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1. Introduction

The problem of upper semi-continuity of global attractors for small pertur-
bations is well studied (see, for example, Hale Hal88 and references therein)
for autonomous and periodical dynamical systems. In works Caraballo, Langa
and Robinson [3], Caraballo and Langa [4] and Cheban [18] this problem was
studied for non-autonomous and random dynamical systems.

Our paper is devoted to the systematical study of the problem of upper
semi-continuity of compact global attractors and compact pullback attractors
in abstract non-autonomous set-valued dynamical systems for small perturba-
tions. Applications of obtained results are given for certain classes of evolu-
tional equations (without uniqueness) and inclusions.

The paper is organized as follows. In section 2 we study some general prop-
erties of maximal compact invariant sets of dynamical systems. In particular,
we prove that the compact global attractor and pullback attractor are maximal
compact invariant sets (Theorem 3.10).

Section 3 contains the main results about upper semi-continuity of compact
global attractors of abstract non-autonomous dynamical systems for small per-
turbations (Lemmas 4.3, 4.6 and Theorems 4.10, 4.13, 4.14 and 4.16).
−−−−−−−−−−−−−−
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In section 4 we give the conditions of connectedness and component con-
nectedness of global and pullback attractors (Theorem 5.6).

Section 5 is devoted to the application of the general results obtained in sec-
tions 2-4, to study of certain classes of non-autonomous differential equations
(without uniqueness) and inclusions.

2. Global attractors in autonomous set-valued dynamical
systems

Let (X, ρ) be a complete metric space, S is a group of real (R) or integer
(Z) numbers, S+ := {s ∈ S : s ≥ 0}, T (S+ ⊆ T) is semigroup of additive
group S. If A ⊆ X and x ∈ X then will note ρ(x,A) a distance from point
x to set A i.e. ρ(x,A) = inf{ρ(x, a) : a ∈ A}. Will note by B(A, ε) the ε−
neighborhood of set A i.e. B(A, ε) = {x ∈ X : ρ(x,A) < ε}. We will denote
by C(X) the family of all non-empty compact subsets of X. For every point
x ∈ X and number t ∈ T will put in correspondence closed compact subset
π(x, t) ∈ C(X) and so if π(A,P ) =

⋃
{π(x, t) : x ∈ A, t ∈ P}(P ⊆ T) then

(1) π(x, 0) = x for all x ∈ X ;
(2) π(π(x, t1), t2) = π(x, t1 + t2) for all x ∈ X and t1, t2 ∈ T, if t2 · t2 > 0;
(3) lim

x→x0,t→t0
β(π(x, t), π(x0, t0)) = 0 for all x0 ∈ X and t0 ∈ T, where

β(A,B) = sup{ρ(a,B) : a ∈ A} semi-distance of Hausdorff of set
A ⊆ X from set B ⊆ X.

In this case it is said Sibirskii and Shube [29] that it is defined set-valued
semi-group dynamical system. Let T = S and is fulfilled condition

4. If p ∈ π(x, t) then x ∈ π(p,−t) for all x, p ∈ X and t ∈ T
then it is said that is defined a set-valued dynamical system (X,T, π) or dy-
namical systems without uniqueness.

Remark 2.1. Later on by the set-valued dynamical system (X,T, π) we will
mean a semi-group dynamical system unless otherwise stated, i.e. we will
consider, that T = S+.

Let M is some family of subsets of X. We will call a dynamical system
(X,T, π) M-dissipative if there exists a bounded set K ⊆ X, such that for any
ε > 0 and M ∈ M exists L = L(ε,M) > 0 such that πtM ⊆ B(K, ε) for every
t ≥ L(ε,M), where πtM = {π(x, t) = xt : x ∈M}. In addition we will call set
K as attractor for family M. The most interesting cases for application are
when M = {{x} : x ∈ X},M = C(X),M = {B(x, δx) : x ∈ X, δx > 0 is fixed
} or M = B(X) ( where B(X) is a family of all bounded subsets of X).

System (X,T, π) is called:

(1) pointwise dissipative if there exists K ∈ B(X) such that

(1) lim
t→+∞

β(xt,K) = 0

for all x ∈ X;
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(2) compact dissipative if equality (1) holds uniformly by x on compacts
from X;

(3) locally dissipative if for any point p ∈ X there exists δp > 0 such that
equality (1) holds uniformly by x ∈ B(p, δp);

(4) bounded dissipative if equality (1) holds uniformly by x on every bounded
subset from X.

In the study of dissipative systems two different cases occur when K is
compact and bounded (but not compact). According to this we will call the
system (X,T, π) pointwise k(b)− dissipative if (X,T, π) is pointwise dissipative
and set K appearing in (1) is compact (bounded). Notions of compact k(b)
dissipativity and other types of dissipativity are defined analogously.

Let (X,T, π) be compact k dissipative and K is compact set being attractor
for all compact subsets of X. We will set

(2) J = Ω(K) =
⋂
t≥0

⋃
τ≥t

πτK.

It can be shown Cheban and Fakeeh [6] that set J defined by equality (2),
don’t depends on the choice of attractor K, but is characterized only by prop-
erties of dynamical system (X,T, π) itself. Set J is called center of Levinson
of compact dissipative system (X,T, π).

Will state some known facts, which will be necessary for us below.

Theorem 2.2. (Cheban and Fakeeh [6], [8]) If (X,T, π) is compact dissipative
dynamical system and J is its center of Levinson then :

(1) J is invariant, i.e. πtJ = J for all t ∈ T;
(2) J is orbital stable , i.e. for any ε > 0 exists δ(ε) > 0 such that ρ(x, J) <

δ implies β(xt, J) < ε for all t ≥ 0 ;
(3) J is attractor of family of all compact subsets of X;
(4) J is maximal compact invariant set (X,T, π).

Continuous single-valued mapping ϕx : T → X is called motion of disperse
dynamical system (X,T, π) starting from the point x ∈ X if ϕx(0) = x and
ϕx(t2) ∈ π(ϕx(t1), t2 − t1) for any t1, t2 ∈ T(t2 > t1).

The set of all motions (X,T, π) starting from point x is noted by Φx and
Φ(π) =

⋃
{Φx : x ∈ X}.

A dynamical system (X,T, π) is called :

(1) locally completely continuous if for any point p ∈ X exists δp > 0 and
lp > 0 such that πlpB(p, δp) is relatively compact ;

(2) weakly dissipative, if there exists non-empty compact K ⊆ X such
that for any x ∈ X and ϕx ∈ Φx be found τ = τ(x, ϕx) > 0 for which
ϕx(τ) ∈ K ;

(3) trajectoricaly dissipative if there exists non-empty compact such that

(3) lim
t→+∞

ρ(ϕx(t), K) = 0

for all x ∈ X and ϕx ∈ Φx.
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Let (Ω,T, σ) is dynamical system with uniqueness (i.e. σ(t, ω) consist of
unique point whatever are ω ∈ Ω and t ∈ T) and (X,T, π) is a set-valued dy-
namical system. Triple 〈(X,T, π), (Ω,T, σ), h〉 will be called a non-autonomous
set-valued dynamical system where h is homomorphism (X,T, π) on (Ω,T, σ)
i.e. h is continuous mapping of X on Y satisfying condition : h(π(t, x)) =
σ(t, h(x)) for all x ∈ X and t ∈ T.

Non-autonomous set-valued dynamical system 〈(X,T, π), (Ω,T, σ), h〉 will
be called pointwise (compact, local, bounded) dissipative if such is (X,T, π).

We will call as a center of Levinson of non-autonomous dynamical system
〈(X,T, π),
(Ω,T, σ), h〉 a center of Levinson of (X,T, π).

Everywhere below (in this section) we will assume that Ω is compact, (X, h,Ω)
is locally-trivial finite-dimensional fibering Bourbaki [2] and | · | is a norm on
(X, h,Ω) compatible with metric ρ on X ( i.e. ρ(x1, x2) =| x1 − x2 | for any
x1, x2 ∈ X such that h(x1) = h(x2) ).

