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Abstract

The article is devoted to the generalization of the second Bogolyubov’s theorem to non-almost
periodic dynamical systems. We prove the analog of the second Bogolyubov’s theorem for re-
current or pseudorecurrent dynamical systems in Banach spaces. Namely, we obtain the relation
between a recurrent dynamical system and its averaged dynamical system. We also study exis-
tence of recurrent and pseudorecurrent motions (including special cases of periodic, quasi-periodic
and almost periodic motions) in related nonautonomous systems.
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1. Introduction

The problem of averaging in time is well studied for almost periodic systems in
Banach spaces. A well-known result in this direction is the second Bogolyubov’s
theorem (see for example [1,2]) which a?rms that the equation

ẋ = �f(t; x) (1)

∗ Corresponding author. Tel.: +1-312-567-5335; fax: +1-312-567-3135.
E-mail addresses: cheban@usm.md (D.N. Cheban), duan@iit.edu (J. Duan), gerko@usm.md

(A. Gherco).

1468-1218/03/$ - see front matter ? 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S1468-1218(02)00080-9

mailto:cheban@usm.md
mailto:duan@iit.edu
mailto:gerko@usm.md


600 D.N. Cheban et al. / Nonlinear Analysis: Real World Applications 4 (2003) 599–613

with almost periodic function f for su?ciently small � admits a unique almost peri-
odic solution in the neighborhood of hyperbolic stationary point x0 of the “averaged”
equation

ẋ = �f0(x); (2)

where

f0(x) = lim
T→+∞

1
T

∫ t+T

t
f(s; x) ds (3)

and limit (3) holds uniformly with respect to (w.r.t.) t ∈R. The Hrst Bogolyubov’s
theorem determines the closeness or nearness of the solutions on Hnite time intervals
for the original equation (1) and the averaged equation (2). Note that periodic and
quasi-periodic functions are special almost periodic functions.
In this paper, we generalize the second Bogolyubov’s theorem for Eq. (1) to the

case when function f is recurrent or pseudorecurrent (see deHnitions in Sections 4
and 6).
The paper is organized as follows. In Section 2, we study the existence of invariant

integral manifolds of quasi-linear non-autonomous dynamical systems (Theorems 2.5
and 2.6). Results in this section are used in the following sections.
Section 3 contains the main results about generalization of the second Bogolyubov’s

theorem for non-almost periodic systems (Theorems 3.4 and 3.5).
In Section 4 we give conditions of existence of recurrent solutions of non-autonomous

equations in a standard form, if corresponding averaging equation admits a hyperbolic
stationary point (Theorem 4.7).
Section 5 is devoted to study of the existence of invariant torus and quasi-periodic

solutions of quasilinear equations on the torus (Theorems 5.2, 5.3 and Corollary 5.4).
In Section 6 we discuss the existence of pseudorecurrent integral manifolds

(Theorem 6.2).

2. Quasi-linear non-autonomous dynamical systems

Let � be a compact metric space and (�;R; 	) be an autonomous dynamical system
on �. Let E be a Banach space, and Y and W are two complete metric spaces. Denote
L(E) the space of all linear continuous operators on E and C(Y;W ) the space of all
continuous functions f :Y → W endowed with compact-open topology, i.e., uniform
convergence on compact subsets in Y . We use these notations for the rest of the paper.
The results in this section will be used in later sections.
Consider the linear equation

ẋ = A(!t)x (!∈�; !t = 	(t; !)) (4)

and the inhomogeneous equation

ẋ = A(!t)x + f(!t); (5)

where A∈C(�; L(E)) and f∈C(�; E).
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De�nition 2.1. Let U (t; !) be the operator of Cauchy (solution operator) of the linear
equation (4). Equation (4) is called hyperbolic if there exist positive numbers N , �¿ 0
and continuous projection P ∈C(�; L(E)) (i.e. P2(!)=P(!) for all !∈�) such that

(1) For all t ∈R and !∈�, U (t; !)P(!) = P(!t)U (t; !);
(2) For all t¿ � and !∈�, ‖U (t; !)P(!)U−1(�; !)‖6N exp(−�(t − �));
(3) For all t6 � and !∈�, ‖U (t; !)Q(!)U−1(�; !)‖6N exp(�(t−�)), where Q(!)=

I − P(!).

