matrix operator A(p) in this way (especially in in�nite dimensional
generalizations, which are not considered here).
Remark. By the above continuity and the compactness of P we have the �nite
uniform upper bounds

A0 := sup
p2P

kA(p)k; FR := sup
p2P;jxj�R

jF (p; x)j:

We also consider a variable timestep one-step explicit numerical scheme corre-
sponding to the di�erential equation (3), such as the Euler scheme, which we write
as

xn+1 = xn + hnF (hn; �tnp; xn) (4)

where t0 = 0 and tn =
Pn�1

j=0 hj, t�n = �Pn
j=1 h�j for n � 1 for fhjgn2IZ a given

two sided sequence of positive terms and F : [0; 1]�P � IRd ! IRd is the increment
function. We make the following assumptions:

N1. F is continuous in all of its variables and locally Lipschitz in x uniformly in
(h; p) 2 [0; 1]� P ;

N2. The numerical scheme (4) satis�es a local discretization error estimate of the
form

j�(h0; p; x0)� x1j � h0�R(h0); jx0j � R;

for each R > 0, where �R(h) > 0 for h > 0 and �R(h) ! 0 as h ! 0+.

N3. F satis�es the consistency condition

F (0; p; x) = A(p)x+ f(p; x)

for all (p; x) 2 P � IRd;
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N4. F satis�es the Lipschitz consistency condition

j(F (h; p; x)�A(p)x� f(p; x))� (F (h; p; y)�A(p)y � f(p; y))j � ��R(h)jx� yj

for all jxj, jyj � R uniformly in p 2 P , where ��R(h) > 0 for h > 0 and ��R(h) ! 0
as h ! 0+.

For example, F (h; p; x) � A(p)x + f(p; x) for the Euler scheme applied to the
di�erential equation (3). Note that for one-step order schemes such as the Euler
and Runge{Kutta schemes, �(h) is typically of the form KRhp for some integer p �
1. In our case here this would require the di�erentiability of F in p as well as x and
of �t in t, which is too restrictive for certain applications.

Our main result (see Theorem 6 below) is that nonautonomous dynamical sys-
tems generated by the di�erential equation (3) and the numerical scheme (4) both
have pullback and global attractors, and that the numerical attractors converge up-
per semi{continuously to the corresponding attractors of the di�erential equation
as the step size goes to zero. We will apply Theorem 2 to establish the existence of
such attractors, but �rst we need to show in what sense the numerical scheme (4)
generates a discrete time cocycle mapping and skew product 
ow.

3.1 An example

We consider the 3{dimensional Lorenz system with time dependent coe�cients

_x1 = ��(t)x1+ �(t)x2

_x2 = r(t)x1 � x2 � x1x3

_x3 = �b(t)x3+ x1x2

(see Temam [22], Chapter I.2.3). Assuming that � and r are di�erentiable functions
of IR into itself, we can rewrite this system after the transformation x3 := x3�r(t)�
�(t) in the form (3) with the matrix

A(p) =

0BBBBB@
��(0) �(0) 0

��(0) �1 0

0 0 �1

1CCCCCA

7



and the mapping

f(p; x) =

0BBBBB@
0

�x1x3
x1x2 � _�(0)� _r(0)� b(0)(r(0) + �(0))� (b(0)� 1)x3

1CCCCCA ;

where x = (x1; x2; x3) and p := p(�) = (b(�); r(�); �(�)) 2 C(IR; IR) � C1(IR; IR) �
C1(IR; IR).

Suppose that b is almost periodic in C(IR; IR) and that �, r are almost periodic
in C1(IR; IR) with

0 < �min := inf
t2R

�(t); 1 < inf
t2R

b(t):

Then de�ne �t for each t 2 IR by �tp(�) := p(�+ t). Finally, de�ne the parameter set
P to be the closed hull [17]

P :=
[
t2IR

�t(b(�); r(�); �(�));

which is a compact subset of C(IR; IR)� C1(IR; IR) � C1(IR; IR).
We need to check that the assumptions D1{D4 are satis�ed by the di�eren-

tial equation with this matrix A and function f . The �rst assumption D1 follows
straighforwardly and the second D2 holds with �(p) � �0 := min(�min; 1) > 0 with
the assumptions on � and r ensuing the continuity of A. These assumptions on �
and r also ensure the continuity of f needed in D3 and the estimate is given by

(f(p; x); x) = (� _�(0) � _r(0))x3 � b(0)(r(0) + �(0))x3 � (b(0)� 1)x23

� ( _�(0) + _r(0))2

2(b(0) � 1)
+
b2(0)(r(0) + �(0))2

2(b(0) � 1)
=: c(p)

with a(p) � 0. Finally, it is obvious from these de�nitions of the constants that D4
is also satis�ed, in particular with c0 := supp2P c(p) < 1.