Denote by A the family of all continuous and strictly increasing functions
a : R+ → R+ with a(0) = 0 and Im(a) := {q ∈ R+ : ∃p ∈ R+ such that
a(p) = q}.
Theorem 2.3. (Cheban and Fakeeh [6]) Let 〈(X,T+, π), (Ω,T, σ), h〉 be a non-
autonomous set-valued dynamical system and Ω be compact, if T ⊆ Z. Suppose
that there exist a positive number r and the function V : Xr → R+ satisfying
the following conditions:

(1) a(|x|) ≤ V (x) ≤ b(|x|) (a, b ∈ A,=(a) = =(b)) for all x ∈ Xr;
(2) V ′

π(x) ≤ −c(|x|) for all x ∈ Xr, where c : R+ → R+ is a continu-
ous function and positive on [r,+∞), V ′

π :=
⋃
{V ′

ϕx
(x) : ϕx ∈ Φx}

and V ′
ϕx

(x) := lim
t↓0

t−1[V (ϕx(t)) − V (x)] for T+ = R+ and V ′
ϕx

(x) :=

V (π(1, x))− V (x) for T+ = Z+.

Then the non-autonomous set-valued dynamical system 〈(X,T+, π), (Ω,T,
σ), h〉 admits a compact global attractor.

3. Maximal compact invariant sets.

LetW be a complete metric space, Ω be a compact metric space and (Ω,T, σ)
be a dynamical system on Ω.

Definition 3.1. Triplet 〈W,ϕ, (Ω,T, σ)〉 is said to be a set-valued cocycle over
(Ω,T, σ) with fiber W , where ϕ is a mapping from T+ ×W × Ω onto C(W )
and possesses the following properties:

(1) ϕ(0, u, ω) = u for all u ∈ W and ω ∈ Ω;
(2) ϕ(t+τ, u, ω) = ϕ(t, ϕ(τ, x, ω), ωt), where ωt := σ(t, ω) and ϕ(t, A, ω) :=

{ϕ(t, u, ω) : u ∈ A} :
(3)

lim
t→t0,u→u0,ω→ω0

β(ϕ(t, u, ω), ϕ(t0, u0, ω0)) = 0
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for all (t0, u0, ω0) ∈ T+ ×W × Ω.

We denote by X = W ×Ω, (X,T+, π) a set-valued dynamical system on the
X defined by equality π = (ϕ, σ), i.e. πtx := {(v, σ(t, ω)) | v ∈ ϕ(t, u, ω)} for
every t ∈ T+ and x = (u, ω) ∈ X = W ×Ω. Then the triplet 〈(X,T+, π), (Ω,T,
σ), h〉 is a set-valued non-autonomous dynamical system (skew-product sys-
tem), where h = pr2 : X 7→ Ω.

Definition 3.2. A family {Iω | ω ∈ Ω}(Iω ⊂ W ) of non-empty compact subsets
of W is said to be a maximal compact invariant set of set-valued cocycle ϕ, if
the following conditions are fulfilled:

(1) {Iω | ω ∈ Ω} is invariant, i.e. ϕ(t, Iω, ω) = Iωt for every ω ∈ Ω and
t ∈ T+;

(2) I =
⋃
{Iω | ω ∈ Ω} is relatively compact;

(3) {Iω | ω ∈ Ω} is maximal, i.e. if the family {I ′ω | ω ∈ Ω} is relatively
compact and invariant, then I

′
ω ⊆ Iω for every ω ∈ Ω.

Lemma 3.3. The family {Iω | ω ∈ Ω} is invariant w.r.t. set-valued cocycle ϕ
if and only if the set J =

⋃
{Jω | ω ∈ Ω} (Jω = Iω × {ω}) is invariant w.r.t.

dynamical system (X,T+, π) that is πtJ = J for all t ∈ T+, where ıt := π(t, ·).

Proof. Let the family {Iω | ω ∈ Ω} be invariant, J =
⋃
{Jω | ω ∈ Ω} and

Jω = Iω × {ω}, then we have

πtJ =
⋃
{πtJω | ω ∈ Ω} =

⋃
{(ϕ(t, Iω, ω), ωt) | ω ∈ Ω}

=
⋃
{Iωt × {ωt} | ω ∈ Ω} =

⋃
{Jωt | ω ∈ Ω} = J(4)

for all t ∈ T+. From the equality (4) follows that the family {Iω | ω ∈ Ω} is
invariant w.r.t. set-valued cocycle ϕ if and only if a set J is invariant w.r.t.
set-valued dynamical system (X,T+, π). �

Theorem 3.4. (Sibirskii and Shube [29]) Let (X,T, π) be a set-valued dynam-
ical system. If y ∈ π(t, x), then there exists ϕ ∈ Φx such that ϕ(t) = y.

Theorem 3.5. Let family of sets {Iω|ω ∈ Ω} be maximal, compact and in-
variant with respect to set-valued cocycle ϕ. Then it is closed.

Proof. We note that the set J =
⋃
{Jω | ω ∈ Ω} (Jω = Iω × {ω}) is relatively

compact and according to Lemma 3.3 it is invariant. Let K = J, then K is
compact. We shall show that K is invariant. Really, if x ∈ K, then there
exists {xn} ⊂ J such that x = lim

n→+∞
xn. Thus xn ∈ J = πtJ for all t ∈ T+,

then for t ∈ T+ there exists x̄n ∈ J and ϕx̄n ∈ Φx̄n such that xn = ϕx̄n(t).
Since J is relatively compact it is possible to consider that the sequences {x̄n}
and {ϕx̄n} are convergent, moreover the sequence {ϕx̄n} converge uniformly on
every compact from T. We denote by x̄ = lim

n→+∞
x̄n and ϕx := lim

n→+∞
ϕxn , then

ϕx̄ ∈ Φx̄, x̄ ∈ J, x = ϕx̄(t) ∈ πtx̄ and, consequently, x ∈ πtJ for all t ∈ T+, i.e.
J = πtJ.
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Let I ′ = pr1K, where by pr1 we denote the first projection from X = W ×Ω
to W , then we have I ′ =

⋃
{I ′ω | ω ∈ Ω}, where I ′ω = {u ∈ W | (u, ω) ∈ K}

and Kω = I ′ω×{ω}. Since the set K is invariant, then according to Lemma 3.3
the set I ′ is also invariant w.r.t. set-valued cocycle ϕ. The set I ′ is compact,
because K is compact and pr1 : X 7→ W is continuous. According to the
maximality of the family {Iω | ω ∈ Ω} we have I ′ω ⊆ Iω for every ω ∈ Ω and,
consequently, I ′ ⊆ I.

On the other hand I = pr1J = I ′ and, consequently, I ′ = I. Thus the set I
is compact. The theorem is proved. �

Definition 3.6. Let 〈W,ϕ, (Ω,S, σ)〉 be a set-valued cocycle. A family {Iω | ω ∈
Ω} (Iω ⊂ W ) of non-empty compact subsets of W is said to be a compact
pullback attractor of the set-valued cocycle ϕ, if the following conditions are
fulfilled:

a. I =
⋃
{Iω | ω ∈ Ω} is relatively compact ;

b. I is invariant w.r.t. set-valued cocycle ϕ, i.e. ϕ(t, Iω, ω) = Iσ(t,ω) for
all t ∈ T+ and ω ∈ Ω;

c. for every ω ∈ Ω and K ∈ C(W )

(5) lim
t→+∞

β(ϕ(t,K, ω−t), Iω) = 0,

where β(A,B) = sup{ρ(a,B) : a ∈ A} is a semi-distance of Hausdorff
and ω−t := σ(−t, ω).

Definition 3.7. A family {Iω | ω ∈ Ω}(Iω ⊂ W ) of nonempty compact subsets
of W is called a compact global attractor of set-valued cocycle ϕ, if the following
conditions are fulfilled:

a. a family {Iω | ω ∈ Ω} is compact and invariant;
b. for every K ∈ C(W )

(6) lim
t→+∞

sup
ω∈Ω

β(ϕ(t,K, ω), I) = 0,

where I =
⋃
{Iω | ω ∈ Ω}.

We will say that the spaceX has the property (S), if for any compactK ⊆ X
there exists a connected set M ⊆ X such that K ⊆M .