De�nition 2.2. The function G :R2
∗ × � → L(E) deHned by

G(t; �; !) =

{
U (t; !)P(!)U−1(�; !) for t ¿ �;

−U (t; !)Q(!)U−1(�; !) for t ¡ �
(6)

is called the Green’s function for hyperbolic linear equation (4), where R2
∗ =R2\�R2 ,

�R2 = {(t; t) | t ∈R} and P, Q are the projections from deHnition 2.1.

Remark 2.3. The Green’s function satisHes the following conditions (see [2,3]):

(1) For every t 
= � the function G(t; �; !) is continuously diKerentiable and

@G(t; �; !)
@t

= A(!t)G(t; �; !) (!∈�):

(2) G(�+ 0; �; !)− G(�− 0; �; !) = I (�∈R, !∈�).
(3) ‖G(t; �; !)‖6N exp(−�|t − �|) (t; �∈R, !∈�).
(4) G(0; �; !t) = G(t; t + �; !) (t; �∈R, � 
= 0, !∈�).

Theorem 2.4. Suppose that the linear equation (4) is hyperbolic. Then for f∈C(�; E),
the function �(!) de7ned by

�(!) =
∫ +∞

−∞
G(0; �; !)f(!�) d� (!∈�) (7)

is continuous, i.e., �∈C(�; E), and:

(1) �(!t)=’(t; �(!); !) holds for all !∈� and t ∈R+, where ’(t; x; !) is the unique
solution of the corresponding inhomogeneous equation (5) with the initial condi-
tion ’(0; x; !) = x;

(2) ‖�‖6 2N=�‖f‖, where ‖�‖=max!∈�|�(!)|.

Proof. The proof of this assertion is obtained by slight modiHcation of arguments from
[3, Chapter III] and we omit the details.
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Let us consider the following quasi-linear equation in Banach space E

ẋ = A(!t)x + f(!t) + F(!t; x); (8)

where A∈C(�; L(E)), f∈C(�; E) and F ∈C(� × E; E).

Theorem 2.5 (Invariant integral manifold). Assume that there exist positive numbers
L¡L0 := �=2N and r ¡ r0 := �0(�=2N − L0)−1 such that

‖F(!; x1)− F(!; x2)‖6L‖x1 − x2‖ (9)

for all !∈� and x1; x2 ∈B[Q; r] = {x∈E | $(x; Q)6 r}, where Q= �(�), �∈C(�; E)
is de7ned in (7) and �0 = max!∈� ‖F(!; �(!))‖. Then there exists a unique function
u∈C(�; B[Q; r]) such that

u(!t) =  (t; u(!); !) (10)

for all t ∈R+ and !∈�, where  (·; x; !) is the unique solution of the quasi-linear
equation (8) with the initial condition  (0; x; !) = x. Therefore, the graph of u is an
invariant integral manifold for the quasi-linear equation (8).

Proof. Let x = y + �(!t). Then from Eq. (8) we obtain

ẏ = A(!t)y + F(!t; y + �(!t)): (11)

If 0¡r¡r0 and (∈C(�; B[Q; r]), then the equality

()()(!) =
∫ +∞

−∞
G(0; �; !)F(!�; ((!�) + �(!�)) d� (12)

deHnes a function )(∈C(�; E). In virtue of Theorem 2.4, we have

‖)(‖6 2N
�

max
!∈�

‖F(!; ((!) + �(!))‖

6
2N
�

max
!∈�

‖F(!; ((!) + �(!))− F(!; �(!))‖+ 2N
�

max
!∈�

‖F(!; �(!))‖

6
2N
�

L‖(‖+ 2N
�

�06
2N
�

Lr +
2N
�

�06
2N
�

L0r0 +
2N
�

�0 = r0 (13)

and consequently )(C(�; B[Q; r0])) ⊆ C(�; B[Q; r0]).
Now we will show that the mapping ) :C(�; B[Q; r0]) → C(�; B[Q; r0]) is