The Euler scheme for this di�erential equation also satis�es assumptions N1{
N4. Since F (h; p; x) � A(p)x + f(p; x) here, assumptionsN3 and N4 hold trivially,
while assumptionN1 follows fromD1{D3 above. AssumptionN2 also follows from
D1{D3 with the proof being almost the same as in the �rst part of the proof in
the Appendix. Note that if b is also assumed to be continuously di�erentiable, then
we have the usual second order local discretization error here. One can show that
assumptionsN1{N4 are also satis�ed by higher order schemes such as Runge{Kutta
schemes, but the details are not as straightforward or clean as for the Euler scheme.
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4 Cocycle property

The solution �(t; p; x0) of the di�erential equation (3) satis�es assumptions N1{
DN4 the initial condition

�(0; p; x0) = x0 for all (p; x0) 2 P � IRd

and the cocycle property

�(s+ t; p; x0) = �(s; �tp; �(t; p; x0)) for all s; t 2 IR+; (p; x0) 2 P � IRd

with respect to the autonomous dynamical system generated by the group f�tgt2IR
on P . (Existence of such solutions for all t 2 IR+ is assured by that of an absorbing
set to be established in the proof of Theorem 6 below). By our assumptions the
mapping (t; p; x) 7! �(t; �tp) is continuous. Morever, the mapping � := (�; �) de�ned
on IR+ � P � IRd

�(t; p; x) := (�(t; p; x); �tp) for all (t; p; x0) 2 IR+ � P � IRd

generates an autonomous semi-dynamical system, that is a skew product 
ow, on
the state space X := P � IRd.

The situation is somewhat more complicated for the discrete time system gener-
ated by the numerical scheme with variable time steps. For this we will restrict the
choice of admissible stepsize sequences. For each � > 0, we de�ne H� to be the set
of all two sided sequences fhngn2IZ satisfying

1

2
� � hn � � (5)

for each n 2 IZ (the particular factor 1=2 here is chosen just for convenience). The
set H� is compact metric space with the metric

�H�

�
h(1);h(2)

�
=

1X
n=�1

2�jnj
���h(1)n � h(2)n

��� :
We then consider the shift operator ~� : H� ! H� de�ned by ~�h = ~�fhngn2IZ :=
fhn+1gn2IZ. The operator ~� is a homeomorphism with respect to the above metric
on H� and its group of iterates f~�ngn2IZ forms a discrete time autonomous dynamical
system on the compact metric space

�
H�; �H�

�
. Finally, for a given sequence fhngn2IZ

we set t0 = 0 and de�ne tn = tn(h) :=
Pn�1

j=0 hj and t�n = t�n(h) := �Pn
j=1 h�j for

n � 1.
Now we introduce the parameter space Q� := H� � P for a �xed � > 0 and we

use the following lemma to introduce a discrete time autonomous dynamical system
� = f�ngn2IZ on Q�.
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Lemma 3 The mappings �n : Q� ! Q�, n 2 IZ, generated by iteration of

�0 := idQ� ; �1(h; p) :=
�
~�1h; �h0p

�
; ��1(h; p) :=

�
~��1h; ��h�1p

�
form a group of continuous mappings on H� � P .

Proof: We �rst show that �1��1 = ��1�1 = �0 = idQ� . Indeed we have

�1��1(h; p) = �1

�
~��1h; �h�1p

�
=
�
~�1~��1h; �h�1��h�1p

�
= (h; p)

��1�1(h; p) = ��1
�
~�1h; �h0p

�
=
�
~��1~�1h; ��h0�h0p

�
= (h; p):

The continuity of the �n mappings follows from the facts that (t; p) 7! �tp is continu-
ous, ~� is a homeomorphismand the composition and cartesian products of continuous
mappings are continuous. 2

We de�ne a mapping  : IZ+ �Q� � IRd ! IRd by

 (0; q; x0) := x0;  (n; q; x0) =  (n; (h; p); x0) := xn n � 1;

where xn is the nth iterate of the numerical scheme (4) with initial value x0 2
IRd, initial parameter p 2 P and stepsize sequence h 2 H�. These mappings are
continuous on Q� � IRd. They also satisfy a cocycle property with respect to �.

Lemma 4  is a discrete time cocycle IRd with respect to the group � on Q�.

Proof: We write the numerical scheme (4) for a given (h; p) and x0 as

xn+1 = xn + hnF
�
hn; �tn(h)p; xn

�
; n 2 IZ+;

where t0(h) = 0 and tn(h) =
Pn�1

j=0 hj for n � 1. Hence, in terms of the  mapping
we have

 (n+ 1; (h; p); x0) =  (n; (h; p); x0) + hnF (hn; �tn(h)p;  (n; (h; p); x0))

in general and
 (1; (h; p); x0) = x0 + h0F

�
h0; �t0(h)p; x0

�
)

for n = 0 since by de�nition  (0; (h; p); x0) = x0, which gives the identity property.
The cocycle property is established as follows. Let n � 0. Then

 (1 + n; q; x0) =  (1 + n; (h; p); x0)

=  (n; (h; p); x0) + hnF
�
hn; �tn(h)p;  (n; (h; p); x0)

�
=  (n; (h; p); x0) + (~�nh)0F

�
(~�nh)0; �t0(~�nh)p;  (n; (h; p); x0)

�
=  (1;�n(h; p);  (n; (h; p); x0)) =  (1;�nq;  (n; q; x0)) ;
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that is x1+n = =  (1;�nq; xn). Iterating this n times, we obtain

xn =  (1;�n�1q; x0) � � � � �  (1;�0q; x0) :

Similarly with m � 2 we have

 (m+ n; q; x0) = xm+n =  (1;�m+n�1q; �) � � � � �  (1;�nq; �) �

� (1;�n�1q; �) � � � � �  (1;�0q; x0)

=  (1;�m+n�1q; �) � � � � �  (1;�nq; xn)

=  (1;�m�1�nq; �) � � � � �  (1;�0�nq; xn)

=  (m;�nq; xn) =  (m;�nq;  (n; q; x0)) ;

which is the desired cocycle property.
Finally we de�ne 	 := ( ;�) and observe that the mappings 	(n; �:�) are con-

tinuous on Q� � IRd for n 2 IZ+.
Remark: The mappings  , � and 	 are de�ned in the same way for each � > 0,
so we do not index them with �.