By entire trajectory of semi-group dynamical system (X,S+, π) (of set-
valued cocycle 〈W,ϕ, (Ω,S, σ)〉 over (Ω,S, σ) with fiber W ), passing through
the point x ∈ X ( (u, ω) ∈ W × Ω ) is called a continuous mapping γ :
S → X(ν : S → W ) satisfying the conditions : γ(0) = x (ν(0) = w) and
γ(t+ τ) ∈ πtγ(τ) (ν(t+ τ) ∈ ϕ(t, ν(τ), yτ)) for all t ∈ S+ and τ ∈ S.

Definition 3.8. The set-valued cocycle ϕ is called compact dissipative if there
exists a nonempty compact set K ⊆ W such that

lim
t→+∞

sup{β(U(t, ω)M,K) | ω ∈ Ω} = 0

for all M ∈ C(W ).
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Theorem 3.9. (Cheban and Schmalfuss [14]) Let Ω be compact, 〈W,ϕ, (Ω,S, σ)〉
be a compact dissipative set-valued cocycle, then:

(1) Iω = Ωω(K) 6= ∅, is compact, Iω ⊆ K and

(7) lim
t→+∞

β(U(t, ω)K, Iω) = 0

for every ω ∈ Ω;
(2) U(t, ω)Iω = Iωt for all ω ∈ Ω and t ∈ S+;
(3)

(8) lim
t→+∞

β(U(t, ω−t)M, Iω) = 0

for all M ∈ C(W ) and ω ∈ Ω, where ω−t := σ(−t, ω);
(4)

(9) lim
t→+∞

sup{β(U(t, ω)M, I) : ω ∈ Ω} = 0

whatever is M ∈ C(W ), where I =
⋃
{Iω : ω ∈ Ω} ;

(5) I = pr1J and Iω = pr1Jω, where J is center of Levinson of (X,S+, π)
and Jω = J

⋂
Xω;

(6) set I is compact ;
(7) set I is connected if one of the following two conditions:

a. S+ = R+ and the spaces W and Y are connected;
b. S+ = Z+ and the space W × Y has property (S) or it is connected

and locally connected
is fulfilled.

Theorem 3.10. A family {Iω | ω ∈ Ω} of nonempty compact subsets of W
will be maximal compact invariant set w.r.t. set-valued cocycle ϕ, if one of the
following two conditions is fulfilled:

a. {Iω | ω ∈ Ω} is a compact pullback attractor w.r.t. set-valued cocycle
ϕ;

b. {Iω | ω ∈ Ω} is a compact global attractor w.r.t. set-valued cocycle ϕ.

Proof. a. Let {Iω | ω ∈ Ω} be a compact pullback attractor of set-valued
cocycle ϕ. Since the family {I ′ω | ω ∈ Ω} is a compact and invariant set of the
set-valued cocycle ϕ, then we have

β(I ′ω, Iω) = β(ϕ(t, I ′ω−t , ω−t), Iω) ≤ β(ϕ(t,K, ω−t), Iω) → 0

as t → +∞, where K =
⋃
{I ′ω | ω ∈ Ω}, and, consequently, I ′ω ⊆ Iω for every

ω ∈ Ω, i.e. {Iω | ω ∈ Ω} is maximal.
b. Let the family {Iω | ω ∈ Ω} be a compact global attractor w.r.t. set-

valued cocycle ϕ, then according to Theorem 3.9 it is a compact pullback
attractor and, consequently, the family {Iω | ω ∈ Ω} is maximal compact
invariant set of the set-valued cocycle ϕ. �
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Remark 3.11. Family {Iω | ω ∈ Ω} (Iω ⊂ W ) is a maximal compact invariant
w.r.t. set-valued cocycle ϕ if and only if the set J =

⋃
{Jω | ω ∈ Ω}, where Jω =

Iω ×{ω}, is a maximal compact invariant in the dynamical system (X,S+, π).

4. Upper semi-continuity

Lemma 4.1. Let {Iω | ω ∈ Ω} be a maximal compact invariant set of the
set-valued cocycle ϕ, then the function F : Ω 7→ C(W ), defined by the equality
F (ω) = Iω is upper semi-continuous, i.e. for all ω0 ∈ Ω

β(F (ωk), F (ω0)) → 0,

if ρ(ωk, ω0) → 0.

Proof. Let ω0 ∈ Ω, ωk → ω0 and there exists ε0 > 0 such that

β(F (ωk), F (ω0)) ≥ ε0,

then there exists xk ∈ Iωk
such that

(10) ρ(xk, Iω0) ≥ ε0.

As set I is compact, without loss of generality we can suppose that the sequence
{xk} is convergent. We denote by x = lim

k→+∞
xk, then in virtue of Theorem 3.5

the set I =
⋃
{Iω | ω ∈ Ω} is compact and hence there exists ω0 ∈ Ω such that

x ∈ Iω0 ⊂ I.
On the other hand, according to the inequality (10) x /∈ Iω0 . This contra-

diction shows that the function F is upper semi-continuous. �

Remark 4.2. Lemma 4.1 was proved for the pullback attractors of non-auto-
nomous quasi-liner differential equations in the work of Cheban, Schmalfuss
and Kloeden [12, p.13-14].

Lemma 4.3. Let Λ be a compact metric space and ϕ : T+×W×Λ×Ω 7→ C(W )
verifies the following conditions :

(1) ϕ is β-continuous, i.e.

lim
t→t0, u→u0, λ→λ0

β(ϕ(t, u, λ), ϕ(t0, u0, λ0)) = 0;

(2) for every λ ∈ Λ the function ϕλ = ϕ(·, ·, λ, ·) : T+ ×W × Ω 7→ W is a
set-valued cocycle on Ω with the fiber W ;

(3) the set-valued cocycle ϕλ admits a pullback attractor {Iλ
ω | ω ∈ Ω} for

every λ ∈ Λ;
(4) the set

⋃
{Iλ | λ ∈ Λ} is precompact, where Iλ =

⋃
{Iλ

ω | ω ∈ Ω},
then the following equality

(11) lim
λ→λ0,ω→ω0

β(Iλ
ω , I

λ0
ω0

) = 0

takes place for every λ0 ∈ Λ and ω0 ∈ Ω and

(12) lim
λ→λ0

β(Iλ, Iλ0) = 0
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for every λ0 ∈ Λ.

Proof. Let Ω̃ = Λ×Ω and σ̃ : T×Ω̃ 7→ Ω̃ be the mapping defined by the equality
σ̃(t, (λ, ω)) = (λ, σ(t, ω)) for every t ∈ T, λ ∈ Λ and ω ∈ Ω. It is clear that the
triplet (Ω̃,T, σ̃) is a dynamical system on Ω̃ and ϕ̃ : T+ ×W × Ω̃ 7→ C(W )
(ϕ̃(t, x, (λ, ω)) := ϕ(t, x, λ, ω)) is the set-valued cocycle on (Ω̃,T, σ̃) with fiber
W . Under the conditions of Lemma 4.3 the set-valued cocycle ϕ̃ admits a
maximal compact invariant set {Iω̃ | ω̃ ∈ Ω̃} (where Iω̃ = I(λ,ω) = Iλ

ω) because⋃
{Iω̃ | ω̃ ∈ Ω̃} =

⋃
{Iλ

ω | λ ∈ Λ, ω ∈ Ω} =
⋃
{Iλ | λ ∈ Λ}.

According to Lemma 4.1 the function F : Ω̃ 7→ C(W ), defined by the equality
F (λ, ω) = Iλ

ω is upper semi-continuous and in particular the equality (12) takes
place.

We assume that the equality (12) is not true, then there exist ε0 > 0, λ0 ∈
Λ, λk → λ0, ωk ∈ Ω and xk ∈ Iλk

ωk
such that

(13) ρ(xk, Iλ0) ≥ ε0.

Without loss of generality we can suppose that ωk → ω0, xk → x0 because
the sets Ω and

⋃
{Iλ | λ ∈ Λ} are compact. According to the inequality 13 we

have

ρ(x0, Iλ0) ≥ ε0.

On the other hand xk ∈ Iλk
ωk

and from the equality 12 we have

x0 ∈ Iλ0
ω0
⊂ Iλ0

and, consequently,

ε0 ≤ ρ(x0, Iλ0) ≤ β(Iλ0
ω0
, Iλ0) = 0.