Lipschitzian. In fact, according to Theorem 2.4 we have

‖)(1 − )(2‖6 2N
�

max
!∈�

‖F(!; (1(!) + �(!))− F(!; (2(!) + �(!))‖

6
2N
�

Lmax
!∈�

‖(1(!)− (2(!)‖: (14)
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We note that (2N=�)L6 (2N=�)L0 ¡ 1. Thus, the mapping ) is a contraction and,
consequently by Banach Hxed point theorem, there exists a unique function (∈C(�;
B[Q; r0]) such that )( = (. To Hnish the proof of the theorem it is su?cient to put
u= �+ (.

We now consider the perturbed quasi-linear equation

ẋ = A(!t)x + f(!t) + �F(!t; x); (15)

where �∈ [− �0; �0] (�0 ¿ 0) is a small parameter. We have a similar theorem.

Theorem 2.6 (Invariant integral manifold and convergence). Assume that there exist
positive numbers r and L such that

‖F(!; x1)− F(!; x2)‖6L‖x1 − x2‖ (16)

for all !∈� and x1; x2 ∈B[Q; r]. Then for su9ciently small � there exists a unique
function u� ∈C(�; B[Q; r]) such that

u�(!t) =  �(t; u�(!); !) (17)

for all t ∈R+ and !∈�, where  �(·; x; !) is the unique solution of Eq. (15) with the
initial condition  �(0; x; !) = x. Moreover,

lim
�→0

max
!∈�

‖u�(!)− �(!)‖= 0; (18)

where �∈C(!; E) is de7ned in (7).

Proof. We can prove the existence of u� by slight modiHcation of the proof of
Theorem 2.4.
To prove (18) we note that

‖F(!; u�(!)‖6 ‖F(!; u�(!)− F(!; �(!)‖+ ‖F(!; �(!)‖6Lr + �0 (19)

and

‖u�(!)− �(!)‖6
∥∥∥∥∫ +∞

−∞
�G(0; �; !�)F(!�; u�(!�)) d�

∥∥∥∥
6 |�|2N

�
(Lr + �0) (20)

for all !∈� and �∈ [ − �0; �0]. Passing to the limit in inequality (20) as � → 0 we
obtain (18).

3. Generalization of second Bogolyubov’s theorem for non-almost periodic systems

In this section, we consider an analog of the second Bogolyubov’s theorem for the
non-autonomous system

ẋ = �f(!t; x); (21)
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where �∈ [0; �0] (�0 ¿ 0) is a small parameter. We do not assume that f is almost
periodic in time t. Suppose that the averaging

Mf(x) = lim
T→+∞

1
T

∫ T

0
f(!t; x) dt (22)

exists uniformly w.r.t. !∈�, and also uniformly w.r.t. x on every bounded subset
of E.

Remark 3.1. Condition (22) is fulHlled if a dynamical system (�;R; 	) is strictly
ergodic, i.e. on � there exists a unique invariant measure * w.r.t. (�;R; 	).

Along with Eq. (21) we consider the averaged equation

ẋ = � Mf(x): (23)

Setting slow time � = �t (�¿ 0), Eqs. (21) and (23) can be written in the following
form:

dx
d�

= f
(
!

�
�
; x
)

(24)

and

dx
d�

= Mf(x); (25)

respectively.
Suppose that for certain point x0 ∈E

Mf(x0) = 0; (26)

then Eq. (23) admits a stationary solution ’�(t; x0) ≡ x0.
Assume that the following conditions are fulHlled:

(i) Function f∈C(�×B[x0; r]; E) where B[x0; r]= {x∈E | ‖x− x0‖6 r} and r ¿ 0,
and F is bounded on �×B[x0; r]. Limit (22) is uniform w.r.t. (!; x)∈�×B[x0; r]
and functions f′

x(!; x) and Mf
′
(x) are bounded on � × B[x0; r].

(ii) Functions f(!; x) and Mf(x) are twice continuously diKerentiable w.r.t variable
x∈B[x0; r].

