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ABSTRACT. This article is devoted to study of the compact global atrractors of
V-momotone nonautonomous dynamical systems.We give a description of the
structure of of compact global attractors of this classe of systems. Several ap-
plications of general results for different class of differential equations (ODEs,
ODEs with impulse, some class of evolutionary partial differential equations)
are given.

1. INTRODUCTION

The differential equations with monotone right hand side are one of the most studied
class of nonlinear equations (see, for example, [4], [16], [20], [24], [25] and the
literature quoted there).

By many authors it was studied the problem of existence of almost periodic solutions
of monotone nonlinear almost periodic equation (see [12], [13], [15], [18], [19], [24],
[25] and others).

Purpose of our article is the study of global attractors of general V- monotone
nonautonomous dynamical systems and their applications to different class of dif-
ferential equations (ODEs, ODEs with impulse, some class of evolution partial
differential equations).

For autonomous equations analogical problem was studied before (see, for example,
[2], [14],[23]),but for nonautonomous dynamical system this problem is considered
in our paper for the first time.

2. NONAUTONOMOUS DYNAMICAL SYSTEMS AND SKEW-PRODUCT FLOWS
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Definition 2.1. Let © = {6; }+cr be a group of mappings of £ into ilself, that is a
continuous ttme autonomous dynamical system on a metric space 2, and let B be a
Banach space. Consider a continuous mapping ¢ : Rt x Q x B — B satisfying the
properties
e(0,w,) = idp p(t+ 1w, 2) = @(s,bw, p(t,w, v))

foralls,t e RT, w e Q and x € B. Such mapping ¢ ( or more explicit (B, ¢, (2, R, 0)))
is called [1], [22] a continuous cocycle or nonautonomous dynamical system (NDS)
on 2 x B.

Example 2.2. As an example, consider a parameterized differential equation

Ccll—f =F(bw,z) (weQ)

on a Banach space B with @ = C(R x B/ B). Define 6; : Q@ = Q by tw(-,-) =
w(t+-,-) for each t € R and interpret p(t,w, ) as the solution of the initial value
problem

(1) %x(t) = F(bw,z(t)), «(0)=ux.

Under appropriate assumptions on F : QxB — B (or even F' : R xB — B with w(t)
instead of Oyw in (1 ) to ensure forwards existence and uniqueness, (0, @) generates
a nonautonomous dynamical system on £ x BB.

3. ATTRACTORS FOR NONAUTONOMOUS DYNAMICAL SYSTEMS

The usual concept of a global attractor for the autonomous semi-dynamical system
7 on the state space X = €2 x B can be used here.

Definition 3.1. [t is the maximal nonempty compact subset A of X =Q x B which
18 w-invariant, that is

m(t,A)=A foral teRT
and attracts all compact subsets of X = Q2 x B, that is
tlim B(n(t,D),A) =0 for all D e K(X),
—00

where C(X) is the space of all nonempty compact subsets of X and 3 is the Haus-
dorff semi-metric on C(X).

4. (GLOBAL ATTRACTORS OF V- MONOTONE NDS.

Let © be a compact topological space , (E, h, Q) is locally trivial Banach stratifica-
tion [3] and |- | is the norm on (), h, 1) co-ordinate with the metric p on E (that
is p(w1, 22) = vy — 22| for any z1, ®2 € X such that h(x1) = h(x2) ).

Definition 4.1. Let us remember [8],[5],[6], that the triplet ((E, Ty, ), (2, Ta, ©), h)
is called by a (general) nonautonomous dynamical system, if h : E — Q is a ho-
momorphism of the dynamical system (E, Ty, m) on (2, Te,0) , where Ty and T2 (
Ty C Ta) are two subsemigroups of group T.
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Example 4.2. Let Ty be a subsemigroup of T, (2, T2, ©) be a dynamical system on
Q and (B, ¢, (2, T9,0)) be a cocycle over (Q, Tq, @) with the fiber B, X := Q x B,
Ty C Ty be a subsemigroup of Ta, (X, Ty, ) be a semi-group dynamical system
on X defined by the equality m = (p,0) (i.e. w(t,(w,u)) = (¢(t,w,u), bw) for all
t €Ty and (w,u) € X ), then the triple (X, Ty, 7), (2, To, @), k) (h = pro) will be
a nonautonomous dynamacal system, generated by cocycle .