>From the cocycle and group properties we obtain

Lemma 5 	 = ( ;�) is a discrete time autonomous semi{dynamical system on
the state space Q� � IRd.

5 Main result

Our main result is the to establish the existence of pullback attractors for the nonau-
tonomous dynamical systems (NDS) generated by the di�erential equation and nu-
merical scheme and to show that the components of the numerical pullback attractor
are upper semi{continuous in their parameter and converge upper semi{continuously
to the corresponding components of the di�erential equation's pullback attractor.
Global attractors also exist for the corresponding skew product 
ows and converge
upper semi{continuously in an appropriate sense.

Theorem 6 Let Assumptions D1{D4 and N1{N3 hold. Then the continuous time
NDS (�; �) generated by the di�erential equation (3) has a pullback attractor bA
= fApgp2P and the discrete time NDS (	;�) generated by the numerical scheme
(4) has a pullback attractor bA� = fA�

qgq2Q�, provided the maximal stepsize � is
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su�ciently small, such that the setvalued mappings p 7! Ap and (p;h) 7! A�
(p;h) are

upper semi{continuous with respect to the Hausdor� metric and satisfy

lim
�!0+

sup
h2H�

H�
IRd

�
A�

(p;h); Ap

�
= 0 for each p 2 P:

Moreover, the corresponding skew product 
ows have global attractors A and A�,
respectively, of the form

A =
[
p2P

fpg �Ap; A� =
[

q2Q�

fqg �A�
q;

which satisfy
lim
�!0+

H�
P�IRd

�
PrP�IRdA�;A

�
= 0:

6 Proof of Theorem 6

The proof of the convergence assertions in Theorem 6 will follow immediately from
an application of Theorem 2 after it has been shown that the ball B[0;R0] in IRd

with centre 0 and radius R0 := 3
q
c0=�0 is a forwards absorbing set uniformly in all

parameters for both the continuous time and discrete time cocycle systems under
consideration. The convergence assertions require additional work.

6.1 Existence of an absorbing set

Write x(t) for the solution �(t; p; x0) of (3), so

dx

dt
(t) = A(�tp)x(t) + f(�tp; x(t)):

The following estimate will also be used to construct an absorbing set.

d

dt
jx(t)j2 = 2

 
dx

dt
(t); x(t)

!
(6)

= 2 (A(�tp)x(t) + f(�tp; x(t)); x(t))

= 2 (A(�tp)x(t)) + 2 (f(�tp; x(t)); x(t))

� �2�(�tp) jx(t)j2 + 2a(�tp) jx(t)j2 + 2c(�tp)

� �2 (�(�tp)� a(�tp)) jx(t)j2 + 2c0

� �2�0 jx(t)j2+ 2c0 (7)

12



and so
jx(t)j2 � jx0j2e�2�0t +

c0
�0

�
1� e�2�0t

�
:

This implies that the ball B[0;R0] with radius R0 = 3
q
c0=�0 is a forwards absorbing

and positively invariant set for all solutions of the di�erential equation (3) uniformly
in p 2 P . Note for later purposes that the ball B[0; 2R0=3] is also positively invariant
for the di�erential equation.

The proof that B[0;R0] is a uniform forwards absorbing set for the numerical
scheme (4) is more complicated. First we show that the inequality (7) implies

jx(t)j � jx0je��0t +

s
c0
�0

�
1� e��0t

�
: (8)

as long as jx(t)j � 1
3R0 =

q
c0
�0
. To see this note that (7) can be rewritten as

d

dt
jx(t)j2 � �2�0 jx(t)j2 + 2c0 � �2�0 jx(t)j2 + 2

c0q
c0
�0

jx(t)j

and hence as
d

dt
jx(t)j � ��0 jx(t)j+pc0�0

as long as jx(t)j � 1
3R0.

We note also by continuity that there exists a T = T (c0; �0) > 0 such that jx(t)j
= j�(t; p; x0)j � 1

3R0 for all t 2 [0; T ], x0 with jx0j � 2
3R0 and p 2 P .

We �x an R � R0 and let KR be the constant in the local discretization error
estimate for the ball B[0;R]. Then from (8) with x(h) = �(h; p; x0) and Assumption
N2 we have

jx1j � j�(h; p; x0)j+ j�(h; p; x0)� x1j

� jx0je��0h +

s
c0
�0

�
1 � e��0h

�
+KRh�R(h) (9)

for x0 2A[R; 2R0=3] :=B[0;R]nB[0; 2R0=3] and h 2 (0; T ]. Now let �0 2 (0; 1]\(0; T ]
be such that

KRh�R(h) � 1

3
R0;

KRh�R(h)

1� e��0h
� R � 1

3
R0

13



for h 2 (0; �0]. Then from (9) for x0 2 A[R; 2R0=3] and h 2 (0; �0] we have

jx1j � jx0je��0h +

s
c0
�0

�
1� e��0h

�
+KRh�R(h)

� Re��0h +
1

3
R0

�
1 � e��0h

�
+
�
R � 1

3
R0

��
1� e��0h

�
� R;

so x1 2 B[0;R]. In addition, for x0 2 B[0; 2R0=3] we have x(h) 2 B[0; 2R0=3], so

jx1j � j�(h; p; x0)j+ j�(h; p; x0)� x1j � 2

3
R0 +KRh�R(h) � 2

3
R0 +

1

3
R0 = R0

for h 2 (0; �0], so x1 2 B[0;R] here too. Hence, the ball B[0;R] is positively invariant
for the numerical scheme for x0 2 B[0;R] and h 2 (0; �0]. We can thus apply the
inequality (9) iteratively as long as the xn 2 A[R; 2R0=3], that is we have

jxn+1j � jxnje��0h +

s
c0
�0

�
1� e��0h

�
+KRh�R(h) (10)

when x0, x1, : : :, xn 2 A[R; 2R0=3] and h 2 (0; �0].

