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Abstract. The article is devoted to the study of nonautonomous Lorenz sys-

tems. This problem is formulated and solved in the context of nonautonomous

dynamical systems. First, we prove that such systems admit a compact global

attractor and characterize its structure. Then, we obtain conditions of con-

vergence of the nonautonomous Lorenz systems, under which all solutions

approach a point attractor. Third, we derive a criterion for existence of al-

most periodic (periodic, quasi-periodic) and recurrent solutions of the systems.

Finally, we prove a global averaging principle for nonautonomous Lorenz sys-

tems.

1. Introduction

The following n-dimensional systems of di�erential equations are called systems of

hydrodynamic type or autonomous Lorenz systems ([30]):

u
0
i = �j;kbijkujuk +�jaijuj + fi; i = 1; 2; :::; n;(1)

where �bijkuiujuk is identically equal to zero, �aijuiuj is negative de�nite, and

fi are constants. The well-known three-dimensional Lorenz system for geophysical


ows or climate modeling [25] is a special case of this type of systems.

It is known that solutions of (1) imbed in some ellipsoid and do not leave it later,

i.e. the autonomous system (1) is dissipative, and hence admits a compact global

attractor.

In the vector-matrix form the system (1) may be written as:

u
0 = Au+B(u; u) + f;(2)

where A is a positive de�nite matrix and B : H �H ! H (H is a n-dimensional

real or complex Euclidian space) is a bilinear form satisfying the identity

RehB(u; v); wi = �RehB(u;w); vi(3)

for every u; v; w 2 H .

When f is not a constant vector but a bounded function of time t, it is known that

the equation (2) also admits a compact global attractor [22].
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The aim of the present article is to study the nonautonomous version of the equation

(2). Namely, in this case, the matrix A, the bilinear form B, and the function

f all depend on time t. We will consider issues like compact global attractors,

convergence, almost periodic (including periodic and quasi-periodic) solutions and

recurrent solutions, and averaging principles.

This paper is organized as follows:

In Section 2 we introduce a class of nonautonomous Lorenz dynamical systems and

establish its dissipativity (Theorem 2.2).

In Section 3 we prove that asymptotic compact Lorenz systems admit a compact

global attractor (Theorem 3.7) and we characterize the structure of the global

attractor. Furthermore, we obtain conditions for convergence of these systems

(Theorem 3.9), under which each section of the global attractor contains a single

point.

Section 4 is devoted to study of existence of almost periodic (periodic, quasi-

periodic) and recurrent solutions of nonautonomous Lorenz systems (Corollaries

4.2 and 4.6).

In Section 5 we prove a uniform averaging principle for a class of nonautonomous

dynamical systems (Theorem 5.3). With the help of this uniform averaging prin-

ciple, we prove a global averaging principle for nonautonomous Lorenz systems on

the semi-axis (Theorem 6.4) in Section 6.

2. Nonautonomous Lorenz systems

Let 
 be a compact metric space, R = (�1;+1); (
;R; �) be a dynamical system

on 
 and H be a real or complex Hilbert space. We denote L(H) (L2(H)) the space

of all linear (bilinear) forms on H . WhenW is some metric space, C(
;W ) denotes

the space of all continuous functions f : 
 ! W , endowed with the topology of

uniform convergence.

Let us consider the nonautonomous Lorenz system

u
0 = A(!t)u+B(!t)(u; u) + f(!t); ! 2 
;(4)

where !t := �(t; !); A 2 C(
; L(H)); B 2 C(
; L2(H)) and f 2 C(
; H). Note

that when the autonomous Lorenz system (2) is perturbed by periodic, quasi-

periodic, almost periodic or recurrent forces, it can then be written as (4). More-

over, we assume that the following conditions are ful�lled:

(i) There exists � > 0 such that

RehA(!)u; ui � ��juj
2(5)

for all ! 2 
 and u 2 H; where j � j is a norm in H ;

(ii)

RehB(!)(u; v); wi = �RehB(!)(u;w); vi(6)

for every u; v; w 2 H and ! 2 
 .
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Remark 2.1. a. It follows from (6) that

RehB(!)(u; v); v)i = 0(7)

for every u; v 2 H and ! 2 
:

b. From bilinearity and continuity, we obtain

jB(!)(u; v)j � CB jujjvj(8)

for all u; v 2 H and ! 2 
, where CB = supfjB(!)(u; v)j : ! 2 
; u; v 2 H; juj �

1; and jvj � 1g.

We will call the system (4) with conditions (5) and (6) a nonautonomous Lorenz

system or a nonautonomous system of hydrodynamic type.