Definition 4.3. The cocycle (B, ¢, (2, T, 0)) we will define by a compact dissipa-
tive one , if there 1s a nonempty compact K C W such that

(2) Jim sup{B(e(t,w) M K) [ we @} =0

for any M € C(B), where o(t,w) := p(t,w,-).

If M C 1B, then suppose

for every w € €.

Definition 4.4. We will say , that the space X possesses the (S)-property, if for
any compact K C X there is a connected set M C X such that K C M.

Theorem 4.5. [9] Let Q be a compact metric space, (B, ¢, (Q,T,0)) be a compact
dissipative cocycle and K is the nonempty compact, figuring in the equality (2) ,
then :

1 I, = Qu(K) #£0, is compact, I, C K and limy_ 400 B((t,6_w) K, 1,) =0
for every w € Q;

2. p(t,w)ly = Ip,w for allw € Q and t € TT;
3. limys oo Ble(t, 0 )M, 1,) =0 for all M € C(B) andw € Q2 ;

4. limyqeosup{Ble(t,w_ )M, I) | w € Q } = 0 for any M € C(B), where
I=U{l, |lwe};

5. I, = prily, for all w € Q, where J is a Levinson centre of (X, TT x), and,
hence, I = priJ;

6. the set I is compact;
7. the set I is connected if one of the next two conditions is fulfilled :
a. TT =RT and the spaces B and ) are connected;
b. Tt =Z% and the space Q x B possesses the (S)-property or it is connected
and locally connected.

Definition 4.6. A nonautonomous dynamical system {(X, T+ x), (2, T,0),h) is
said to be uniformly stable in the posilive direction on compacts of X [7] if, for
arbitrarye > 0 and K C X, thereis § = §(e, K) > 0 such that inequality p(x1, x2) <
§ (h(zq1) = h(x2)) implies that p(n'zy, 7wlas) <e fort € TT.

Definition 4.7. A set M C X is called minimal with respect to a dynamical system
(X, T+, ) if it is nonempty, closed and invariant and if no proper subset of M has
these properties.
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Definition 4.8. Denote by X x X = {(z1,22) € X x X | h(z1) = h(z2) }. If there
exists the function V : X x X — Ry with the following properties:

a. V 1is continuous.
b. V is positive defined, i.e. V(x1,22) =0 if and only if x1 = x4.

c. V(zit,zat) <V (wy,z2) for all (z1,79) € XxX andt € Ty,
then the nonautonomous dynamical system (X, TT x), (2, T,0),h) is called (see
[12], [13] and [19], [25]) V - monotone.

Theorem 4.9. Every V - monotone compact dissipative nonautonomous dynami-
cal system ((X, T+, ), (Q,T,0),h) is uniformly stable in the positive direction on
compacts from X.

Corollary 4.10. Let (X, T+, 7),(Q,T,0),h) be a V - monotone compact dissipa-
tive nonautonomous dynamical system and Q be minimal, then:

1. J s uniformly orbitally stable in the positive direction, i.e., for e > 0 there is
8(g) > 0 such that the inequality p(z, Jy(r)) < 6 implies that p(r'x, Jy(rip)) < € for
t>0;

2. J 1s an attractor of compact sets from X, v.e., fore > 0 and a compact K C X,
there is L(e, K) > 0 such that 7' K,, C B(Jpw,€) forw € Q and t > L(e, K);

3. all motion on J can be continued to the left and J is bilaterally distal;

4. Ju=Xu(J forw € Q, is a connected set if X, is connected, and for distinct
wy and wy the sets J,, and J,, are homeomorphic;

5. J is formed of recurrent trajectories, and two arbitrary points x1, 22 € J, (w €
Q) are mutually recurrent.

Theorem 4.11. Let {(X,T* x), (2, T,0),h) be a V - monotone compact dissipa-
tive nonautonomous dynamical system, Q be minimal and J be its Levinson center,
then

(3) V(l‘lt,l‘zt) = V(l‘l,l‘z)
for all #1, 25 € J such that h(x1) = h(z2).

Corollary 4.12. Under the conditions of Theorem 4.11 if the nonautonomous dy-
namical system (X, T ), (B, T,0),h) is strict monotone, t.e. V(xit,zat) <
V(zy,29) for allt > 0 and (z1,22) € XxX (x1 # 3), then J, = J( X, consists
a single point for all w € €.

Theorem 4.13. Let (X, T+, ), (2, T,0),h) be a V—monotone compact dissipa-
tive nonautonomous dynamical system with compact minimal base Q and J be its
Levinson'‘s centre, then for every point x € Xy there exists a unique recurrent point
p € Jy, such that

(4) t_l}g_noo plat,pt) =0,

1.e. every trajectory of this system s asymptotic recurrent.

