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Abstract. This article is devoted to study of the compact global atrractors of
V-momotone nonautonomous dynamical systems.We give a description of the
structure of of compact global attractors of this classe of systems. Several ap-
plications of general results for di�erent class of di�erential equations (ODEs,
ODEs with impulse, some class of evolutionary partial di�erential equations)
are given.

1. Introduction

The di�erential equations with monotone right hand side are one of the most studied
class of nonlinear equations (see, for example, [4], [16], [20], [24], [25] and the
literature quoted there).

By many authors it was studied the problem of existence of almost periodic solutions
of monotone nonlinear almost periodic equation (see [12], [13], [15], [18], [19], [24],
[25] and others).

Purpose of our article is the study of global attractors of general V - monotone
nonautonomous dynamical systems and their applications to di�erent class of dif-
ferential equations (ODEs, ODEs with impulse, some class of evolution partial
di�erential equations).

For autonomous equations analogical problem was studied before (see, for example,
[2], [14],[23]),but for nonautonomous dynamical system this problem is considered
in our paper for the �rst time.

2. Nonautonomous dynamical systems and skew-product flows
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De�nition 2.1. Let � = f�tgt2Rbe a group of mappings of 
 into itself, that is a
continuous time autonomous dynamical system on a metric space 
, and let B be a
Banach space. Consider a continuous mapping ' : R+� 
� B ! B satisfying the
properties

'(0; !; �) = idB '(t+ �; !; x) = '(s; �t!; '(t; !; x))

for all s; t 2 R+, ! 2 
 and x 2 B . Such mapping ' ( or more explicit hB ; '; (
;R;�)i)
is called [1], [22] a continuous cocycle or nonautonomous dynamical system (NDS)
on 
� B .

Example 2.2. As an example, consider a parameterized di�erential equation

dx

dt
= F (�t!; x) (! 2 
)

on a Banach space B with 
 = C(R� B ; B ). De�ne �t : 
 ! 
 by �t!(�; �) =
!(t+ �; �) for each t 2 R and interpret '(t; !; x) as the solution of the initial value
problem

d

dt
x(t) = F (�t!; x(t)); x(0) = x:(1)

Under appropriate assumptions on F : 
�B ! B (or even F : R�B ! B with !(t)
instead of �t! in (1 ) to ensure forwards existence and uniqueness, (�; ') generates
a nonautonomous dynamical system on 
� B .

3. Attractors for nonautonomous dynamical systems

The usual concept of a global attractor for the autonomous semi-dynamical system
� on the state space X = 
� B can be used here.

De�nition 3.1. It is the maximal nonempty compact subset A of X =
�B which
is �-invariant, that is

�(t;A) = A for all t 2 R+;

and attracts all compact subsets of X = 
� B , that is

lim
t!1

� (�(t;D);A) = 0 for all D 2 K(X);

where C(X) is the space of all nonempty compact subsets of X and � is the Haus-
dor� semi-metric on C(X).

4. Global attractors of V - monotone NDS.

Let 
 be a compact topological space , (E; h;
) is locally trivial Banach strati�ca-
tion [3] and j � j is the norm on (E; h;
) co-ordinate with the metric � on E (that
is �(x1; x2) = jx1 � x2j for any x1; x2 2 X such that h(x1) = h(x2) ).

De�nition 4.1. Let us remember [8],[5],[6], that the triplet h(E;T1; �); (
;T2;�); hi
is called by a (general) nonautonomous dynamical system, if h : E ! 
 is a ho-
momorphism of the dynamical system (E;T1; �) on (
;T2;�) , where T1 and T2 (
T1 �T2) are two subsemigroups of group T.
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Example 4.2. Let T2 be a subsemigroup of T, (
;T2;�) be a dynamical system on

 and hB ; '; (
;T2;�)i be a cocycle over (
;T2;�) with the �ber B , X := 
 � B ,
T1 � T2 be a subsemigroup of T2, (X;T1; �) be a semi-group dynamical system
on X de�ned by the equality � = ('; �) (i.e. �(t; (!; u)) := ('(t; !; u); �t!) for all
t 2 T1 and (!; u) 2 X), then the triple h(X;T1; �); (
;T2;�); hi (h = pr2) will be
a nonautonomous dynamical system, generated by cocycle '.