This contradiction shows that the equality (12) takes place. �

Corollary 4.4. Under the conditions of Lemma 4.3 the equality

lim
λ→λ0

β(Iλ
ω , I

λ0
ω ) = 0

takes place for each ω ∈ Ω.

Remark 4.5. The article of Caraballo and Langa [4] contains a statement
close to Corollary 4.4 in the case when the non-perturbed cocycle ϕλ0 is au-
tonomous, i.e. the mapping ϕλ0 : T+×W ×Ω → W does not depend on ω ∈ Ω
.

Lemma 4.6. Let the conditions of Lemma 4.3 and additionally the following
condition:

5. for certain λ0 ∈ Λ the application F : Ω 7→ C(W ), defined by the
equality F (ω) = Iλ0

ω is continuous, i.e. α(F (ω), F (ω0)) → 0 if ω → ω0

for every ω0 ∈ Ω, where α is the full metric of Hausdorff, i.e. α(A,B) =
max{β(A,B), β(B,A)}
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be fulfilled.
Then the equality

(14) lim
λ→λ0

sup
ω∈Ω

β(Iλ
ω , I

λ0
ω ) = 0

takes place.

Proof. Suppose that the equality (14) is not true, then there exist ε0 > 0, λk →
λ0 and ωk ∈ Ω such that

(15) β(Iλk
ωk
, Iλ0

ωk
) ≥ ε0

for all k ∈ N.
On the other hand we have

ε0 ≤ β(Iλk
ωk
, Iλ0

ωk
) ≤ β(Iλk

ωk
, Iλ0

ω0
) + β(Iλ0

ω0
, Iλ0

ωk
)

≤ β(Iλk
ωk
, Iλ0

ω0
) + α(Iλ0

ωk
, Iλ0

ω0
).(16)

According to Lemma 4.3 ( see the equality (11) ) the equality

(17) lim
k→+∞

β(Iλk
ωk
, Iλ0

ω0
) = 0

takes place. Under condition 5. of Lemma 4.6 we have

(18) lim
k→+∞

α(Iλ0
ωk
, Iλ0

ω0
) = 0.

From (16) - (18) passing to the limit as k → +∞ we obtain ε0 ≤ 0. This
contradiction shows that the equality (14) takes place. �

Definition 4.7. The family of set-valued cocycle {ϕλ}λ∈Λ is called collectively
compact dissipative (uniformly collectively compact dissipative), if there exists
a nonempty compact set K ⊆ W such that

(19) lim
t→+∞

sup{β(Uλ(t, ω)M,K) | ω ∈ Ω} = 0 ∀ λ ∈ Λ

(respectively lim
t→+∞

sup{β(Uλ(t, ω)M,K) | ω ∈ Ω, λ ∈ Λ} = 0)

for all M ∈ C(W ), where Uλ(t, ω) = ϕλ(t, ·, ω).

Lemma 4.8. The following conditions are equivalent:

(1) the family of set-valued cocycles {ϕλ}λ∈Λ is collectively compact dissi-
pative;

(2) (a) every set-valued cocycle ϕλ (λ ∈ Λ) is compact dissipative;
(b) the set

⋃
{Iλ | λ ∈ Λ} is precompact.

Proof. According to the equality (19) every set-valued cocycle ϕλ (λ ∈ Λ) is
compact dissipative and

⋃
{Iλ | λ ∈ Λ} ⊆ K.

Suppose that the conditions a. and b. hold. Let K =
⋃
{Iλ | λ ∈ Λ}, then

the equality (19) takes place. �
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Let {ϕλ}λ∈Λ be a family of set-valued cocycles on (Ω,T, σ) with fiber W
and Ω̃ = Ω × Λ. On Ω̃ we define a dynamical system (Ω̃,T, σ̃) by equality
σ̃(t, (ω, λ)) = (σ(t, ω), λ) for all t ∈ T, ω ∈ Ω and λ ∈ Λ. By family of set-
valued cocycles {ϕλ}λ∈Λ is generated a set-valued cocycle ϕ̃ on (Ω̃,T, σ̃) with
fiber W , defined in the following way : ϕ̃(t, w, (ω, λ)) = ϕλ(t, w, ω) for all
t ∈ T+, w ∈ W,ω ∈ Ω and λ ∈ Λ, if the mapping ϕ̃ is β-continuous.

Lemma 4.9. Let {ϕλ}λ∈Λ be a family of set-valued cocycles on (Ω,T, σ) with
fiber W and the mapping ϕ̃ is β-continuous. Then the following conditions are
equivalent:

(1) the family of set-valued cocycles {ϕλ}λ∈Λ is uniformly collectively com-
pact dissipative;

(2) the set-valued cocycle ϕ̃ is compact dissipative.

Proof. This assertion follows from the equality

sup{β(Ũ(t, ω̃)M,K) | ω̃ ∈ Ω̃} = sup{β(Uλ(t, ω)M,K) | ω ∈ Ω, λ ∈ Λ},

where Ũ(t, ω̃) = ϕ̃(t, ·, ω̃), and from the corresponding definitions. �

Theorem 4.10. Let Λ be a compact metric space and {ϕλ}λ∈Λ be a family of
uniformly collectively compact dissipative set-valued cocycles on (Ω,T, σ) with
fiber W , then the following assertions take place:

(1) every set-valued cocycle ϕλ (λ ∈ Λ) is compact dissipative;
(2) the family of compacts {Iλ

ω | ω ∈ Ω} = Iλ is a Levinson’s centre (com-
pact global attractor) of set-valued cocycle ϕλ, where Iλ

ω = I(ω,λ) and

I = {I(ω,λ) | (ω, λ) ∈ Ω̃} is a Levinson’s centre of set-valued cocycle ϕ̃;
(3) the set

⋃
{Iλ | λ ∈ Λ} is precompact.

Proof. Consider the set-valued cocycle ϕ̃ generated by the family of set-valued
cocycles {ϕλ}λ∈Λ. According to Lemma 4.9 ϕ̃ is compact dissipative and by
virtue of the Theorem 3.9 the following assertions take place:

(1) Iω̃ = Ωω̃(K) 6= ∅, is compact, Iω̃ ⊆ K and

(20) lim
t→+∞

β(Ũ(t, ω̃−t)M, Iω̃) = 0

for every ω̃ ∈ Ω̃, where

(21) Ωω̃(K) =
⋂
t≥0

⋃
τ≥t

Ũ(τ, ω̃−τ )K,

ω̃−τ = σ̃(−τ, ω̃) and K is a nonempty compact appearing in the equal-
ity (19);

(2) Ũ(t, ω̃)Iω̃ = Iω̃t for all ω̃ ∈ Ω̃ and t ∈ T+;
(3) the set I =

⋃
{Iω̃ | ω̃ ∈ Ω̃} is compact.

To complete the proof we note that from the collective compact dissipative-
ness of the family of set-valued cocycles {ϕλ}λ∈Λ results that every set-valued



12

cocycle ϕλ will be compact dissipative. Let {Iλ
ω | ω ∈ Ω} = Iλ be a Levinson’s

centre of the set-valued cocycle ϕλ, then according to Theorem 3.9 the equality

(22) Iλ
ω =

⋂
t≥0

⋃
τ≥t

Uλ(τ, ω−τ )K,

takes place.
From (21) and (22) follows that Iλ

ω = Ωω̃(K) = Iω̃ and, consequently, Iλ =⋃
{Iλ

ω | ω ∈ Ω} ⊆
⋃
{Iλ

ω | ω ∈ Ω, λ ∈ Λ} = I for all λ ∈ Λ. Thus
⋃
{Iλ | λ ∈

Λ} ⊆ I and, consequently, it is compact. The theorem is proved. �

Definition 4.11. The family {(X,T+, πλ)}λ∈Λ of set-valued dynamical systems
is called collectively ( uniformly collectively) asymptotic compact if for every
bounded positive invariant set M ⊆ X there exists a nonempty compact K
such that

(23) lim
t→+∞

β(πt
λM,K) = 0 ∀ λ ∈ Λ

( lim
t→+∞

sup
λ∈Λ

β(πt
λM,K) = 0).