Now further restrict the stepsize so that

KRh�R(h)

1� e��0h
� 1

2
R0 � 1

3
R0 =

1

2
R0 � 1

2

s
c0
�0

for all h 2 (0; �1], where �1 2 (0; �0). Using a similar argument as above for the ball
B[0;R], we can show that the ball B[0;R0] is positively invariant for the numerical
scheme with stepsizes h 2 (0; �1].

To show that the ball B[0;R0] is absorbing, we further restrict the stepsize so
that

1

2

�
1 + e��0h

�
� e�

1
4�0h

for all h 2 (0; �2], where �2 2 (0; �1]. Then, if x0 2 A[R;R0], from inequality (10) we
have

jx1j � jx0je��0h +

s
c0
�0

�
1 � e��0h

�
+KRh�R(h)

� jx0je��0h +

s
c0
�0

�
1 � e��0h

�
+

 
1

2
R0 �

s
c0
�0

!�
1 � e��0h

�
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� jx0je��0h +
1

2
jx0j

�
1� e��0h

�

� 1

2

�
1 + e��0h

�
jx0j � e�

1
4�0hjx0j:

In particular, when x0, x1, : : :, xj 2 B[0;R] n B[0;R0] we can iterate the last in-
equality to obtain

jxjj � e�j
1
8�0�jx0j

if we use variable stepsizes with �=2 � hj � with � 2 (0; �2]. Obviously, there exists a
�nite integer JR(x0) such that jxjj � R0 for all j � JR(x0), that is the ball B[0;R0]
is absorbing for the numerical scheme for all stepsize sequences h 2 H� with � 2
(0; �2]. Note that this holds uniformly in p 2 P .

6.2 Upper semi{continuity of the pullback attractor com-

ponent sets

Let  (n; q; x) denote the numerical trajectory and � the shift operator on Q�. The
mappings q 7! �q and (q; x) 7!  (n; q; x) for each integer positive n are continuous.

The absorbing set B = B[0;R0] is compact absorbing set and forwards invariant
uniformly in q 2 Q�. Hence, by the cocycle property, the compact sets  (n;��nq;B)
are nested with increasing n and the pullback attractor has component sets de�ned
by

A�
q :=

\
n�0

 (n;��nq;B)

This means, in particular, that H�
IRd( (n;��nq;B); A

�
q) ! 0 as n ! 1. Let " > 0

and pick n0 = n0("; q) > 0 so that

 (n0;��n0q;B) � B
�
A�
q; "
�
;

where B
�
A�
q; "
�
is the ball of radius " about A�

q.
Now the compact setvalued mappings q 7!  (n;��nq;B) are continuous in q

with respect to the Hausdor� metric HIRd for each �xed n. Fix " > 0 and pick n0 =
n0("; �q) from above. Then there exists �("; �q) = �("; n0("; �q)) > 0 such that

HIRd ( (n0;��n0q;B);  (n0;��n0 �q;B)) < "

for all q 2 Q� with �Q�(q; �q) < �("; �q). In particular,

 (n0;��n0q;B) � B ( (n0;��n0 �q;B); ")
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for all q 2 Q� with �Q�(q; �q) < �("; �q). Hence we have

A�
q �  (n0;��n0q;B) � B ( (n0;��n0 �q;B); ")

� B
�
B
�
A�

�q; "
�
; "
�
= B

�
A�

�q; 2"
�

that is A�
q � B

�
A�

�q; 2"
�
or equivalently H�

IRd

�
A�
q; A

�
�q

�
< 2" for all q 2 Q� with

�Q�(q; �q) < �("; �q). This means the mapping q 7! A�
q is upper semi{continuous.

The proof for the mapping p 7! Ap is essentially the same.

6.3 Upper semi{continuous convergence of the discretized

pullback attractors

We will now prove the upper semi{continuous convergence of the discretized pullback
attractor component sets to their continuous time counterparts. For the proof we
need the following lemma on the convergence of the numerical trajectories to the
corresponding continuous time trajectory with convergence of the maximum step
size to zero. Its proof is given in the appendix.

Lemma 7 For �xed t > 0 and h = fhngn2IZ 2 H� for some � > 0, let N(t;h) be
the positive integer such that

h�1 + h�2 + � � �+ h�N(t;h) � t < h�1 + h�2 + � � �+ h�N(t;h)�1

and consider a sequence (of stepsize sequences) with hm 2 H�m, where �m ! 0 as
m ! 1. Then

 
�
N(t;hm);��N(t;hm)(h

m; pm); xm
�
! �(t; ��tp; x0) as m!1

for any sequence xm ! x0 2 IRd and pm ! p 2 P .