De�nition 4.3. The cocycle hB ; '; (
;T;�)i we will de�ne by a compact dissipa-
tive one , if there is a nonempty compact K � W such that

lim
t!+1

supf�('(t; !)M;K) j ! 2 
 g = 0(2)

for any M 2 C(B ), where '(t; !) := '(t; !; �).

If M � B , then suppose


!(M ) =
\
t�0

[
��t

'(�; ���!;M )

for every ! 2 
.

De�nition 4.4. We will say , that the space X possesses the (S)-property, if for
any compact K � X there is a connected set M � X such that K �M .

Theorem 4.5. [9] Let 
 be a compact metric space, hB ; '; (
;T;�)i be a compact
dissipative cocycle and K is the nonempty compact, �guring in the equality (2) ,
then :

1. I! = 
!(K) 6= ;, is compact, I! � K and limt!+1 �('(t; ��t!)K; I!) = 0
for every ! 2 
;

2. '(t; !)I! = I�t! for all ! 2 
 and t 2T+;

3. limt!+1 �('(t; ��t)M; I!) = 0 for all M 2 C(B) and ! 2 
 ;

4. limt!+1 supf�('(t; !�t)M; I) j ! 2 
 g = 0 for any M 2 C(B ), where
I = [fI! j ! 2 
 g;

5. I! = pr1I! for all ! 2 
, where J is a Levinson centre of (X;T+; �), and,
hence, I = pr1J ;

6. the set I is compact;

7. the set I is connected if one of the next two conditions is ful�lled :

a. T+ = R+ and the spaces B and 
 are connected;

b. T+ =Z+ and the space 
 � B possesses the (S)-property or it is connected
and locally connected.

De�nition 4.6. A nonautonomous dynamical system h(X;T+; �); (
;T;�); hi is
said to be uniformly stable in the positive direction on compacts of X [7] if, for
arbitrary " > 0 and K � X, there is � = �(";K) > 0 such that inequality �(x1; x2) <
� (h(x1) = h(x2)) implies that �(�tx1; �tx2) < " for t 2T+.

De�nition 4.7. A setM � X is called minimal with respect to a dynamical system
(X;T+; �) if it is nonempty, closed and invariant and if no proper subset of M has
these properties.
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De�nition 4.8. Denote by X _�X = f(x1; x2) 2 X �X j h(x1) = h(x2) g. If there
exists the function V : X _�X ! R+ with the following properties:

a. V is continuous.

b. V is positive de�ned, i.e. V (x1; x2) = 0 if and only if x1 = x2.

c. V (x1t; x2t) � V (x1; x2) for all (x1; x2) 2 X _�X and t 2T+,
then the nonautonomous dynamical system h(X;T+; �); (
;T;�); hi is called (see
[12], [13] and [19], [25]) V - monotone.

Theorem 4.9. Every V - monotone compact dissipative nonautonomous dynami-
cal system h(X;T+; �); (
;T;�); hi is uniformly stable in the positive direction on
compacts from X.

Corollary 4.10. Let h(X;T+; �); (
;T;�); hi be a V - monotone compact dissipa-
tive nonautonomous dynamical system and 
 be minimal, then:

1. J is uniformly orbitally stable in the positive direction, i.e., for " > 0 there is
�(") > 0 such that the inequality �(x; Jh(x)) < � implies that �(�tx; Jh(�tx)) < " for
t � 0;

2. J is an attractor of compact sets from X, i.e., for " > 0 and a compact K � X,
there is L(";K) > 0 such that �tK! � ~B(J�t!; ") for ! 2 
 and t � L(";K);

3. all motion on J can be continued to the left and J is bilaterally distal;

4. J! = X!

T
J for ! 2 
, is a connected set if X! is connected, and for distinct

!1 and !2 the sets J!1 and J!2 are homeomorphic;

5. J is formed of recurrent trajectories, and two arbitrary points x1; x2 2 J! (! 2

) are mutually recurrent.