We note that from the conditions (6) -(8) it follows that

jB(!)(x1; x1)�B(!)(x2; x2)j � CB(jx1j+ jx2j)jx1 � x2j(9)

for all x1; x2 2 H and ! 2 
:

Since the coeÆcients of (4) are locally Lipschitzian with respect to u 2 H , through

every point x 2 H passes a unique solution '(t; x; !) of equation (4) at the initial

moment t = 0. And this solution is de�ned on some interval [0; t(x;!)). Let us note

that

w
0(t) = 2Reh'0(t; x; !); '(t; x; !)i = 2RehA(!t)'(t; x; !); '(t; x; !)i+

2RehB(!t)('(t; x; !); '(t; x; !)); '(t; x; y)i + 2Rehf(!t); '(t; x; !)i

= 2RehA(!t)'(t; x; !); '(t; x; !)i + 2Rehf(!t); '(t; x; !)i

� �2�j'(t; x; !)j2 + 2kfkj'(t; x; !)j;

(10)

where kfk := maxfjf(!)j : ! 2 
g and w(t) = j'(t; x; !)j2: Then

w
0
� �2�w + 2kfkw

1
2 :(11)

Thus

w(t) � v(t)(12)

for all t 2 [0; t(x;!)), where v(t) is an upper solution of equation

v
0 = �2�v + 2jjf jjv

1
2 ;(13)

satisfying condition v(0) = w(0) = jxj2: Hence

v(t) = [(jxj �
kfk

�
)e��t +

kfk

�
]2(14)

and consequently

j'(t; x; !)j � (jxj �
kfk

�
)e��t +

kfk

�
(15)

for all t 2 [0; t(x;!)): It follows from the inequality (15) that solution '(t; x; !) is

bounded and therefore it may be extended to a global solution on R+ = [0;+1):

Thus we have proved the following theorem.

Theorem 2.2. (Dissipativity) Let the conditions (5) and (6) are ful�lled. Then

the following statements hold:
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(i)

j'(t; x; !)j � C(jxj);(16)

for all t � 0; ! 2 
 and x 2 H; where C(r) = r if r � r0 :=
kfk

�
and

C(r) = r0 if r � r0;

(ii)

lim sup
t!+1

supfj'(t; x; !)j : jxj � r; ! 2 
g �
jjf jj

�
(17)

for every r > 0:

The item (i) in this Theoremmeans that the nonautonomous Lorenz 
ow is bounded

on bounded sets, while the item (ii) implies that the nonautonomous Lorenz system

is dissipative, i.e., it admits a bounded absorbing set.

3. Nonautonomous dissipative dynamical systems and their

attractors

Let 
 and W be two metric spaces and (
;R; �) be an autonomous dynamical

system on 
: Let us consider a continuous mapping ' : R+�W�
!W satisfying

the following conditions:

'(0; �; !) = idW '(t+ �; x; !) = '(t; '(�; x; !); !�)

for all t; � 2 R
+ , ! 2 
 and x 2 W . Here !� is the short notation for �� (!) :=

�(�; !). Such a mapping ' ( or more explicitly hW;'; (
;R; �)i) is called a cocycle

on (
;R; �) with �ber W ; see [1, 28].

Example 3.1. Let E be a Banach space and C(R � E;E) be a space of all con-

tinuous functions F : R � E ! E equipped by the compact-open topology. Let us

consider a parameterized di�erential equation

dx

dt
= F (�t!; x); ! 2 


on a Banach space E with 
 = C(R �E;E); where �t! := �(t; !). We will de�ne

�t : 
! 
 by �t!(�; �) = !(t+�; �) for each t 2 R and interpret '(t; x; !) as solution

of the initial value problem

d

dt
x(t) = F (�t!; x(t)); x(0) = x:(18)

Under appropriate assumptions on F : 
�E ! E (or even F : R �E ! E with

!(t) instead of �t! in (18)) to ensure forward existence and uniqueness, then ' is

a cocycle on (C(R � E;E);R; �) with �ber E. Note that (C(R � E;E);R; �) is a

Bebutov's dynamical system (see for example [2],[13], [26],[28]).

Let ' be a cocycle on (
;R; �) with the �ber E. Then the mapping � : R+ �E�


! E �
 de�ned by

�(t; x; !) := ('(t; x; !); �t!)

for all t 2 R
+ and (x; !)2 E � 
 forms a semi-group f�(t; �; �)gt2R+ of mappings

of X := 
 � E into itself, thus a semi-dynamical system on the state space X ,

which is called a skew-product 
ow [28]. The triplet h(X;R+ ; �); (
;R; �); hi (where

h := pr2 : X ! 
) is a nonautonomous dynamical system; see [3, 13].
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A cocycle ' over (
;R; �) with the �berW is called a compact (bounded) dissipative

cocycle, if there is a nonempty compact set K �W such that

lim sup
t!+1

f�(U(t; !)M;K)j! 2 
g = 0(19)

for any M 2 C(W ) (respectively M 2 B(W )); where C(W )( B(W )) denotes the

family of all compact (bounded) subsets of W , � is the semidistance of Hausdor�

and U(t; !) := '(t; �; !). We can similarly de�ne a compact or bounded dissipative

skew-product system.