(iii) Equality (22) can be twice diKerentiated, i.e., the following equalities:

Mf(k)(x) = lim
T→+∞

1
T

∫ T

0
f(k)

x (!t; x) dt (k = 1; 2) (27)

hold uniformly w.r.t !∈� and x∈B[x0; r].

We note that

Mf(x + h)− Mf(x) = Mf
′
(x)h+ R(x; h) (x; x + h∈B[x0; r]) (28)

where ‖R(x; h)‖= o(‖h‖).
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Let A= Mf
′
(x0) and B(h) = R(x0; h). Then according to (26) and (28) we have

Mf(x + h) = Ah+ B(h) (29)

It is clear (see [2, Chapter 7]) that the function B(h) satisHes the condition of Lipschitz

‖B(h1)− B(h2)‖6L(r)‖h1 − h2‖ (30)

(h1; h2 ∈B[x0; r]) and L(r) → 0 as r → 0.
Eq. (21) can be rewritten in the following form:

dh
dt

= �Ah+ �g(!t; h); (31)

where h= x − x0 and

g(!; h) = f(!; x + h)− Mf(x0 + h) + B(h): (32)

In Eq. (32) we make the following change of variable:

h= z − �v(!; z; �); (33)

where

v(!; z; �) =
∫ +∞

0
V (!s; z) exp(−�s) ds (34)

and

V (!; z) = f(!; x0 + z)− Mf(x0 + z): (35)

Lemma 3.2 (Daleckij and Krein [2, p. 457]). Let ’ :R+ × 3 → E be a function
satisfying the following conditions:

1. M := sup {‖ 1
t

∫ t
0 ’(s; 5) ds‖ |t¿ 0; 5∈3}¡+ ∞.

2. limT→+∞ 1
T

∫ T
0 ’(s; 5) ds= 0 uniformly w.r.t. variable 5∈3.

Then the following equality:

lim
p→0

p
∫ +∞

0
’(s; 5) exp(−ps) ds= 0

takes place uniformly w.r.t. 5∈3.

Lemma 3.3. The following equalities:

lim
�↓0

�v(!; z; �) = 0 (36)

and

lim
�↓0

�v′z(!; z; �) = 0 (37)

are ful7lled uniformly w.r.t. !∈� and z ∈B[0; r].



606 D.N. Cheban et al. / Nonlinear Analysis: Real World Applications 4 (2003) 599–613

Proof. This assertion follows from Lemma 3.2. In fact, in virtue of (22), (27)
and (34), the bounded functions V (!s; z) and V ′

z (!s; z) satisfy the conditions of
Lemma 3.2.

From equality (27) it follows that for su?ciently small �¿ 0 the operator I −
�v′z(!; z; �) (!∈�, z ∈B[0; r]) is invertible and (I − �v′z(!; z; �))−1 is bounded, and,
consequently, mapping (33) is invertible. According to Eq. (36) in the su?ciently
small neighborhood of zero and for su?ciently small �¿ 0, we can make the change
of variable (33).
Note that

v(!t; z; �) =
∫ +∞

0
V (!(t + s); z; �)) exp(−�s) ds

= exp(�t)
∫ +∞

t
V (!s; z; �)) exp(−�s) ds

and we Hnd that

d
dt

v(!t; z; �) = �v(!t; z; �)− V (!t; z; �) (38)

and, consequently,

dh
dt

=
dz
dt

− �v′z
dz
dt

− �2v+ �V: (39)

Using relation (33), (35) and (39) we reduce Eq. (31) to the form

(I − �v′z(!t; z; �))
dz
dt

= �[f(!t; x0 + h; �)− f(!t; x0 + z; �)]

+ � Mf(x0 + z) + �2v(!t; z; �) = �(Az + B(z))

+ �2v(!t; z; �) + �[f(!t; x0 + z − �v; �)

−f(!t; x0 + z; �)]: (40)

After multiplication of the both sides of Eq. (40) by (I−�v′z(!t; z; �))−1 and introduction
of the “slow” time �= �t we obtain

dz
d�

= Az + F
(
!