Corollary 4.14. Under the conditions of Theorem 4.13 the following assertions
hold:



a. w—limit set w, of every point x € X is a compact minimal set.

b. if z1,22 € Xy (w € Q) then wy, = wy, or wy, [wg, = 0.

5. ON THE STRUCTURE OF LEVINSON CENTER OF V-MONOTONE NDS wITH
MINIMAL BASE

Definition 5.1. (X, p) is called [18] a metric space with segments if for any xq, x4 €
X and o € [0, 1], the intersection of Blx1, ar] (the closed ball centered at x with ra-
dius ar, where v = p(x1,x2)) and Blza, (1 —a)r] has a unique element S(o, 21, x2).

Definition 5.2. The metric space (X, p) is called [18] strict-conver if (X, p) is a
metric space with segments, and for any x1, 22,23 € X, ®2 # 23, and a € (0,1),
the inequality p(xy, S(a, x2,x3)) < max{p(xy1, za2), p(x1,23)} holds.

Definition 5.3. Let X be a strict metric-convex space. A subset M of X is said
to be metric-conver if S(a, @1, 22) € M for any a € (0,1) and x1, 22 € M.

We note that every convex closed subset X of the Hilbert space H equipped with
metric p(xy, £2) = |#1 — ®2| is strictly metric-convex.

Let # € X denote by ®, the family of all entire trajectory of dynamical system
(X, T+, 7) passing through point = for ¢t = 0, i.e. ¥ € ®, if and only if v : T — X
is a continuous mapping with the properties: v(0) = z and w'y(r) = y(¢ + 7) for
allt ¢ Tt and 7 € T.

Theorem 5.4. Let (X, T+ 7),(Q,T,0),h) be a V - monotone compact dissipa-
tive nonautonomous dynamacal system, J is its Levinson center and the following
conditions hold:

1 V(zy,23) = V(zg, 1) for all (z1,22) € XxX.

2. V(xy,x2) < V(xr,23) + V(xs,22) for all #1, 22,235 € X with condition
h(l‘l) = h(l‘z) = h(l‘g)

3. the space (X, V,,) is strict metric-convex for allw € Q, where X, = h™1(w) =
{reXh(z)=w} (weQ) and V, = Vi]x, xx, -
Ifye, €@y, (1 =1,2)and x1, 22 € 1, (w € Q), then the functiony : T = X (y(t) =
Sla, vz, (1), 7z,(t)) for all t € T) defines an antier trajectory of dynamical system
(X, T+, 7).

We denote by K = {a € C(T4,Ry) | a(0) =0, a is strict increasing}.

Theorem 5.5. Under the conditions of Theorem 5.4 if in additionally the nonau-

tonomous dynamical system (X, TT x), (2, T,0), h) is bounded k - dissipative and

there exists a function a € K with propertyt liin a(t) = +oo such that a(p(xy, x2)) <
—4o0

V(zy1,®9) for all (z1,22) € XxX, then J, will be metric-conver for all w € Q,
where J, = J [\ Xy and J Levinson center of (X, TT ).

6. ALMOST PERIODIC SOLUTIONS OF V' - MONOTONE ALMOST PERIODIC
DISSIPATIVE SYSTEMS.
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Definition 6.1. Let (X,p) be a metric space. A function ¢ : T — X is called
almost periodic (in the sense of Bohr) if for every e > 0 there exists a relatively
dense subset A. of T such that

p(o(t+71),0(t) <e
forallt €T and T € A..

Definition 6.2. A point x € X is said to be almost periodic if there is an entire
tragectory v, € @, such that the function v, : T — X is almost periodic.

Definition 6.3. The compact invariant set M of nonautonomous dynamical sys-

tem (X, Ty, m),(Q,T,0),h) is called [19],[5] distal on the invariant set M in

the negative direction if iI%Tf Ve, (), ¥e, (8)) > 0 for all @1,20 € M(h(z1) =
tET _

h(z2) and &1 # x2) and vy, € O, (i = 1,2), where O, is a set of all entire trajectory
of (X, T4, ) passing through point © € X.

Lemma 6.4. [19] Let Q be a compact minimal set and M C X be a compact invari-
ant set of (X, TT, m), if nonautonomous dynamical system (X, T* x),(Q, T,0), h)
is distal on M in negative direction, then the mapping w — M, = M (X, is
continuous with respect to Hausdorff metric.