Definition 4.12. The bounded set K ⊂ X is called absorbing (uniformly
absorbing) for the family {(X,T+, πλ)}λ∈Λ of set-valued dynamical systems if
for any bounded subset B ⊂ X there exists a number L = L(λ,B) > 0 (L =
L(B) > 0) such that πt

λB ⊆ K for all t ≥ L(λ,B) (t ≥ L(B)) and λ ∈ Λ.

Theorem 4.13. Let Λ be a complete metric space. If the family {(X,T+,
πλ)}λ∈Λ of set-valued dynamical systems admits an absorbing bounded set K ⊂
X and it is collectively asymptotic compact, then {(X,T+, πλ)}λ∈Λ admits a
global compact attractor, i.e. there exists a nonempty compact set K ⊂ X such
that

(24) lim
t→+∞

β(πt
λB,K) = 0

for all λ ∈ Λ and bounded B ⊂ X.

Proof. Let the family {(X,T+, πλ)}λ∈Λ of set-valued dynamical systems be
collectively asymptotic compact and a bounded M be its absorbing set. Ac-
cording to Theorem 1.1.1 Cheban and Fakeeh [6] the nonempty set K = Ω(M)
is compact and the equality (24) takes place. The theorem is proved. �

Theorem 4.14. Let Λ be a complete compact metric space. If the family
{(X,T+, πλ)}λ∈Λ of set-valued systems admits a uniformly absorbing bounded
set K ⊂ X and it is uniformly collectively asymptotic compact, then {(X,T+,
piλ)}λ∈Λ admits a uniform compact global attractor, i.e. there exists a nonempty
compact set K ⊂ X such that

(25) lim
t→+∞

sup
λ∈Λ

β(πt
λB,K) = 0

for all bounded B ⊂ X.
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Proof. Consider the set-valued dynamical system (X̃,T+, π̃) on X̃ = X ×
Λ defined by equality π̃(t, (x, λ)) = (πλ(t, x), λ) for all t ∈ T+, x ∈ X and
λ ∈ Λ. We note that under the conditions of Theorem 4.14 the bounded set
K × Λ is absorbing for dynamical system (X̃,T+, π̃) if the set K is uniformly
absorbing for the family {(X,T+, πλ)}λ∈Λ and (X̃,T+, π̃) is asymptotically
compact. According to Theorem 2.2.5 (Cheban and Fakeeh [6]) the dynamical
system (X̃,T+, π̃) admits a compact global attractor K̃ ⊂ X̃ = X × Λ. To
finish the proof it is sufficient to note that the set K = pr1K̃ ⊂ X is compact
and

sup
λ∈Λ

β(πt
λB,K) ≤ β(π̃t

λB,K0) → 0

as t→ +∞, where K0 = K × Λ ⊃ K̃, for all bounded subset B ⊂ X. �

Let ϕ be a set-valued cocycle on (Ω,T, σ) with fiber W and (X,T+, π) be
a skew-product dynamical system, where X = W × Ω and π(t, (w, ω)) =
(ϕ(t, w, ω), ωt) for all t ∈ T+, w ∈ W and ω ∈ Ω.

Definition 4.15. The set-valued cocycle ϕ is called asymptotically compact
(a family of set-valued cocycles {ϕλ}λ∈Λ is called collectively asymptotically
compact) if a skew-product dynamical system (X,T+, π) (a family of skew-
product dynamical systems (X,T+, πλ)λ∈Λ) is asymptotically compact.

Theorem 4.16. Let Ω and Λ be compact metric spaces, W be a finite-dimen-
sional Banach space, Wr := {u ∈ W : |u| ≥ r]} (r > 0) and {ϕλ}λ∈Λ be a
family of set-valued cocycles on (Ω,T, σ) with fiber W . If there exist r > 0 and
the function Vλ : W × Ω → R+ for all λ ∈ Λ, with the following properties:

(1) a(|x|) ≤ Vλ(x) ≤ b(|x|) (a, b ∈ A, Im(a) = Im(b)) for all x ∈ Xr and
λ ∈ Λ;

(2) V ′
λ((u, ω)) ≤ −c(|u|) for all u ∈ Wr, where c : R+ → R+ is a continuous

function and positive on [r,+∞), V ′
λ(u, ω) := lim sup

t↓0
t−1[Vλ(ϕ(t, u, ω))−

Vλ(u, ω)] for T+ = R+ and V ′
λ(u, ω) := Vλ(ϕ(1, u, ω)) − Vλ((u, ω)) for

T+ = Z+.

Then every set-valued cocycle ϕλ (λ ∈ Λ) admits a uniform compact global
attractor Iλ (λ ∈ Λ) and the set

⋃
{Iλ | λ ∈ Λ} is precompact.

Proof. Let X = W × Ω and (X,T, πλ) be a skew-product dynamical system,
generated by the set-valued cocycle ϕλ , then (X, h,Ω) , where h = pr2 : X →
Ω, is a trivial fibering with fiber W . Under the conditions of Theorem 4.16 and
according to Theorem 2.3 the non-autonomous set-valued dynamical system
〈(X,T+, πλ), (Ω,T, σ), h〉 admits a compact global attractor Jλ and according
to Theorem 3.9 the set-valued cocycle ϕλ admits a compact global attractor
Iλ = {Iλ

ω | ω ∈ Ω}, where Iλ
ω = pr1J

λ
ω and Jλ

ω = pr−1
2 (ω)

⋂
Jλ.

Let Ω̃ = Ω × Λ, (Ω̃,T, σ̃) be a dynamical system on Ω̃ defined by the
equality σ̃(t, (ω, λ)) = (σ(t, ω), λ) ( for all t ∈ T, ω ∈ Ω and λ ∈ Λ), X̃ =
W×Ω̃ and (X̃,T+, π̃) be an autonomous dynamical system defined by equality



14

π̃(t, (u, ω̃)) = (ϕλ(t, u, ω), (ωt, λ)) for all ω̃ = (ω, λ) ∈ Ω̃ = Ω × Λ. Note
that the triplet (X̃, h,Ω), where h = pr2 : X̃ → Ω̃, is a trivial fibering with
fiber W, 〈(X̃,T+, π̃), (Ω̃,T, σ̃), h〉 is a non-autonomous set-valued dynamical
system. The function Ṽ : X̃r = Wr × Ω̃ → R+, defined by the equality
Ṽ (x̃) = Vλ(u, ω) for all x̃ = (u, (ω, λ)) ∈ X̃r under the conditions of Theorem
4.16 verifies all the conditions of Theorem 2.3 and, consequently, the dynamical
system (X̃,T+, π̃) admits a compact global attractor. To finish the proof of the
theorem it is sufficient to note that if the dynamical system (X̃,T+, π̃) admits
a compact global attractor J̃ , then the family of set-valued cocycles {ϕλ}λ∈Λ

is uniformly collectively compact dissipative and according to Theorem 4.10
the set I =

⋃
{Iλ | λ ∈ Λ} is precompact, where Iλ = {Iλ

ω | ω ∈ Ω} is the
compact global attractor of set-valued cocycle ϕλ. The theorem is proved. �

5. Connectedness

Definition 5.1. We will say that the space W possesses the property (S) if
for every compact K ∈ C(W ) there exists a compact connected set V ∈ C(W )
such that K ⊆ V .

Remark 5.2. 1. It is clear that if space W possesses the property (S), then
it is connected. The inverse statement generally speaking is not true.

2. Every linear vectorial topological space W possesses the property (S),
because the set V (K) = {λx + (1 − λ)y | x, y ∈ K,λ ∈ [0, 1]} is connected,
compact and K ⊆ V (K).

If M ⊆ W, then we denote by

Ωω(M) =
⋂
t≥0

⋃
τ≥t

ϕ(τ,M, ω−τ )

for each ω ∈ Ω.