�
�
; z; �

)
; (41)

where F possesses the following properties:

(a) F admits a bounded derivable F ′
z(!; z; �) (!∈�, z ∈B[0; r] and �∈ [o; �0]),

(b) F(!; z; �) = B(z) + O(z) uniformly w.r.t. !∈� and z ∈B[0; r],
(c) for every M ¿ 0 and *¿ 0, there exists positive numbers �′06 �0 and 80 such that

for 0¡�¡�′0, and ‖z‖¡80, the inequalities

‖F(!; z; �)‖6M (42)
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and

‖F(!; z1; �)− F(!; z2; �)‖6 *‖z1 − z2‖ (43)

take place for all !∈�, z1; z2 ∈B[0; r] and 06 �6 �′0.

Theorem 3.4 (Dynamics of the transformed system). Suppose that 	(A)∩iR= ∅, where
	(A) is the spectrum of the operator A= Mf

′
(x0). Then

(1) For the transformed equation (41), there exists a unique function ũ�∈C(�; B[0; 8])
such that

ũ �(!�) =  �(�; ũ �(!); !) (44)

for all �∈R+ and !∈�, where  �(·; x; !) is a unique solution of equation (41)
which initial condition  �(0; x; !) = x;(2)

lim
�→0

max
!∈�

‖ũ �(!)‖= 0: (45)

Proof. This statement follows from Theorem 2.6.

Theorem 3.5 (Analog of the second Bogolyubov’s theorem). Assume that the condi-
tions (i)–(iii) and (26) are ful7lled and 	(A)∩ iR=∅, where 	(A) is the spectrum of
the operator A= Mf

′
(x0). Then for su9ciently small r0 ¿ 0, there is �′0 with 0¡�′06 �0

such that for 0¡�¡�′0, there exists a unique function u� ∈C(�; B[x0; r]) such that

u�(!t) =  �(t; u�(!); !) (46)

for all t ∈R+ and !∈� and

lim
�→0

max
!∈�

‖u�(!)− x0‖= 0; (47)

where  �(·; x; !) is the unique solution of the non-autonomous equation (21) with
initial condition  �(0; x; !) = x, and x0 is a stationary solution of the averaged
equation (23). Note that the graph of u� is an invariant integral manifold for the non-
autonomous equation (21).

Proof. Under the conditions of the theorem and in virtue of Theorem 3.4 for Eq. (41),
there exists a unique function ũ � ∈C(�; B[0; r0]) with the properties (44) and (45).
Denote by

u�(!) = x0 + ũ �(!)− �v(!; ũ �(!); !): (48)

Then from equalities (34), (35), (43) and (47), we obtain equality (48) and the
continuity of u� :� → E. Consequently, we have, u� ∈C(�; B[x0; r]) for su?ciently
small �¿ 0. Equality (46) follows from equalities (44) and (48). The theorem is thus
proved.
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4. Almost periodic and recurrent solutions

Let T = R or R+; (X;T; ;) be a dynamical system, x∈X , �; �∈T, �¿ 0, �¿ 0.
We denote ;(x; t) by a short-hand notation xt.
The point x is called a stationary point if xt = x for all t ∈T. The point x is called

�-periodic if x�= x.
The number � is called �-shift (�-almost period) of a point x if $(x�; x)¡� ($(x(t+

�); xt)¡� for all t ∈T).
The point x is called almost recurrent (almost periodic) if for any �¿ 0 there exists

positive number l such that on every segment of length l can be found an �-shift
(�-almost period) of the point x.
A point x is called recurrent if it is almost recurrent and the set H (x) = {xt | t ∈T}

is compact.
Denote by Mx = {{tn}|{xtn} is convergent}.

Theorem 4.1 (Scherbakov [4,5]). Let (X;T1; ;) and (Y;T2; 	) be dynamical systems
with T1 ⊂ T2. Assume that h :X → Y is a homomorphism from (X;T1; ;) onto
(Y;T2; 	). If the point x∈X is stationary (�-periodic, quasi-periodic, almost periodic,
recurrent), then the point h(x)=y is also stationary (�-periodic, quasi-periodic, almost
periodic, recurrent) and Mx ⊂ My.