Theorem 4.11. Let h(X;T+; �); (
;T;�); hi be a V - monotone compact dissipa-
tive nonautonomous dynamical system, 
 be minimal and J be its Levinson center,
then

V (x1t; x2t) = V (x1; x2)(3)

for all x1; x2 2 J such that h(x1) = h(x2).

Corollary 4.12. Under the conditions of Theorem 4.11 if the nonautonomous dy-
namical system h(X;T+; �); (B ;T;�); hi is strict monotone, i.e. V (x1t; x2t) <
V (x1; x2) for all t > 0 and (x1; x2) 2 X _�X (x1 6= x2), then J! = J

T
X! consists

a single point for all ! 2 
.

Theorem 4.13. Let h(X;T+; �); (
;T;�); hi be a V�monotone compact dissipa-
tive nonautonomous dynamical system with compact minimal base 
 and J be its
Levinson`s centre, then for every point x 2 Xy there exists a unique recurrent point
p 2 J! such that

lim
t!+1

�(xt; pt) = 0;(4)

i.e. every trajectory of this system is asymptotic recurrent.

Corollary 4.14. Under the conditions of Theorem 4.13 the following assertions
hold:
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a. !�limit set !x of every point x 2 X is a compact minimal set.

b. if x1; x2 2 X! ( ! 2 
) then !x1 = !x2 or !x1
T
!x2 = ;.

5. On the structure of Levinson center of V -monotone NDS with

minimal base

De�nition 5.1. (X; �) is called [18] a metric space with segments if for any x1; x2 2
X and � 2 [0; 1]; the intersection of B[x1; �r] (the closed ball centered at x with ra-
dius �r; where r = �(x1; x2)) and B[x2; (1��)r] has a unique element S(�; x1; x2).

De�nition 5.2. The metric space (X; �) is called [18] strict-convex if (X; �) is a
metric space with segments, and for any x1; x2; x3 2 X; x2 6= x3; and � 2 (0; 1);
the inequality �(x1; S(a; x2; x3)) < maxf�(x1; x2); �(x1; x3)g holds.

De�nition 5.3. Let X be a strict metric-convex space. A subset M of X is said
to be metric-convex if S(�; x1; x2) 2M for any � 2 (0; 1) and x1; x2 2M .

We note that every convex closed subset X of the Hilbert space H equipped with
metric �(x1; x2) = jx1 � x2j is strictly metric-convex.

Let x 2 X denote by �x the family of all entire trajectory of dynamical system
(X;T+; �) passing through point x for t = 0, i.e. 
 2 �x if and only if 
 : T! X
is a continuous mapping with the properties: 
(0) = x and �t
(� ) = 
(t + � ) for
all t 2T+ and � 2 T.

Theorem 5.4. Let h(X;T+; �); (
;T;�); hi be a V - monotone compact dissipa-
tive nonautonomous dynamical system, J is its Levinson center and the following
conditions hold:

1. V (x1; x2) = V (x2; x1) for all (x1; x2) 2 X _�X.

2. V (x1; x2) � V (x1; x3) + V (x3; x2) for all x1; x2; x3 2 X with condition
h(x1) = h(x2) = h(x3).

3. the space (X! ; V!) is strict metric-convex for all ! 2 
, where X! = h�1(!) =
fx 2 Xjh(x) = !g (! 2 
) and V! = V jX!�X!

.
If 
xi 2 �xi ( i = 1; 2) and x1; x2 2 I! (! 2 
); then the function 
 :T! X (
(t) =
S(�; 
x1 (t); 
x2(t)) for all t 2 T) de�nes an antier trajectory of dynamical system
(X;T+; �).

We denote by K = fa 2 C(T+;R+) j a(0) = 0; a is strict increasingg.