Lemma 5.3. (Cheban and Schmalfuss [14]) Following statements take place:

(1) point w ∈ Ωy(M) if and only if, there exists tn → +∞, {xn} ⊆ M and
wn ∈ U(tn, y

−tn)xn such that w = lim
n→+∞

wn;

(2) U(t, y)Ωy(M) ⊆ Ωyt(M) for all y ∈ Y and t ∈ T+;
(3) if there exists non-empty compact K ⊂ W such that

(26) lim
t→+∞

β(ϕ(t,M, y−t), K) = 0,

then Ωy(M) 6= ∅, is compact,

(27) lim
t→+∞

β(ϕ(t,M, y−t),Ωy(M)) = 0,

and

(28) U(t, y)Ωy(M) = Ωyt(M)

for all y ∈ Y and t ∈ T+.
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Lemma 5.4. Suppose that the set-valued cocycle ϕ admits a compact pullback
attractor {Iω | ω ∈ Ω} , then the following assertions take place:

a. ∅ 6= Ωω(M) ⊆ Iω for every M ∈ C(W ) and ω ∈ Ω;
b. the family {Ωω(M) | ω ∈ Ω} is compact and invariant w.r.t. cocycle ϕ

for every M ∈ C(W );
c. if I =

⋃
{Iω | ω ∈ Ω} ⊆ M, then the following inclusion Iω ⊆ Ωω(M)

takes place for every ω ∈ Ω.

Proof. The first and second assertions follow from the definition of pullback
attractor and from the equalities (26)-(27).

Let I be a subset of M , then

(29) Iω = ϕ(t, Iω−t , ω−t) ⊆ ϕ(t, I, ω−t) ⊆ ϕ(t,M, ω−t)

and according to the equality (26) we have Iω ⊆ Ωω(M) for each ω ∈ Ω. �

Lemma 5.5. (Cheban and Fakeeh [6], Fang [22]) Let X be a complete metric
space and f : X → C(X) be a mapping such that f(x) is a nonempty connected
compact for all x ∈ X. Suppose that the mapping f is upper semi-continuous
on X, i.e.

lim
x→x0

β(f(x), f(x0)) = 0

for every point x0 ∈ X. If the space X is connected, then the set f(X) is
connected too.

Theorem 5.6. Let W be a space with the property (S), the set-valued cocycle
ϕ admits a compact pullback attractor {Iω | ω ∈ Ω} and ϕ(t, u, ω) is a compact
connected subset of W for all t ∈ T+ and (u, ω) ∈ W × Ω, then:

(1) the set Iω is connected for every ω ∈ Ω;
(2) if the space Ω is connected, then the set I =

⋃
{Iω | ω ∈ Ω} is also

connected.

Proof. 1. Since the equality (5) takes place and the space W possesses the
property (S), then there exists a connected compact V ∈ C(W ) such that
I ⊆ V and

(30) lim
t→+∞

β(ϕ(t, V, ω−t), Iω) = 0,

for every ω ∈ Ω. We shall show that the set Iω is connected. If we suppose
that it is not true, then there are A1, A2 6= ∅, closes and A1

⊔
A2 = Iω. Let

0 < ε0 < d(A1, A2) and L = L(ε0) > 0 be such that

(31) β(ϕ(t, V, ω−t), Iω) <
ε0

3

for all t ≥ L(ε0).
We note that in view of Lemma 5.5 the set ϕ(t, V, ω−t) is connected and

according to the inclusion (29) and the inequality (31) the following condition

ϕ(t, V, ω−t)
⋂

(W \ [B(A1,
ε0

3
)
⊔

B(A2,
ε0

3
)]) 6= ∅
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is fulfilled for every t ≥ L(ε0) and ω ∈ Ω, where B(A, ε) = {u ∈ W |ρ(u,A) <
ε}. Then there exists tn → +∞ and un ∈ W such that

(32) un ∈ ϕ(tn, V, ω
−tn)

⋂
(W \ [B(A1,

ε0

3
)
⊔

B(A2,
ε0

3
)]).

According to the equality (30) it is possible to suppose that the sequence
{un} is convergent. We denote by u = lim

n→+∞
un, then from Lemma 5.3

follows that u ∈ Ωω(V ). Since I ⊆ V , then according to Lemma 5.3 we
have u ∈ Ωω(V ) ⊆ Iω ⊆ I. On the other hand according to (32) we have
u /∈ B(A1,

ε0

3
)
⊔
B(A2,

ε0

3
). This contradiction shows that the set Iω is con-

nected.
2. Let the space Ω be connected. According to Lemma 4.3 the function

F : Ω 7→ C(W ), defined by equality F (ω) = Iω is upper semi-continuous
and from the lemma 5.5 follows that the set I =

⋃
{Iω | ω ∈ Ω} = F (Ω) is

connected. �

Corollary 5.7. Let W be a metric space with the property (S), the set-valued
cocycle ϕ admit a compact global attractor {Iω | ω ∈ Ω} and ϕ(t, u, ω) is a
compact connected subset of W for all t ∈ T+ and (u, ω) ∈ W × Ω, then:

(1) the set Iω is connected for every ω ∈ Ω;
(2) if the space Ω is connected, then the set I =

⋃
{Iω | ω ∈ Ω} also is

connected.

Proof. This affirmation follows from Theorems 3.10, 5.6 and Lemma 4.1. �

6. Some applications

Here follow some examples of set-valued cocycles playing an important role
in the study of differential equations (without uniqueness) and differential
inclusions.

Example 6.1. (Ordinary differential equations without uniqueness). Let En

be a n-dimensional real or complex Euclidean space with norm | · |, Ω be a
compact metric space and (Ω,R, σ) be a dynamical system on Ω. Will note
by C(Ω× En, En) a set of all continuous mappings f : Ω×En → En allotted
with uniform convergence topology on compacts from Ω × En. Consider a
differential equation

(33) u′ = f(ωt, u), (ω ∈ Ω)

where f ∈ C(Ω× En, En) and ωt := σ(t, ω).
The function f ∈ C(Ω × En, En) is called regular, if for any v ∈ En and

ω ∈ Ω the equation (33) admits at least one solution ϕ(v,ω)(t) defined on R+

and passing through the point v when t = 0. Note by Φ(v,ω) a set of all solutions
of equation (33), defined on R+ and passing through the point v for t = 0.

Let f ∈ C(Ω×En, En) be regular, denote by ϕ(t, v, ω) = {ϕ(v,ω)(t) | ϕ(v,ω) ∈
Φ(v,ω)}, then ϕ : R+ × En × Ω → C(En) and from the general properties of
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solutions of differential equations (see, for example, Hartman [24]) follows that
the following conditions are fulfilled:

a. ϕ(0, v, ω) = v for all v ∈ En, ω ∈ Ω;
b. ϕ(t+ τ, v, ω) = ϕ(t, ϕ(τ, v, ω), ωτ) for all v ∈ En, ω ∈ Ω and t, τ ∈ R+;
c. mapping ϕ : R+ × En × Ω → C(En) is β− continuous.

Then the triplet 〈En, ϕ, (Ω,R, σ)〉 is a set-valued cocycle over (Ω,R, σ) with
the fiber En. Thus the differential equation (33) with regular right hand side
f ∈ C(Ω× En, En) naturally generates a set-valued cocycle.

Example 6.2. (Differential inclusions ). Let CV (En) be a family of all convex
compacts from En, and by C(Ω×En, CV (En)) we denote the set of all continu-
ous in Hausdorff’s metric (see Sibirskii and Shube [29], Fillipov [21], Borisovich,
Ghelman, Myshkis and Obukhovsky [1]) mappings f : Ω× En → CV (En), al-
lotted by uniform convergence topology on compacts. Consider the differential
inclusion

(34) u′ ∈ f(ωt, u), (ω ∈ Ω)

where f ∈ C(Ω× En, CV (En)).
We will call the function f ∈ C(Ω × En, CV (En)) regular, if for every in-

clusion (34) the conditions of existence and non-local extensibility to the right
(i.e. for any ω ∈ Ω and v ∈ En there exists at least one solution ϕ(v,ω)(t) of
the inclusion (34) passing through the point v for t = 0 and defined on R+)
are fulfilled.

Let f ∈ C(Ω × En, CV (En)) be regular. We set ϕ(t, v, ω) = {ϕ(v,ω)(t) :
ϕ(v,ω) ∈ Φ(v,ω)}, where Φ(v,ω) is the set of all solutions of inclusion (34) defined
on R+ and passing through the point v for t = 0 . From the general properties
of the differential inclusions Fillipov [21] follows that the following properties
take place:

a. ϕ(0, v, ω) = v for all v ∈ En, ω ∈ Ω;
b. ϕ(t+ τ, v, ω) = ϕ(t, ϕ(τ, v, ω), ωτ) for all v ∈ En, ω ∈ Ω and t, τ ∈ R+;
c. mapping ϕ : R+ × En × Ω → C(En) is β - continuous.