Consider the following non-autonomous equation in Banach space E

w′ = f(!t; w); (49)

where f∈C(�× E; E). Suppose that the function f is regular, i.e., for all w∈E and
!∈�, Eq. (49) admits a unique solution ’(t; w; !) deHned on R+ with the initial
condition ’(0; w; !) = w and the mapping ’ :R+ × E × � → E is continuous.
It is well known (see, for example, [6]) that the mapping ’ satisHes the following

conditions:

(a) ’(0; w; !) = w for all w∈E and !∈�;
(b) ’(t + �; w; !) = ’(t; ’(�; w; !); !�) for all t; �∈T1, w∈E and !∈�.

The solution ’(t; w; !) of Eq. (49) is said to be stationary (�-periodic, almost
periodic, recurrent) if the point x := (w;!)∈X := E × � is stationary (�-periodic,
almost periodic, recurrent) point of the skew-product dynamical system (X;R+; ;),
where ;= (’; 	), i.e. ;(t; (w;!)) = (’(t; w; !); !t) for all t ∈R+ and (w;!)∈E ×�.

Lemma 4.2. Suppose that u∈C(�; E) satis7es the condition

u(!t) = ’(t; u(!); !) (50)

for all t ∈R and !∈�. Then the mapping h :� → X de7ned by

h(!) = (u(!); !) (51)

for all !∈� is a homomorphism from (�;R; 	) onto (X;R+; ;).

Proof. This assertion follows from equalities (50) and (51).
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Remark 4.3. The function u∈C(�; E) with property (50) is called continuous invariant
section (or integral manifold) for non-autonomous system (49).

Theorem 4.4. If the function u∈C(�; E) satis7es condition (50) and the point !∈�
is stationary (�-periodic, almost periodic, recurrent), then the solution ’(t; u(!); !)
of the Eq. (49) also will be stationary (�-periodic, almost periodic, recurrent).

Proof. This statement follows from Theorem 4.1 and Lemma 4.2.

Example 4.5. Consider the equation

u′ = f(t; u); (52)

where f∈C(R × E; E); here C(R × E; E) is the space of all continuous function
R × E → E) equipped with compact-open topology. Along with Eq. (52), we will
consider the H -class of Eq. (52)

u′ = g(t; u) (g∈H (f)); (53)

where H (f) = {f� | �∈R} and the over bar denotes the closure in C(R × E; E) and
f�(t; u)=f(t+�; u) for all t ∈R and u∈E. Denote by (C(R×E; E);R; 	) the Bebutov’s
dynamical system (see, for example, [4–6]). Here 	(t; g) = gt for all t ∈R and g∈
C(R× E; E).

The function f∈C(R×E; E) is called regular (see [6]) if for all u∈E and g∈H (f)
Eq. (53) admits a unique solution ’(t; u; g) deHned on R+ with the initial condition
’(0; u; g) = u.
Let � be the hull H (f) of a given regular function f∈C(R×E; E) and denote the

restriction of (C(R×E; E);R; 	) on � by (�;R; 	). Let F :�×E → E be a continuous
mapping deHned by F(g; u) = g(0; u) for g∈� and u∈E. Then the equation (53) can
be written in such form

u′ = F(!t; u); (54)

where != g and !t = gt .

Lemma 4.6. The following two conditions are equivalent:

(1) There exists a limit

f0(x) = lim
T→+∞

1
T

∫ t+T

t
f(s; x) ds (55)

uniformly w.r.t. t ∈R and x on every compact set K ⊂ E.
(2) There exists a limit

f0(x) = lim
T→+∞

1
T

∫ T

0
g(s; x) ds (56)

uniformly w.r.t. g∈H (f) and x on every compact set K ⊂ E.
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Proof. Equality (55) follows from (56) because ft ∈H (f) for all t ∈R and

lim
T→+∞

1
T

∫ T

0
ft(s; x) ds= lim

T→+∞
1
T

∫ t+T

t
f(s; x) ds:

Let g∈H (f), then there exists a sequence {tn} ⊂ R such that g = limn→+∞ ftn .
From equality (55), it follows that for all �¿ 0 and compact set K ⊂ E, there exists
L(�; K)¿ 0 such that∥∥∥∥ 1

T

∫ T

0
ftn(s; x) ds− f0(x)

∥∥∥∥¡� (57)

for all n∈N and T¿L(�; K). Passing to the limit in equality (57) as n → +∞ we
obtain equality (56).