We suppose that the upper semi{continuous convergence assertion of Theorem
6 is not true. Then there exists an "0 > 0 and subsequences (for convenience we use
the original index) hm in H�m and am 2 A�m

(p;hm) for m 2 IN such that

dist (am; Ap) � "0: (11)

Note that the component sets Ap and A�
q are contained in the ball B[0;R0] where

R0 = 3
q
c0=�0 for each p 2 P . Then am 2 A�m

(p;hm) � B[0;R0] for each for m 2 IN
and B[0;R0] is compact, so there exists a convergent subsequence (again we use the
orginal index) am ! a� 2 B[0;R0]. Thus we have

dist (a�; Ap) � "0:
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Now choose t > 0 su�ciently large so that by pullback attraction

dist (� (t; ��tp;B[0;R0]) ; Ap) <
1

2
"0: (12)

By the invariance property of a pullback attractor there exist bm 2 A�m
��N(t;hm)(p;hm)

such that
 
�
N(t;hm);��N(t;hm)(p;h

m); bm
�
= am: (13)

Since the A�m
��N(t;hm)(p;hm) � B[0;R0] for each for m 2 IN , there exists a convergent

subsequence (once again we use the orginal index) bm ! b� 2 B[0;R0]. By (13) and
Lemma 7 we have

� (t; ��tp; b�) = a�;

which contradicts (11) with respect (12). This contradiction proves the upper semi{
continuous convergence of the numerical pullback attractor components.

6.4 Upper semi{continuous convergence of the discretized

global attractors

Let A 2 P�IRd be the global attractor of the continuous time skew product 
ow dy-
namical system �(t; p; x) = (�tp; �(t; p; x)) and A� �H��P�IRd the global attractor
of the discrete time semi{dynamical system ��(n;h; p; x) = (�n(h; p);  �(n; (h; p); x))
based on the numerical scheme, where we include the superscript � on �� and  � for
emphasis. Then A� converges to A as � ! 0 uniformly in the sense that

lim
�!0

sup
(h�;p� ;x�)2A�

H�
P�IRd

��
p�; x�

�
;A
�
= 0: (14)

Suppose that (14) is not true. Then there exist sequences �n ! 0 and
�
h�n; p�n; x�n

�
� A�n and an "0 > 0 such that

H�
P�IRd

��
p�n; x�n

�
;A
�
� "0:

Let B be a absorbing compact set in IRd that is independent of �. Since A� �
H� � P �B and H� � P �B is compact, we can select a subsequence (we use the
same index for convenience) such that p�n ! p0 and x�n ! x0 as n ! 1. Hence

H�
P�IRd

��
p0; x0

�
;A
�
� "0: (15)

On the other hand, since B is compact and the absorption is uniform in p 2 P ,
there exists a t > 0 such that

H�
P�IRd (�(t; P;B);A) <

1

2
"0:
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In addition, by invariance, ��(j;A�) =A� for all j 2 IN . Now choose for j the integer
N(t;h�n), where N(t;h) is de�ned in Lemma 7. Then we can �nd a

�
ĥ�n; p̂�n; x̂�n

�
2 H� � P �B such that

��n
�
N(t;h�n); ĥ�n; p̂�n; x̂�n

�
=
�
h�n; p�n; x�n

�
;

indeed we can de�ne
�
ĥ�n; p̂�n

�
by ��N(t;h�n)(h

�n; p�n). By a similar compactness
argument, there is subsequence of this subsequence (again we use the original index)
such that

�
p̂�n ; x̂�n

�
! (p̂0; x̂0) 2 P �B. By Lemma 7 we then have

x�n =  �n
�
N(t;h�n);

�
ĥ�n; p̂�n

�
; x̂�n

�
! �

�
t; p̂0; x̂0

�
= x0

while
�N(t;h�n)

�
ĥ�n; p̂�n

�
=
�
h�n; p�n

�
!
�
0; p0

�
=
�
0; �tp̂

0
�
:

Combining these results we have

��n
�
N(t;h�n); ĥ�n; p̂�n; x̂�n

�
!
�
0; �

�
t; p̂0; x̂0

��
=
�
0; p0; x0

�
and hence H�

P�IRd ((p
0; x0) ;A) < 1

2 "0, which contradicts (15). Hence the original
assertion (14) must be true.

This completes the proof of the main theorem, Theorem 6.

7 Singleton setvalued pullback attractor case

Let x1(t) and x2(t) be two solutions of the di�erential equation (3) with the same
initial parameter p but di�erent initial values in the positively absorbing ballB[0;R0]
and write

�(t) = x1(t)� x2(t); �f;q(t) = f(�tp; x1(t))� f(�tp; x2(t)):

Let L0 be the local Lipschitz constant of f in B[0;R0], which by assumption is
uniform in p 2 P , so

jf(p; x1(t))� f(p; x2(t))j � L0 jx1(t)� x2(t)j
or j�f;q(t)j � L0j�(t)j in B[0;R0]. We assume that L0 � �0=2. Then similarly to
earlier (but now we do not use the inner product inequality on the f)

d

dt
j�(t)j2 = 2

 
d

dt
�(t);�(t)

!
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= 2 (A(�tp)�(t);�(t)) + 2 (�f;q(t);�(t))

� �2�0 j�(t)j2 + 2j�f;q(t)jj�(t)j

� �2�0 j�(t)j2 + 2L0j�(t)j2

� �2 (�0 � L0) j�(t)j2 � ��0 j�(t)j2
and so

j�(t)j � j�(0)je�(�0=2)t;

which means the solution operator x 7! �(t; p; x) is a contraction mapping on the
ball B[0;R0] for each t > 0 and p 2 P .