Theorem 5.5. Under the conditions of Theorem 5.4 if in additionally the nonau-
tonomous dynamical system h(X;T+; �); (
;T;�); hi is bounded k - dissipative and
there exists a function a 2 K with property lim

t!+1
a(t) = +1 such that a(�(x1; x2)) �

V (x1; x2) for all (x1; x2) 2 X _�X, then J! will be metric-convex for all ! 2 
,
where J! = J

T
X! and J Levinson center of (X;T+; �).

6. Almost periodic solutions of V - monotone almost periodic

dissipative systems.
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De�nition 6.1. Let (X; �) be a metric space. A function � : T! X is called
almost periodic (in the sense of Bohr) if for every " > 0 there exists a relatively
dense subset A" of Tsuch that

�(�(t+ � ); �(t)) < "

for all t 2Tand � 2 A".

De�nition 6.2. A point x 2 X is said to be almost periodic if there is an entire
trajectory 
x 2 �x such that the function 
x :T! X is almost periodic.

De�nition 6.3. The compact invariant set M of nonautonomous dynamical sys-
tem h(X;T+; �); (
;T;�); hi is called [19],[5] distal on the invariant set M in
the negative direction if inf

t2T�
�(
x1 (t); 
x2(t)) > 0 for all x1; x2 2 M (h(x1) =

h(x2) and x1 6= x2) and 
xi 2 �xi(i = 1; 2), where �x is a set of all entire trajectory
of (X;T+; �) passing through point x 2 X.

Lemma 6.4. [19] Let 
 be a compact minimal set and M � X be a compact invari-
ant set of (X;T+; �), if nonautonomous dynamical system h(X;T+; �); (
;T;�); hi
is distal on M in negative direction, then the mapping ! 7�! M! := M

T
X! is

continuous with respect to Hausdor� metric.

Lemma 6.5. Let M � X be a compact invariant set of (X;T+; �), if nonau-
tonomous dynamical system h(X;T+; �); (
;T;�); hi is uniformly stable in the pos-
itive direction on compacts from X, then h(X;T+; �); (
;T;�); hi is distal on the
invariant set M in the negative direction .

Corollary 6.6. Under the conditions of Lemma 6.5 if 
 is a compact minimal set,
then the mapping ! 7�! J! is continuous with respect to Hausdor� metric.

Lemma 6.7. Let (M;�) be a compact, strict metric-convex space and E be a com-
pact subsemigroup of isometries of semigroupMM (i.e. E �MM and �(�x1; �x2) =
�(x1; x2) for all x1; x2 2M). Then there exists a common �xed point �x 2M of E,
i.e. �(�x) = �x for all � 2 E.

Theorem 6.8. Let h(X;T+; �); (
;T;�); hi be a V - monotone bounded k - dissi-
pative NDS, J is its Levinson center and the following conditions hold:

1. V (x1; x2) = V (x2; x1) for all (x1; x2) 2 X _�X.

2. V (x1; x2) � V (x1; x3) + V (x3; x2) for all x1; x2; x3 2 X with condition
h(x1) = h(x2) = h(x3).

3. the space (X! ; V!) is strict metric-convex for all ! 2 
, where X! = h�1(!) =
fx 2 X j h(x) = ! g (! 2 
) and V! = V jX!�X!

.

Then the set-valued mapping ! ! J! admits at least one continuous invariant
section, i.e. there exists a continuous mapping � : 
 ! J with the properties:
h(�(!)) = ! and �(�(t; y)) = �(t; �(!)) for all t 2Tand ! 2 
.

Corollary 6.9. Under the conditions of Theorem 6.8 the Levinson center of dy-
namical system (X;T+; �) contains at least one stationary (� (� > 0) - periodic,
quasiperiodic, almost periodic) point, if the minimal set 
 consists a stationary
(� (� > 0) - periodic, quasiperiodic, almost periodic) point.



7

7. Applications

7.1. Finite-dimensional systems. Denote byRn a real n�dimensional Euclidean
space with the scalar product h; i and the norm j�j, generated by scalar product. Let
[Rn] be a space of all the linear mapping A : Rn! Rn, equipped with operational
norm.