Theorem 4.7 (Recurrent solutions). Suppose that the following conditions are ful-
7lled:

(1) f∈C(R × E; E) and there exist x0 ∈E and r ¿ 0 such that the function f is
bounded on R× B[x0; r], i.e., there exists a positive number M such that

‖f(t; x)‖6M (58)

for all t ∈R and x∈B[x0; r].
(2) The functions f∈C(R× E; E) and f0 ∈C(E; E) are twice continuously di<eren-

tiable w.r.t. variable x∈B[x0; r]. Moreover, the function f′
x(t; x) is bounded on

R× B[x0; r], and f′
0(x) is bounded on B[x0; r].

(3) Equality (55) can be twice di<erentiated, i.e. the following equalities:

f(k)
0 (x) = lim

T→+∞
1
T

∫ t+T

t
f(k)

x (s; x) ds (k = 1; 2) (59)

take place, uniformly w.r.t. t ∈R and x∈B[x0; r].
(4) f0(x0) = 0 and 	(A) ∩ iR = ∅, where A = f′

0(x0) and 	(A) is the spectrum of
operator A.

(5) The function f∈C(R×E; E) is stationary (�-periodic, almost periodic, recurrent)
w.r.t. t ∈R, and uniformly w.r.t. to x on every compact subset K ⊂ E.

Then for su9ciently small r0 ¿ 0, there exists 0¡�′06 �0 such that for 0¡�¡�′0
the equation

x′ = �f(t; x) (60)

admits a unique stationary (�-periodic, almost periodic, recurrent) solution ’�(t) with
the following properties:

(a) ‖’�(t)− x0‖6 r0 for all t ∈R.
(b) lim�→0 supt∈R ‖’�(t)− x0‖= 0.
(c) Mf ⊂ M’� , where Mf = {{tn}|{ftn} is convergent on C(R× E; E)} and M’� =

{{tn}|{’�
tn} is convergent on C(R; E)}.
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Proof. Note that conditions (1)–(4) imply conditions (i)–(iii). So the proof of the
theorem follows from Theorems 3.5, 4.1, 4.4 and Lemma 4.6.

Remark 4.8. Note that Theorem 4.7 is also true for Eq. (60) with non-recurrent func-
tion f. For example, if f is pseudorecurrent [4,5], i.e., if H (f) is compact and every
function g∈H (f) is stable in the sense of Poisson. In this case we can a?rm that the
solution ’� will be also pseudorecurrent. See also Section 6 later in this paper.

5. Invariant torus and quasi-periodic solutions

Let Tm be an m-dimensional torus. We consider a non-autonomous dynamical sys-
tem in Banach space E, with a driving system deHned on the torus Tm:{

x′ = A(!)x + f(!) + F(!; x);

!′ = )(!);
(61)

where )∈C(Tm; TTm), TTm is a tangent space of the torus Tm, f∈C(Tm; E),
A∈C(�; L(E)) and F ∈C(Tm × E; E).
We suppose that the second equation of system (61) generates an autonomous

dynamical system (Tm;R; 	) on the torus Tm and the equation

x′ = A(!t)x + f(!t) + F(!t; x) (62)

admits a unique solution ’(t; x; !) deHned on R+ and satisfying the initial condition
’(0; x; !) = x.
A function �∈C(Tm; E) is called [3] an m-dimensional invariant torus of equation

(62) (or system (61)) if

�(!t) = ’(t; �(!); !) (63)

for all t ∈R+ and !∈Tm.
Applying the results from Sections 2–4, we have the following tests of existence of

the invariant torus for Eq. (62).