Lemma 6.5. Let M C X be a compact invariant set of (X, TT, x), if nonau-
tonomous dynamical system ((X, T+, ), (Q, T,0), h) is uniformly stable in the pos-
itive direction on compacts from X, then (X, TT x), (2, T,©),h) is distal on the
wmvariant set M in the negative direction .

Corollary 6.6. Under the conditions of Lemma 6.5 if 2 is a compact minimal set,
then the mapping w — J,, 1s continuous with respect to Hausdorff metric.

Lemma 6.7. Let (M, p) be a compact, strict metric-conver space and E be a com-
pact subsemigroup of isometries of semigroup MM (i.e. E C MM and p(€xy,£x5) =
pley, x2) for all 1,22 € M ). Then there exists a common fized point 2 € M of E,
ie. £(&) =7 forall{ € E.

Theorem 6.8. Let (X, T+, ), (Q,T,0),h) be a V - monotone bounded k - dissi-
pative NDS, J 1s its Levinson center and the following conditions hold:

1 V(zy,23) = V(zg, 1) for all (z1,22) € XxX.

2. V(xy,x2) < V(xr,23) + V(xs,22) for all #1, 22,235 € X with condition
h(l‘l) = h(l‘z) = h(l‘g)

3. the space (X, V,,) is strict metric-convex for allw € Q, where X, = h™1(w) =
{teX |hz)=w} (weQ) and V, = V|x_ xx,-

Then the set-valued mapping w — J,, admits at least one continuous wnvariant
section, i.e. there exists a continuous mapping v : Q — J with the properties:

h(v(w)) =w and v(0(t,y)) = 7(t,v(w)) for allt € T and w € Q.

Corollary 6.9. Under the conditions of Theorem 6.8 the Levinson center of dy-
namical system (X, Ty, m) contains at least one stationary (t (7 > 0) - periodic,
quasiperiodic, almost periodic) point, if the minimal set Q0 consists a stationary
(r (r > 0) - periodic, quasiperiodic, almost periodic) point.



7. APPLICATIONS

7.1. Finite-dimensional systems. Denote by R” a real n—dimensional Euclidean
space with the scalar product (, ) and the norm |-|, generated by scalar product. Let
[R"] be a space of all the linear mapping A : R™ — R"™, equipped with operational
norm.

Theorem 7.1. Let Q be a compact minimal set, F € C(QxR? R™), W € C(Q,[R"])
and the following conditions hold:

1. The matriz-function W is positively defined, i.e. (W(w)u,u) € R for all
w € Q, ueR™ and there exists a positive constant a such that (W (w)u,u) > alu)?
for allw € Q and u € R™.

2. The function t — W (0,w) is differentiable for every w € Q and W(w) €
C(Q,[R"]), where W(w) = %W(Gtw)h:o.

3. <W(w)(u —v) + Ww)(Fw,u) — Flw,v)),u —v) <0 for all w € Q and
u,veR™

4. There exist a positive constant v and the function ¢ : [r,+00) = (0,4+00) such

that (W (w)u + W (w)F(w,u),u) < —c(|u]) for all |u] > r.
Then the equation
(5) u' = F(Ow, u)

generales a cocycle ¢ on R™ which admits a compact global attractor I = {I, | w €
Q} with the following properties:

a. I, 1s a nonvoid, compact and convexr subset of R™ for every w € €.

b I = {l | w € Q} is connected.

c. The mapping w — 1, is continuous with respect to Hausdorff metric.

d I ={lL, |weQ} isinvariant, i.e. p(t,w,,) = o, for allw € Q and t € T.
e. t_ljfl_noo Ble(t, 0rw)M,1,) =0 for all M € C(R™) and w € Q ;

f.t li{l_n sup{B(p(t,0w)M,I) | w € Q } =0 for any M € C(R"), where I =
400
Hl |we@}.
g I ={L, | w e} is auniform forward attractor ,i.e.
i 0 st ) ) =0
for any M € C(R"™).

h. The equation (5) admits at least one stationary (T - periodic, quasiperiodic, al-
most periodic) solution, if the point w € §Q is stationary (T - periodic, quasiperiodic,
almost periodic).