Theorem 7.1. Let 
 be a compact minimal set, F 2 C(
�Rn;Rn); W 2 C(
; [Rn])
and the following conditions hold:

1. The matrix-function W is positively de�ned, i.e. hW (!)u; ui 2 R for all
! 2 
; u 2 Rn and there exists a positive constant a such that hW (!)u; ui � ajuj2

for all ! 2 
 and u 2 Rn:

2. The function t ! W (�t!) is di�erentiable for every ! 2 
 and _W (!) 2
C(
; [Rn]), where _W (!) = d

dtW (�t!)jt=0:

3. h _W (!)(u � v) + W (!)(F (!; u) � F (!; v)); u � vi � 0 for all ! 2 
 and
u; v 2 Rn:

4. There exist a positive constant r and the function c : [r;+1)! (0;+1) such
that h _W (!)u+W (!)F (!; u); ui � �c(juj) for all juj > r:

Then the equation

u0 = F (�t!; u)(5)

generates a cocycle ' on Rn which admits a compact global attractor I = fI! j ! 2

g with the following properties:

a. I! is a nonvoid, compact and convex subset of Rn for every ! 2 
:

b. I =
S
fI! j ! 2 
g is connected.

c. The mapping ! ! I! is continuous with respect to Hausdor� metric.

d. I = fI! j ! 2 
g is invariant, i.e. '(t; !; I!) = I�t! for all ! 2 
 and t 2T+:

e. lim
t!+1

�('(t; �t!)M; I!) = 0 for all M 2 C(Rn) and ! 2 
 ;

f. lim
t!+1

supf�('(t; �t!)M; I) j ! 2 
 g = 0 for any M 2 C(Rn), where I =S
fI! j ! 2 
 g.

g. I = fI! j ! 2 
 g is a uniform forward attractor ,i.e.

lim
t!+1

sup
!2


�('(t; !)M; I�t!) = 0

for any M 2 C(Rn).

h. The equation (5) admits at least one stationary (� - periodic, quasiperiodic, al-
most periodic) solution, if the point ! 2 
 is stationary (� - periodic, quasiperiodic,
almost periodic).

Example 7.2. In quality of example which illustrates this theorem we can consider
the following equation

u0 = g(u) + f(�t!);
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where f 2 C(
;R) and

g(u) =

8>>><
>>>:

(u+ 1)2 : u < �1

0 : juj � 1

�(u� 1)2) : u > 1:

Example 7.3. We consider the equation

x00 + p(x)x0 + ax = f(�t!);

where p 2 C(R;R), f 2 C(
;R) and a is a positive number. Denote by y =
x0 + F (x); where F (x) =

R x
0 p(s)ds, then we obtain the system(

x0 = y � F (x)

y0 = �ax+ f(�t!):
(6)

Theorem 7.4. Suppose the following conditions hold:

1. p(x) � 0 for all x 2 R.

2. There exist positive numbers r and k such that p(x) � k for all jxj � r:

Then the nonautonomous dynamical system, generated by (6) is compact dissipative
and V � monotone.

7.2. Evolution equations with monotone operators. Let H be a real Hilbert
space with inner product h; i; j�j=

p
h; i and B be a re
exive Banach space contained

in H algebraically and topologically. Furthermore, let B be dense in H in which
case H can be identi�ed with a subspace of the dual B 0 of B and h; i can be extended
by continuity to B 0 � B .

We consider the initial value problem

u0(t) + Au(t) = f(�t!)(7)

u(0) = u;(8)

where A : B ! B 0 is a (generally nonlinear) bounded,

jAujB0 � Cjujp�1
B

+K;u 2 B ; p > 1;

coercive,

hAu; ui � ajujp
B
; u 2 B ; a > 0;

monotone,

hAu1 � Au2; u1 � u2i � 0; u1; u2 2 B ;

and hemicontinuous (see [20]).