Then the triplet 〈En, ϕ, (Ω,R, σ)〉 is a set-valued cocycle over (Ω,R, σ) with
the fiber En. Thus the differential inclusion (34) with regular right hand side
F ∈ C(Ω× En, CV (En)) naturally generates a set-valued cocycle.

Let A ∈ C(En) and |A| := max{|u| | u ∈ A}.
Lemma 6.3. Let Y be a metric space and F : Y → C(En) be continuous with
respect to Hausdorff metric (α-continuous). Then the function m : Y → R+,
defined by the equality m(y) := |F (y)| (for all y ∈ Y ) is continuous.

Proof. Let y ∈ Y and yk → y. Consider the sequence {m(yk)}. Since the set
F (yk) is compact, then there exists a point uk ∈ F (yk) such that m(yk) = |uk|.
By the continuity of mapping F (with respect to Hausdorff metric) the set
F ({yk}) :=

⋃
k∈N F (yk) is precompact in En. Let ũ be a limit point of the

sequence {uk} and m̃ := |ũ|. We will show that m̃ = m(y). At first we note
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that by the α-continuity of the mapping F : Y → C(En) we have ũ ∈ F (y)
and, consequently, m̃ = |ũ| ≤ m(y). Now we will show that m̃ ≥ m(y).
Indeed, if we suppose that it is not true, then there exists a ε0 > 0 such that
m(y) = m̃+ 2ε0. For ε0 there exists a number k0 ∈ Z such that m(y)− 3ε0 =
m̃− ε0 < m(yk0) < m̃− ε0. Thus

(35) |u| ≤ m(yk0) < m(y)− ε0 (∀u ∈ F (yk0)).

On the other hand the mapping F is α-continuous and yk → y and, con-
sequently, there exists uyk0

∈ F (yk0) such that ||uyk0
| − |uy|| < ε0, where

uy ∈ F (y) such that |uy| = m(y), and consequently,

(36) |uyk0
| > m(y)− ε0.

The inequality (35) and (36) are contradictory. The obtained contradiction
proves the required statement. Since the sequence {m(yk)} is bounded and
admits a unique limit point m(y) it converges to m(y). The Lemma is proved.

�

6.1. Quasi-homogeneous systems. Let G ⊆ El, the function f ∈ C(En ×
G,C(En)) is called (Cheban [16, 17]) homogeneous of order m with respect
to variable u ∈ E if the equality f(λu, ω) = λmf(u, ω) takes place for all
λ ≥ 0, u ∈ En and ω ∈ G.

The set-valued dynamical system (X,R+, π) is said to be homogeneous of
order m ∈ R+, if for any x ∈ X, t ∈ R+ and λ > 0 the equality π(t, λx) =
λπ(λm−1t, x) takes place.

Theorem 6.4. (Cheban [13]) Let X be a Banach space. For a set-valued
homogeneous (of order m > 1 ) dynamical system (X,R+, π) the following
assertions are equivalent:

(1) the trivial motion of (X,R+, π) is asymptotically stable;
(2) there exist positive numbers a and b such that

(37) |π(t, x)| ≤ (a|x|1−m + bt)
1

1−m

for all t ≥ 0 and x ∈ X.
Theorem 6.5. For a set-valued homogeneous (of order m > 1 ) dynamical
system (X,R+, π) and th mapping π : R+ ×X → C(X) is α-continuous, then
the following assertions are equivalent:

(1) there exist positive numbers a and b such that (37) holds for all t ≥ 0
and x ∈ X;

(2) for all k > m− 1 there exists a continuous function V : X → R+ with
the following properties:
2.1. V (λx) = λk−m+1V (x) for all λ ≥ 0 and x ∈ X;
2.2. α|x|k−m+1 ≤ V (x) ≤ β|x|k−m+1 for all x ∈ X, where α and β are

certain positive numbers;
2.3. V ′

π(x) ≤ −|x|k for all x ∈ X, where V ′
π(x) = d

dt
V (π(t, x)) |t=0 for

T = R+ and V ′
π(x) = V (π(1, x))− V (x) for T = Z+.



19

Proof. We will show that from 1. results 2.. Let a and b are positive numbers,
such that the inequality (37) takes place, then for each k > m − 1 we define
the function V : X → R+ by equality

(38) V (x) =

∫ +∞

0

|π(t, x)|kdt.

First of all we note that by equality (38) the function V : X → R+ is defined
correctly because the integral, which figures in the right hand side of equa-
tion (38) is convergent, moreover it is uniformly convergent w.r.t. x on every
bounded set from X. Indeed, since

(39) |π(t, x)|k ≤ (a|x|1−m + bt)
k

1−m ,

(40)

∫ +∞

0

|(a|x|1−m + bt)
k

1−mdt =
1

b

∫ +∞

a|x|1−m

τ
k

1−mdτ

and k
1−m

< −1, then the integral (40) is convergent, moreover the convergence
is uniform on every bounded set from X.

We will show that the function V , defined by equality (38), is our unknown
function. Since the mapping π : R+ × X → C(X) is α-continuous according
to Lemma 6.3 the function m : (t, x) → |π(t, x)| is continuous. The continuity
of V results from the continuity of m and uniform convergence of integral (40)
w.r.t. x on every bounded set from X. We now note that

V (λx) =

∫ +∞

0

|π(t, λx)|kdt =

∫ +∞

0

λk|π(λm−1t, x)|kdt

= λk−m+1

∫ +∞

0

|π(τ, x)|kdt = λk−m+1V (x)

for all λ > 0 and x ∈ X. It is not difficult to show that the function V is
positive definite. Since

(41) V (x) =

∫ +∞

0

|π(t, x)|k, dt = 0

if and only if |π(t, x)| = 0 for all t ∈ R+ and, consequently, x = 0. Let now

α := min
|x|=1

V (x) and β := max
|x|=1

V (x),

then from the condition 2.1 follow that α|x|k−m+1 ≤ V (x) ≤ β|x|k−m+1 for all
x ∈ X.

Finally, we note that

(42)
d

dt
V (ϕx(t)) ≤ −|ϕx(t)|k

for all ϕ ∈ Φx and, consequently, V ′
π(x) ≤ −|x|k for all x ∈ X.
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We will prove now that from condition 2. results 1.. In fact, let ϕ ∈ Φx we
denote by ψ(t) = V (ϕx(t)), then in virtue of the condition 2.3 we have

(43) ψ′(t) ≤ −|ϕx(t)|k

for all t ≥ 0.
From the condition 2.2 we have |ϕx(t)|k−m+1 ≥ 1

β
ψ(t) and, consequently,

ψ′(t) ≤ − 1

β
k

k−m+1

ψ(t)
k

k−m+1

for all t ≥ 0. If x 6= 0, then ψ(t) = V (ϕx(t)) > 0 for all t ≥ 0,therefore

(44) V (ϕx(t)) ≤ (V − m−1
k−m+1 (x) +

m− 1

k −m+ 1

1

β
k

k−m+1

t)
1

1−m

for all x ∈ X and t ≥ 0.
From the condition 2.2 and the inequality (44) results that |π(t, x)| ≤

(a|x|1−m +bt)
1

1−m for all x ∈ X and t ≥ 0, where

a = (αβ)
m−1

k−m+1 and b = (α)
m−1

k−m+1 (β)
k

k−m+1
m− 1

k −m+ 1
.

The theorem is completely proved. �

Corollary 6.6. Let X be a Banach space. For a set-valued homogeneous
(of order m > 1 ) dynamical system (X,R+, π) the following assertions are
equivalent:

(1) the trivial motion of the dynamical system (X,R+, π) is uniform as-
ymptotic stable;

(2) there exist positive numbers a and b such that |π(t, x)| ≤ (a|x|1−m +

bt)
1

1−m for all t ∈ R+ and x ∈ X;
(3) for every number k > m − 1 there exists a continuous function V :

X → R+ which possesses properties 2.1-2.3 from the theorem 6.5.