Now consider the numerical scheme. Let

y1 = x1 + hF (h; p; x1); y2 = x2 + hF (h; p; x2)

where h 2 [�=2; �] and x1, x2 2 B[0;R0]. Write

�x = x1 � x2; �y = y1 � y2; �F (h) = F (h; p; x1)� F (h; p; x2);

so j�F j � L00j�xj in B[0;R0], where L00 is the local Lipschitz constant of F in x
on B[0;R0], uniformly in (h; p) 2 [0; 1] � P . We assume the Lipschitz consistency
condition N4 here, so

j�F (h)�A�x��f;q(h)j � ��R(h)j�xj
where we omit the parameter p for convenience. Thus we have

j�yj2 = (�y;�y) = (�x+ h�F (h);�x+ h�F (h))

= (�x;�x) + 2h(�F (h);�x) + h2(�F (h);�F (h))

= j�xj2 + 2h(A�x+�f;q(h);�x) + h2j�F (h)j2
+2h(�F (h)�A�x��f;q(h);�x)

� j�xj2 � 2h�0j�xj2 + 2hj�f;q(h)j j�xj+ h2L2
00j�xj2

+2hj�F (h)�A�x��f;q(h)jj�xj

� j�xj2(1� 2h�0) + 2hL0 j�xj2 + h2L2
00j�xj2

+2h��R(h)j�xj2

� j�xj2
�
1� 2h(�0 � L0) + h2L2

00 + 2h��R(h)
�

� j�xj2
�
1� h�0 + h2L2

00 + 2h��R(h)
�
;
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where we have used the assumption that L0 � �0=2. By further restricting h from
above we can assure that

j�yj2 � j�xj2 (1� h�0=2) � j�xj2
(��0=4)

for h 2 [�=2; �] and � su�ciently small. This means that the numerical solution
satis�es the contractive condition��� (n; (�h; p); x0)�  (n; (�h; p); �x0)

��� � jx0 � �x0j
n0
for all x0, �x0 2B[0;R0], p 2 P and stepsize sequence �h 2 H�, where 
0 :=

q

(��0=4).

>From the Contraction Mapping Principal we conclude that the original and
numerical pullback attractors each consist of a single trajectory. The continuity of
their component elements with respect to the parameter follows from Theorem 6
and the fact that upper semi{contiuity there reduces to continuty for the singleton
setvalued mappings.

Theorem 8 Let the Assumptions D1{D4 and N1{N4 hold and suppose that 2L0

� �0 and that � is su�ciently small. Then the pullback attractors of Theorem 6
consist of singleton component sets, that is Ap = fa�(p)g and A�

(h;p) = fa��(h; p)g,
where the mappings p 7! a�(p) and (p;h) 7! a��(h; p) are continuous.

These singleton valued pullback attractor{trajectories inherit the periodicty or al-
most periodicity of the di�erential equation and of the di�erential equation and
stepsize sequence, respectively. This is formulated in the following theorem, the
proof of which will be presented in the remainder of this section. The periodic case
is straightforward, while the almost periodic case is considerably more complicated
and requires the introduction of apropriate de�nitions and a number of auxiliary
results.
A set A � P is called minimal with respect to a dynamical system (P; IR; �) if it is
nonempty, closed and invariant and if no proper subset of A has these properties.

Theorem 9 Suppose that the assumptions of Theorem 8 hold and that P is mini-
mal. Then the singleton valued pullback attractor{trajectory Ap = fa�(p)g is periodic
(resp., almost periodic) if p 2 P is periodic (resp., almost periodic), whereas the nu-
merical singleton valued pullback attractor{trajectory A�

(h;p) = fa��(h; p)g is periodic
(resp., almost periodic) if q = (h; p) 2 Q� is periodic (resp., almost periodic).

A sequence h = fhngn2IZ is m{periodic if hn+m = hn for all n 2 IZ or, equivalently,
if ~�mh = h, where m is the smallest integer for which these equalities hold. Recall
that we have de�ned a time sequence ftn(h)gn2IZ by t0(h) = 0, tn(h) :=

Pn�1
j=0 hj and

t�n(h) := �Pn
j=1 h�j for n � 1 corresponding to a given sequence h = fhngn2IZ.
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Lemma 10 Let h 2 H� be m{periodic and let p 2 P be �{periodic with respect to
�, that is with ��p = p where � 2 IR+. Then the point (h; p) 2 Q� = H� � P is
periodic with respect to � = (~�; �) if and only if tm(h)=� is rational.

Proof. Suppose that tm(h)=� = k=l for some k, l 2 IN . Then ltm(h) = k�
and �lm(h; p) = (h; �ltm(h)p) = (h; �k�p) = (h; p). On the other hand, suppose that
�k(h; p) = (h; p) for some k 2 IN . Then (~�kh; �tk(h)p) = (h; p), which implies that
k = l1m and tk(h) = l1tm(h) = l1tm(h) = l2� where l1, l2 2 IN . Hence tm(h)=� =
l1=l2.

A subset M � IT is called relatively dense in IT if there exists a positive number
l 2 IT such that for every a 2 IT the interval [a; a + l]

T
IT of length l contains an

element of M , that is M
T
[a; a + l] 6= ; for every a 2 IT . Let (X; �) be a metric

space. A function ' : IT ! X is called almost periodic if for every " > 0 there exists
a relatively dense subset M" of IT such that

�('(t+ � ); '(t)) < "

for all t 2 IT and � 2M". A point x 2 X is said to be almost periodic with respect
to a mapping � : IT �X ! X if the function �(�; x) : IT ! X is almost periodic. The
following result can be found in [3, 18].