The nonlinear "elliptic" operator

Au = �
nX
i=1

@

@xi
�(

@u

@xi
) in D � Rn

u = 0 on @D;
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where D is a bounded domain in Rn; �(�) is a increasing function satisfying

�j[�1;1] = 0; cj�jp �
nX
i=1

�i�(�i) � Cj�jp ( for all j�j � 2 );

provides an example with H = L2(D); B = W 1;p
0 (D); B 0 =W�1;p0(D); p0 = p

p�1 :

The following result is established in [20] (Ch.2 and Ch.4). If x 2 H and f 2
C(
; B 0); p0 = p

p�1 ; then there exists a unique solution ' 2 C(R+;H) of (7) and
(8).

We denote by '(�; !; u) the unique solutions of (7) and (8). According to [21]
'(�; !; u) is a continuous cocycle on H.

Theorem 7.5. Suppose that the operator A satis�es the conditions above and the
cocycle ', generated by equation (7), is asymptotic compact, then it admits a com-
pact global attractor I = fI! j ! 2 
 g possessing the following properties:

a. I! is a nonvoid, compact and convex subset of H for every ! 2 
:

b. I =
S
fI! j ! 2 
 g is connected.

c. The mapping ! ! I! is continuous with respect to Hausdor� metric.

d. I = fI! j ! 2 
 g is invariant, i.e. '(t; !; I!) = I�t! for all ! 2 
 and
t 2 T+:

e. limt!+1 �('(t; ��t!)M; I!) = 0 for all M 2 C(H) and ! 2 
 ;

f. limt!+1 supf�('(t; �t!)M; I)j ! 2 
 g = 0 for any M 2 C(H), where
I =
S
fI! j ! 2 
 g.

g. I = fI! j ! 2 
 g is a uniform forward attractor ,i.e.

lim
t!+1

sup
!2


�('(t; !)M; I�t!) = 0

for any M 2 C(H).

h. The equation (7) admits at least one stationary (� - periodic, quasiperiodic, al-
most periodic) solution, if the point ! 2 
 is stationary (� - periodic, quasiperiodic,
almost periodic).

Remark 7.6. If the injection of B into H is compact, then the cocycle ' generated
by equation (7), evidently, is asymptotic compact.

Example 7.7. A typical example of equation of type (7) is the equation

@

@t
u =

nX
i=1

@

@xi
'(

@u

@xi
) + f(�t!); uj@D = 0(9)

with "nonlinear Laplacian" Au =
Pn

i=1
@
@xi

�( @u@xi ); where �(�) is a increasing func-
tion satisfying the condition

cj�jp �
nX
i=1

�i�(�i) � Cj�jp
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for all j�j � 2 and �j[�1;1] = 0; provides an example with H = L2(D); B =

W 1;p
0 (D); B 0 = W�1;p0(D); p0 = p

p�1 : It is possible to verify (see, for example,
[20],[4] and [2]) that the "nonlinear Laplacian" veri�es all the conditions of Theo-
rem 7.5 and, consequently, (9) admits a compact global attractors with the properties
a.-h.. We note that the attractor of equation (9) is not trivial, i.e. the set I! is not
a single point set at least for certain ! 2 
.

Remark 7.8. If the operator A =
Pn

i=1
@
@xi

�( @u@xi ) is uniformly elliptic, i.e. cj�jp �Pn
i=1 �i'(�i) � Cj�jp (for all � 2 Rn), then the set I! is a single point set for all ! 2


 ( for autonomous system see [23], Ch.III), because in this case the nonautonomous
dynamical system generated by equation (9) is strict monotone.

References

[1] Arnold L., Random Dynamical Systems. Springer{Verlag, Heidelberg, 1998.
[2] Babin A.V., Vishik M.I. Attractors of evolutional equations .North-Holland, Amsterdam,

London, New York, Tokyo, 1992.
[3] Bourbaki N. Vari�et�es di��erentielles et analitiques (Fascicule de r�esultats). Herman, Paris,

1971.
[4] Brezis H. Operateurs maximaux monotones et semigroupes des contractions dans les espaces

de Hilbert. Math. Studies, North Holland, v.5, 1973.
[5] Bronshteyn I.U. Extensions of minimal transformation groups. Noordho�, Leyden, 1979.
[6] Bronshteyn I. U. Nonautonomous dynamical systems. Kishinev, "Shtiintsa", 1984 (in Rus-

sian).
[7] Cheban D. N. C-analytic dissipative dynamical systems. Di�erential Equations, 1986, v.22,

No.11, pp.1915-1922.
[8] Cheban D. N. Nonautonomous dissipative dynamical systems. Theses of doctor of science.