Proof. This assertion directly follows from Theorems 6.4 and 6.5. �

Theorem 6.7. Let f ∈ C1(En, En), Φ ∈ C1(G),Ω ⊆ G be a compact invari-
ant set of dynamical system

(45) ω′ = Φ(ω),

the function f be homogeneous (of order m > 1) and a zero solution of equation

(46) u′ = f(u)

be uniformly asymptotically stable. If F ∈ C(En ×G,En) and

|F (u, ω)| ≤ c|u|m

for all |u| ≥ r and ω ∈ Ω, where r and c are certain positive numbers, then
there exists a positive number λ0 such that for all λ ∈ Λ = [−λ0, λ0] the
following assertions take place:
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(1) a set Iλ
ω = {u ∈ En | sup{|ϕλ

(u,ω)(t)| : t ∈ R} < +∞} is not empty,

compact and connected for each ω ∈ Ω, where ϕλ
(u,ω)(t) is a solution

(generally speaking not unique) of equation

(47) u′ = f(u) + λF (u, ωt)

satisfying the initial condition ϕλ
(u,ω)(0) = u;

(2) ϕλ(t, I
λ
ω , ω) = Iλ

σ(t,ω) for all t ∈ R+ and ω ∈ Ω, where ϕλ is a set-valued

cocycle, generated by (47);
(3) the set Iλ =

⋃
{Iλ

ω | ω ∈ Ω} is compact and connected;
(4) the equalities

(48) lim
t→+∞

β(ϕλ(t,M, ω−t), I
λ
ω) = 0

and
lim

t→+∞
β(ϕλ(t,M, ω), Iλ) = 0

take place for all λ ∈ Λ, ω ∈ Ω and bounded subset M ⊆ E.
(5) the set

⋃
{Iλ | λ ∈ Λ} is compact;

(6) the equality

lim
λ→0

sup
ω∈Ω

β(Iλ
ω , 0) = 0

takes place.

Proof. Under the condition of Theorem 6.7 according to Theorems 6.5 and
5.7.2 from Cheban [19] by the equality

V (u) =

∫ +∞

0

|π(t, u)|kdt,

where π(t, u) is a solution of equation (46) with condition π(0, u) = u, is defined
a continuously differentiable function V : E → R+, verifying the following
conditions:

a. V (µu) = µk−m+1V (u) for all µ ≥ 0 and u ∈ En;
b. there exist positive numbers α and β such that α|u|k−m+1 ≤ V (u) ≤
β|u|k−m+1 for all u ∈ En;

c. V ′(u) = DV (u)f(u) = −|u|k for all u ∈ En, where DV (u) is a deriva-
tive of Frechet of function V in the point u.

Let us define a function V : X → R+ (X = En × Ω) in the following way:
V(u, ω) = V (u) for all (u, ω) ∈ X. Note that

V′(u, ω) =
d

dt
V (ϕλ

(u,ω)(t))|t=0 = −|u|k +DV (u)λF (u, ω)

and there exists λ0 > 0 such that the inequality

V′(u, ω) ≤ −ν|u|k

takes place for all ω ∈ Ω and |u| ≥ r, where ν = 1−λ0cL > 0 ( see the theorem
5.6.1 and the lemma 5.7.1 from Cheban [19]).
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For finishing the proof of the theorem it is sufficient to refer to Theorem
4.16 and Lemma 4.6. �

Theorem 6.8. Let f ∈ C1(En×El, En),Φ ∈ C1(El) and Ω ⊆ G be a compact
invariant set of dynamical system (45), the function f be homogeneous (of
order m = 1) w.r.t. variable u ∈ E and a zero solution of equation

(49) u′ = f(u, ωt) (ω ∈ Ω)

be uniformly asymptotically stable. If |F (u, ω)| ≤ c|u| for all |u| ≥ r and
ω ∈ Ω, where r and c are certain positive numbers, then there exists a positive
number λ0 such that for all λ ∈ Λ = [−λ0, λ0] the following assertions take
place:

(1) a set Iλ
ω = {u ∈ E | sup{|ϕλ

(u,ω)(t)| : t ∈ R} < +∞} is not empty,

compact and connected for each ω ∈ Ω, where ϕλ
(u,ω)(t) is a solution

(generally speaking not unique) of equation

(50) u′ = f(u, ωt) + λF (u, ωt)

verifying the initial condition ϕλ
(u,ω)(0) = u;

(2) ϕλ(t, I
λ
ω , ω) = Iλ

σ(t,ω) for all t ∈ R+ and ω ∈ Ω, where ϕλ is a set-valued

cocycle, generated by the equation (50);
(3) a set Iλ =

⋃
{Iλ

ω | ω ∈ Ω} is compact and connected;
(4) the equalities

lim
t→+∞

β(ϕλ(t,M, ω−t), Iλ
ω) = 0

and

(51) lim
t→+∞

β(ϕλ(t,M, ω), Iλ) = 0

take place for all λ ∈ Λ, ω ∈ Ω and bounded subset M ⊆ E.
(5) the set

⋃
{Iλ | λ ∈ Λ} is precompact;

(6) the equality

lim
λ→0

sup
ω∈Ω

β(Iλ
ω , 0) = 0

takes place.

Proof. The proof of this assertion is similar to the proof of Theorem 6.7 and
it is based on Theorem 5.7.3 from Cheban [19]. �

6.2. Dissipative differential inclusions.

Theorem 6.9. Let f ∈ C1(En × Ω, En) and there exist positive numbers a, b
and p ≥ 2 such that

(52) Re〈f(u, ω), u〉 ≤ −a|u|p + b

for all (u, ω) ∈ En × Ω, where 〈·, ·〉 is a scalar product in the space En, then
the equation (49) (the set-valued cocycle ϕ, generated by the inclusion (49))
admits a compact global attractor {I0

ω | ω ∈ Ω}.
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Proof. Consider the function V : En × Ω → R+, defined by the equality
V (u, ω) := 1

2
|u|2, then it easy to verify that under the conditions of Theorem

6.9 we have
dV (ϕ(u,ω)(t))

dt
|t=o ≤ −a|u|p + b

for all (u, ω) ∈ En × Ω. To finish the proof of the theorem it is sufficient to
apply Theorem 2.3. �

Theorem 6.10. Let f ∈ C(En × Ω, C(En)) and there exist positive numbers
a, b and p ≥ 2 such that the inequality (52) holds. Suppose that F ∈ C(En ×
Ω, C(En)) and there exist positive numbers A and B such that

(53) Re〈F (u, ω), u〉 ≤ A|u|p +B

for all (u, ω) ∈ En × Ω, then there exists a positive number λ0 <
a
A

such that
for all λ ∈ Λ = [−λ0, λ0] the following assertions take place:

(1) a set Iλ
ω = {u ∈ En | sup{|ϕλ

(u,ω)(t)| : t ∈ R} < +∞} is not empty,

compact and connected for each ω ∈ Ω, where ϕλ
(u,ω)(t) is a solution of

inclusion

(54) u′ ∈ f(u, ωt) + λF (u, ωt)

verifying the initial condition ϕλ
(u,ω)(0) = u;

(2) ϕλ(t, I
λ
ω , ω) = Iλ

σ(t,ω) for all t ∈ R+ and ω ∈ Ω, where ϕλ is a set-valued

cocycle, generated by the inclusion (54);
(3) a set Iλ =

⋃
{Iλ

ω | ω ∈ Ω} is compact and connected;
(4) the equalities

lim
t→+∞

β(ϕλ(t,M, ω−t), Iλ
ω) = 0

and

(55) lim
t→+∞

β(ϕλ(t,M, ω), Iλ) = 0

take place for all λ ∈ Λ, ω ∈ Ω and bounded subset M ⊆ E.
(5) the set

⋃
{Iλ | λ ∈ Λ} is compact;

(6) the equality

lim
λ→0

sup
ω∈Ω

β(Iλ
ω , 0) = 0

takes place.

Proof. Consider the function V : En × Ω → R+, defined by the equality
V (u, ω) := 1

2
|u|2, then it easy to verify that under the conditions of Theorem

6.10 we have

dV (ϕλ
(u,ω)(t))

dt
|t=o ≤ |u|p(−a+ λ0A+

b+ ε0B

|u|p
)

for all (u, ω) ∈ En
r × Ω, where r > r0 := b+ε0B

a−ε0A
. To finish the proof of the

theorem it is sufficient to apply Theorem 4.16. �
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