Theorem 5.1 (Invariant torus). Suppose that Eq. (4) is hyperbolic and there exist
positives numbers 0¡L¡L0 := �=2N and 0¡r¡r0 := �0(�=2N − L0)−1 such
that the function F ∈C(Tm × E; E) satis7es condition (9). Then Eq. (62) admits
an m-dimensional invariant torus.

Theorem 5.2 (Invariant torus for perturbed system). Suppose that there exist positives
numbers r and L such that condition (16) is ful7lled. Then for su9cient small �¿ 0
there exists an m-dimensional invariant torus u� for the perturbed equation

x′ = A(!t)x + f(!t) + �F(!t; x) (!∈Tm) (64)

and

lim
�→0

max
!∈�

‖u�(!)− u0(!)‖= 0:
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Theorem 5.3 (Unique invariant torus). Let � = Tm. Assume the conditions of The-
orem 3.5 are satis7ed. Then, for a su9cient small r0 ¿ 0, there exists 0¡�′0 ¡�0
such that for all 0¡�¡�′0 there exists a unique m-dimensional invariant torus u�

for Eq. (61) and

lim
�→0

max
!∈�

‖u�(!)− x0‖= 0:

We have the following corollary for quasi-periodic non-autonomous dynamical sys-
tems, i.e., the driving system deHned on the torus Tm is quasi-periodic in time.

Corollary 5.4 (Compact minimal invariant torus). Suppose that the conditions of The-
orem 5.1 (respectively, Theorems 5.2 or 5.3) are ful7lled and the dynamical system
(Tm;R; 	) generated by the second equation of system (61) is compact minimal and
contains only quasi-periodic motions, then Eq. (62) (respectively, Eqs. (64) or (21))
admits an m-dimensional invariant torus u� which is compact minimal and contains
only quasi-periodic motions.

6. Pseudorecurrent solutions

An autonomous dynamical system (�;T; 	) is said to be pseudorecurrent if the
following conditions are fulHlled:

(a) � is compact;
(b) (�;T; 	) is transitive, i.e. there exists a point !0 ∈� such that � = {!0t|t ∈T};
(c) every point !∈� is stable in the sense of Poisson, i.e.

N! = {{tn} |!tn → ! and |tn| → +∞} 
= ∅:

Lemma 6.1. Let 〈(X;T1; ;); (�;T2; 	); h〉 be a non-autonomous dynamical system
and the following conditions are ful7lled:

(1) (�;T2; 	) is pseudorecurrent;
(2) �∈C(�; X ) is an invariant section of the homomorphism h :X → �.

Then the autonomous dynamical system (�(�);T2; ;) is pseudorecurrent.

Proof. It is evident that the space �(�) is compact, because � is compact and �∈
C(�; X ). We note that on the space �(�), by the homomorphism � :� → �(�), we
have a dynamical system (�(�);T2; ;̂), namely ;̂t�(!) := �(!t) for all t ∈T2 and
!∈�, then ;̂t�(!) = ;t�(!) for all t ∈T1 ⊆ T2 and !∈�. Now we will show that
�(�) = {�(!0)t | t ∈T2}. In fact, let x∈ �(�). Then there exists a unique point !∈�
such that x= �(!). Let {tn} ⊂ T2 be a sequence such that !0tn → !. Then x= �(!)=
limn→+∞ �(!0tn)= limn→+∞ �(!)tn) and, consequently, �(�) ⊂ {�(!0)t | t ∈T2}. The
inverse inclusion is trivial. Hence, �(�) = {�(!0)t | t ∈T2}. To Hnish the proof of the
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lemma it is su?cient to note that N! ⊆ N�(!) for every point !∈� and, consequently,
every point �(!) is Poisson stable. The lemma is proved.

Lemma 6.1 implies that the conditions of Theorem 5.1 (respectively, Theorems 5.2
or 5.3) are satisHed. Therefore, we have the following result.

Theorem 6.2 (Pseudorecurrent integral manifold). Assume the driving dynamical sys-
tem (�;T; 	) is pseudorecurrent, and assume the conditions in Lemma 6.1 are satis-
7ed. Then Eq. (62) (respectively, Eqs. (64) or (21)) admits a pseudorecurrent integral
manifold.
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