Minsk,1991.
[9] Cheban D.N. Global attractors of in�nite-dimensional nonautonomous dynamical systems,I.

Bulletin of Academy of sciences of Republic of Moldova. Mathematics, 1997, N3 (25), p.42-55.
[10] Cheban D. N., KloedenP. E., SchmalfussB. Pullback attractors in dissipativenonautonomous

di�erential equations under disscretization. DANSE-Preprint, FU Berlin, 1998.
[11] Cheban D. N., Kloeden P. E., Schmalfuss B. The Relationship Between Pullback, Forwards

and Global Attractors of Nonautonomous Dynamical Systems. DANSE-Preprint, FU Berlin,
2000.

[12] Cheresiz V. M. V - monotone systems and almost periodical solutions. Sibirskii matematich-
eskii zhurnal. 1972, v.13, No.4, pp.921{932.

[13] Cheresiz V. M. Uniformly V - monotone systems. Almost periodical solutions. Sibirskii
matematicheskii zhurnal. 1972, v.13, No.5, pp.11107{1123.

[14] Carvalho A. N., Cholewa J. W. and Dlotko T. Global attractors for problems with monotone
operators. Boll. Unione Mat.Ital.Sez.BArtic.Ric.Mat.(8)2(1999), no.3,pp.693-706.

[15] Haraux A. Attractors of asymptotic compact processes and applications to nonlinear partial
di�erential equations. Commun. in partial di�er. equat. V.13, No.11 1988, pp.1383-1414

[16] Haraux A. Syst�emes Dynamiques Dissipativs et Applications. Masson, Paris, Milan,
Barselona, Rome, 1991.

[17] Hartman Ph. Ordinary Di�erential Equations, Birkhuser, Boston Basel Stuttgart, 1982.
[18] Hitoshi I. On the existence of almost periodic complete trajectories for contractive almost

periodic processes. Journal of di�erential equations, 1982, v.43, No.1, pp.66{72.
[19] Levitan B. M. and Zhikov V. V. Almost periodic functions and di�erential equations. Cam-

bridge Univ. Press. London, 1982.
[20] Loins J.-L. Quelques methodes de r�esolution des probl�emes aux limites non lin�eaires, Dunod,

Paris, 1969.
[21] Nacer H. Systems dynamiques nonautonomes contractants et leur applications. These de

magister. USTHB, Algerie, 1983.
[22] Sell G. R., Lectures on Topological Dynamics and Di�erential Equations. Van Nostrand{

Reinbold, London, 1971.



11

[23] Temam R. In�nite-Dimensional Dynamical Systems in Mecanics and Physics. Applied Math-
ematical Sciences, 68. Springer, 1997.

[24] Trubnikov Yu.V.,Perov A.I. The di�erential equations with monotone nonlinearity. Nauka i
Tehnika. Minsk, 1986 [in Russian].

[25] Zhikov V.V. Monotonicity in the theory of nonlinear almost periodical operationel equations.
Matematicheskii sbornik, 1972, v.90(132), No.2, pp.214{228.

(D. Cheban) Faculty of Mathematics and Informatics, State University of Moldova, A.

Mateevich Street 60, MD{2009 Chis�in�au, Moldova

E-mail address, D. Cheban: cheban@usm.md

(P. Kloeden) Fachbereich Mathematik, Johann Wolfgang Goethe Universit�at, D{60054
Frankfurt am Main, Germany

E-mail address, P. Kloeden: kloeden@math.uni-frankfurt.de

(B. Schmalfu�)University of Applied Sciences, D{06217 Merseburg, Germany

E-mail address, B. Schmalfu�: schmalfuss@in.fh-merseburg.de