Theorem 11 Let (X; IT; �) be a dynamical system on a compact metric space (X; �).
Then a point x 2 X is almost periodic if and only if for every " > 0 there exists a
� = �(") > 0 such that

� (�(t+ t1; x); �(t+ t2; x)) < "; for all t 2 IT;
whenever � (�(t1; x); �(t2; x)) < �.

A sequence fcng in IR is said to be almost periodic if the function ' : IZ ! IR
de�ned by '(n) := cn for n2 IZ is almost periodic. A sequence f�ng in IR will be
called regular if it has the form

�n = an+ cn; for all n 2 IZ;
where a 2 IR is a constant andfcng is an almost periodic sequence; see Samoilenko
and Tro�mchiuk [19, 20].

Theorem 12 Suppose that the time sequence ftn(h)gn2IZ corresponding to h 2 H� is
regular. In addition, suppose that dynamical system (P; IR; �) is minimal and almost
periodic, that is P is minimal and every point p 2 P is almost periodic. Then the
point (h; p) 2 Q� is almost periodic for the dynamical system (Q�; IZ;�).
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Proof. Since the point p 2 P is almost periodic for the dynamical system (P; IR; �),
then by Theorem 11 the point p 2 P will be almost periodic relatively to the discrete
time dynamical system (P; IZ; �(a)), where �(a) = f�angn2IZ and tn(h) = an + cn is
the regularity representation of ftn(h)gn2IZ .

We apply Theorem 11 to the dynamical system (P; IR; �). Given " > 0, let �(")
2 (0; "=3) be such that

�P (�tp1; �tp2) <
"

3
(16)

for every t 2 IR and p1, p2 2 P with �P (p1; p2) < �. Then we use uniform continuity
on the compact space P : given the above �(") > 0, let 
(") 2 (0; �(")) be such that

�P (�sp; p) < � (17)

for every p 2 P and s 2 IR with jsj � 
.
Now for this 
(") > 0 we denote byM
(") the relatively dense subset of IZ subset

for which

�H�(~�n+mh; ~�nh) < 
("); jcn+m � cnj < 
("); �P (�a(n+m)p; �anp) < 
(") (18)

for all m 2 M", n 2 IZ and p 2 P . From (16){(18) we have

�Q�(�n+m(h; p);�n(h; p)) = �H�(~�n+mh; ~�nh) + �P (�tn+m(h)p; �tn(h)p)

= �H�(~�n+mh; ~�nh) + �P (�a(n+m)+cn+mp; �an+cnp)

< �H�(~�n+mh; ~�nh) + �P (�a(n+m)(�cn+mp); �a(n+m)(�cnp))

+�P (�a(n+m)(�cnp); �an(�cnp))

< 
(") +
"

3
+ 
(")

<
"

3
+
"

3
+
"

3
= "

for all n 2 IZ and m 2 M
("). Hence the point (h; p) 2 Q� is almost periodic for the
dynamical system (Q�; IZ;�).

Corollary 13 Let h 2 H� be m{periodic and let p 2 P be almost periodic for the
dynamical system (P; IR; �). Then the point (h; p) 2 Q� is almost periodic for the
dynamical system (Q�; IZ;�). In particular, if tm(h)=� is irrational, then point (h; p)
is almost periodic, but not periodic.

As the �nal step in our proof of Theorem 9, we need the following lemma, which
we prove directly here noting that the result also follows from Theorems 1 and 2 in
[15].
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Lemma 14 Suppose that the assumptions of Theorem 8 hold and let fa��(q)gq2Q�

denote the singleton valued pullback attractor for the numerical scheme (4). Then
the function n 7! a��(�nq) for n 2 IZ is periodic (resp., almost periodic) if the point
q is periodic (resp., almost periodic) for the dynamical system (Q�; IZ;�).

Proof. Let q 2 Q� bem{periodic, that is �mq = q. Then a��(�n+mq) = a��(�n�mq)
= a��(�nq) for every n 2 IZ. Hence n 7! a��(�nq) is periodic.

The function a�� : Q� ! IRd de�ned by q 7! a��(q) for each q 2 Q� is continuous,
hence uniformly continuous, on the compact space Q�. That is, for every " > 0
there exists a �(") > 0 such that ja��(q1)�a��(q2)j < " whenever �Q�(q1; q2) < �. Now
let the point q be almost periodic and for � = �(") > 0 denote by M� the relatively
dense subset of IZ such that �Q�(�n+mq;�nq) < � for all m 2 M� and n 2 IZ. From
this and the uniform continuity we have

ja��(�n+mq)� a��(�nq)j < "

for all n 2 IZ and m 2 M�("). Hence n 7! a��(�nq) is almost periodic.
In conclusion, we can restate the assertions of Theorem 9 in more detail as

follows.

Corollary 15 Suppose that the assumptions of Theorem 8 hold and that P is mini-
mal. In addition, let fa��(h; p)g(h;p)2Q� denote the singleton valued pullback attractor
for the numerical scheme (4).
1. Let h 2 H� be m{periodic and p 2 P be �{periodic. Then n 7! a��(�n(h; p)g is
periodic if tm(h)=� is rational and almost periodic if tm(h)=� is irrational.
2. Let the time sequence ftn(h)gn2IZ corresponding to h 2 H� be regular and let the
point p 2 P be almost periodic. Then n 7! a��(�n(h; p)g is almost periodic.