Example 7.2. In quality of example which illustrates this theorem we can consider
the following equation

u' = g(u) + f(Ow),
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where f € C(Q,R) and
(u+1)?2  : u< -1
g(u) = 0 ¢ fu<1
—(u—=1)% : u>1.
Example 7.3. We consider the equation
2"+ p(a)a’ + ax = f(Orw),

where p € C(R,R), f € C(Q,R) and a is a positive number. Denote by y =
'+ F(x), where F(z) = fox p(s)ds, then we obtain the system

¥ =y—F(x)
(5 ,
y = —az + f(bw).
Theorem 7.4. Suppose the following conditions hold:
1. p(x) >0 for all x € R.
2. There exist positive numbers v and k such that p(x) > k for all |x| > r.
Then the nonautonomous dynamical system, generated by (6) is compact dissipative

and V— monotone.

7.2. Evolution equations with monotone operators. Let H be a real Hilbert
space with inner product (, ), |-| = m and B be a reflexive Banach space contained
in H algebraically and topologically. Furthermore, let B be dense in H in which
case H can be identified with a subspace of the dual B’ of B and (, ) can be extended
by continuity to B x B.

We consider the initial value problem

(7) u'(t) + Au(t) = f(Ow)

(8) u(0) = u,
where A : B — B is a (generally nonlinear) bounded,
|Aulp < Clulf™ + K,u € Bp > 1,

coercive,
(Au,u) > alull, u € Bya >0,
monotone,
(Aur — Aus, ur — ug) > 0,u1, us € B,

and hemicontinuous (see [20]).

The nonlinear ”elliptic” operator

"9, 0u. . n
Au_—;axiqb(@—xi) imDCR

u=20on JdD,



where D is a bounded domain in R™, ¢(-) is a increasing function satisfying

Ol =0, e’ < &id(&) < CP (for all |¢] > 2),
i=1
provides an example with H = L%(D),B= W, (D), B = W‘l’pl(D), p = 1%'
The following result is established in [20] (Ch.2 and Ch.4). If « € H and f €
C(QB), p = %, then there exists a unique solution ¢ € C'(Ry, H) of (7) and

(8).

We denote by ¢(-,w,u) the unique solutions of (7) and (8). According to [21]
¢(-,w, u) is a continuous cocycle on H.

Theorem 7.5. Suppose that the operator A satisfies the conditions above and the
cocycle @, generated by equation (7), is asymptotic compact, then it admits a com-
pact global attractor I = {1, | w € Q } possessing the following properties:

a. I, 1s a nonvoid, compact and convex subset of H for every w € €.
b. I =\ J{L, | w€Q } is connected.
c. The mapping w — 1, is continuous with respect to Hausdorff metric.

d I ={L |we€ Q} isinvariant, i.e. p(t,w,l,) = s, for dlw € Q and
te Tt

e limyyeo Blo(t, 01 w)M, I,) =0 for all M € C(H) and w € Q2 ;

foolime oo sup{B(e(t, 0w)M, )| w € @ } = 0 for any M € C(H), where
I=l{l, |wen}.

g I ={L, | w e} is auniform forward attractor ,i.e.
i S0 13, ) =0
forany M € C(H).

h. The equation (7) admits at least one stationary (T - periodic, quasiperiodic, al-
most periodic) solution, if the point w € §Q is stationary (T - periodic, quasiperiodic,
almost periodic).

Remark 7.6. If the injection of B into H s compact, then the cocycle ¢ generated
by equation (7), evidently, is asymptotic compact.

Example 7.7. A typical example of equation of type (7) is the equation

9 =~ 0 Ju
(9) EU = ZZ:; 8x2¢(8x2) +f(9tw), u|6D =0

with "nonlinear Laplacian” Au =3 ._, 6(2 (/)(5’7“), where ¢(-) is a increasing func-
tion satisfying the condition

cléf <D &o(&) < O

i=1
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Jor all |¢] > 2 and ¢|j_11] = 0, provides an example with H = L*(D),B =
Wyt(D), B = W‘l’pl(D),p’ = 1%' It is possible to verify (see, for example,
[20],[4] and [2]) that the "nonlinear Laplacian” verifies all the conditions of Theo-
rem 7.5 and, consequently, (9) admits a compact global attractors with the properties
a.-h.. We note that the attractor of equation (9) is not trivial, i.e. the set I, is not

a single point set at least for certain w € €.

Remark 7.8. If the operator A = 7, % (5’7“) is uniformly elliptic, i.e. c|&|F <

St &ip(&) < CIEP (for allé € R™), then the set I, is a single point set for allw €
Q ( for autonomous system see (23], Ch.II1}, because in this case the nonautonomous
dynamical system generated by equation (9) is strict monotone.
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