8 Appendix: Proof of Lemma 7

Consider an autonomous dynamical system on a compact metric space P described
by a group � = f�tgt2IR of mappings of P into itself such that the mapping (t; p) 7!
�tp is continuous. Consider also an ordinary di�erential equation

_x = g(p; x)

on IRd with a unique solution x(t; p; x0) satisfying the initial value problem

d

dt
x(t; p; x0) = g(�tp; x(t; p; x0)); x(0; p; x0) = x0:
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We assume that (p; x) 7! g(p; x) is continuous on P � IRd and locally Lipschitz in x
uniformly in p, that is for each R > 0 there exists an LR such that

jg(p; x)� g(p; y)j � LRjx� yj; 8x; y 2 B[0;R]:
In particular, then for a sequence of times tn and time steps hn = tn+1� tn this gives
in integral equation form

x(tn+1; p; x0) = x(tn; p; x0) +
Z tn+1

tn
g(�tp; x(t; p; x0)) dt:

In future we just write x(t) for this solution. By the Mean Value Theorem there
exists �n 2 [0; 1] such that

x(tn+1) = x(tn) + hn g(�tn+�nhnp; x(tn + �nhn)):

The corresponding higher order scheme solution is

xn+1 = xn + hn F (hn; �tnp; xn);

where the increment function F (h; p; x) is continuous and satis�es the consistency
condition

F (0; p; x) = g(p; x); 8p; x:
Thus

x(tn+1)� xn+1 = x(tn)� xn + hn [g(�tn+�nhnp; x(tn + �nhn))� F (hn; �tnp; xn)]

so the global discretization error En := jx(tn)� xnj is estimated by

En+1 � En + hn jg(�tn+�nhnp; x(tn + �nhn))� F (hn; �tnp; xn)j

� En + hn jg(�tn+�nhnp; x(tn + �nhn))� g(�tn+�nhnp; x(tn))j
+hn jg(�tn+�nhnp; x(tn))� g(�tnp; x(tn))j
+hn jg(�tnp; x(tn))� g(�tnp; xn)j
+hn jg(�tnp; xn)� F (hn; �tnp; xn)j

� En + hnLR jx(tn + �nhn)� x(tn)j+ hn!g(�np;R)

+hnLR jx(tn)� xnj+ hn!F (hn;R)

= (1 + hnLR)En + hnLR

�����
Z tn+�nhn

tn
g(�sp; x(s)) ds

�����
+hn!g(�np;R) + hn!F (hnp;R)

� (1 + hnLR)En + h2nLRMR + hn!g(�np;R) + hn!F (hnp;R)
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where MR := maxp2P;x2B[0;R] jg(p; x)j and !g(�;R) is the modulus of continuity of
g(��p; x) uniformly in p 2 P and x 2 B[0;R] and !F (hnp;R) is the modulus of
continuity of F (�; p; x) uniformly in p 2 P and x 2 B[0;R] that is

!g(�;R) := sup
0�t��

sup
p2P

x2B[0;R]

jg(�tp; x)� g(p; x)j

and
!F (�;R) := sup

0�h��
sup
p2P

x2B[0;R]

jF (h; p; x)� F (0; p; x)j:

Here !g(�;R) ! 0 and !F (�;R) ! 0 as � ! 0.
Now we consider an interval [0; T ] and restrict to stepsizes hn 2 [�=2; �] for some

� > 0. Note then that tn+1 =
Pn

j=0 hj then sati�es n�=2 � tn � n� with tn � T ,
which means n� � 2T for these choices of n. The above di�erence inequality thus
satis�es

En+1 � (1 + LR�)En + � (!g(�;R) + !F (�;R) + LRMR�)

and hence with E0 = 0 yields

En � � (!g(�;R) + !F (�;R) + LRMR�)
(1 + LR�)n � 1

(1 + LR�)� 1

� (!g(�;R) + !F (�;R) + LRMR�)
1

LR
eLRn�

� (!g(�;R) + !F (�;R) + LRMR�)
1

LR
e2LRT ;

that is

jx(tn)� xnj � (!g(�;R) + !F (�;R) + LRMR�)
1

LR
e2LRT :

Hence for t 2 (tn; tn+1), we have

jx(t)� xnj � jx(t)� x(tn)j+ jx(tn)� xnj

�
����Z t

tn
g(�s; x(s)) ds

����+ (!g(�;R) + !F (�;R) + LRMR�)
1

LR
e2LRT

� �MR + (!g(�;R) + !F (�;R) + LRMR�)
1

LR
e2LRT :

Let us now consider variable parameters and initial values. let pj ! p in P
and x0j ! x0 in IRd. Let x(t; p; x0) and xn(p; x0), etc, denote the corresponding
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solutions. By continuity in initial conditions and parameters uniformly on a compact
time interval [0; T ], we have

x(t; pj; x0j)! x(t; p; x0);

as j ! 1 for t 2 [0; T ].
Combining all of these partial results for t 2 (tn; tn+1) we obtain

jxn(pj; x0j)� x(t; p; x0)j � jxn(pj ; x0j)� x(t; pj; x0j)j+ jx(t; pj; x0j)� x(t; p; x0)j

� �MR + (!g(�;R) + !F (�;R) + LRMR�)
1

LR
e2LRT

+jx(t; pj; x0j) � x(t; p; x0)j
which converges to zero as the maximum stepsize � converges to zero and j tends
to 1.
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