Lemma 3.2. Let 
 be a compact metric space and hW;'; (
;R; �)i be a cocy-

cle over (
;R; �) with the �ber W . In order for hW;'; (
;R; �)i to be compact

(bounded) dissipative, it is necessary and suÆcient that the skew-product dynamical

system (X;R+ ; �) is compact (bounded) dissipative.

This assertion directly follows from the corresponding de�nitions (see for example

[18],[13]).

We now de�ne whole trajectories of the semi-group dynamical system (X;R+ ; �)

(or whole trajectories of the cocycle hW;'; (
;R; �)i over (
;R; �) with the �ber

W ). A whole trajectory passes through the point x 2 X((u; y) 2 W � 
) is a

continuous mapping 
 : R ! X (or � : R ! W ) which satis�es the conditions :


(0) = x ( or �(0) = u) and �t
(�) = 
(t+ �) (or �(t+ �) = '(t; �(�); !�)) for all

t 2 R+ and � 2 R.

Moreover, for M �W , we denote by


!(M) :=
\
t�0

[
��t

'(�;M; !�� )(20)

for every ! 2 
, where !�� := �(��; !). This formula is useful in the construction

of global attractors. We recall the following result.

Theorem 3.3. ([11],[13]) Let 
 be a compact metric space, hW;'; (
;R; �)i be a

compact (bounded) dissipative cocycle and K be the nonempty compact set in the

dissipation property (19). Then the following assertions hold:

(i) The set I! := 
!(K) 6= ;, is compact, I! � K and

lim
t!+1

�(U(t; !�t)K; I!) = 0(21)

for every ! 2 
;

(ii) U(t; !)I! = I!t for all ! 2 
 and t 2 R+ ;

(iii)

lim
t!+1

�(U(t; !�t)M; I!) = 0(22)

for all M 2 C(W ) (respectively M 2 B(X)) and ! 2 
 ;

(iv)

lim
t!+1

supf�(U(t; !�t)M; I)j! 2 
g = 0(23)

for any M 2 C(W ) (respectively M 2 B(X)) , where I = [fI! j ! 2 
g;

(v) I! := pr1J! for all ! 2 
, where J is a Levinson's centre of (X;R+ ; �), and,

hence, I = pr1J ;
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(vi) The set I is compact;

(vii) The set I is connected if the spaces W and Y are connected.

Now we de�ne the concept of compact global attractors. The family of compact

sets fI!j! 2 
g (I! � W is nonempty compact for every ! 2 
) is called (see,

for example, [11] or [13]) the compact global attractor of cocycle ' if the following

conditions are ful�lled:

(i) The set I :=
S
fI!j ! 2 
g is precompact.

(ii) fI!j ! 2 
g is invariant w.r.t. the cocycle '; i.e. '(t; !; I!) = I�t! for all

t 2 R+ and ! 2 
:

(iii) The equality lim
t!+1

sup
!2 


�('(t;K; !); I) = 0 holds for every nonempty bounded

set K �W .

The set I! will be called a section of the global attractor.

Corollary 3.4. Under the conditions of Theorem 3.3, the cocycle ' admits a com-

pact global attractor.

Dynamical system (X;R+ ; �) is called asymptotically compact (see [18],[23], [29]

and also [11],[13]) if for any positive invariant bounded set A � X there is a compact

KA � X such that

lim
t!+1

�(�tA;KA) = 0:(24)

Dynamical system (X;R+ ; �) is called compact (completely continuous) if for every

bounded set A � X there exists a positive number l = l(A) such that the set �lA

is precompact.

It is easy to verify (see for example [13]) that every compact dynamical system

(X;R+ ; �) is asymptotically compact.

The cocycle hW;'; (Y;R; �i is called compact (asymptotically compact) if the asso-

ciated skew-product dynamical system (X;R+ ; �) with X =W �Y and � = ('; �)

is compact (respectively asymptotic compact).

Let (X;R+ ; �) be compact dissipative and K be a compact set, which attracts all

compact subsets of X . Let

J = 
(K);(25)

where 
(K) =
T
t�0

S
��t �

�K. The set J de�ned by the equality (25) does not

depend on selection of the attracting set K, and is characterized only by the prop-

erties of the dynamical system (X;R+ ; �) itself. The set J is called the Levinson's

centre of the compact dissipative system (X;R+ ; �).

Theorem 3.5. ([11],[13]) Let (E;
; h) be a local-trivial Banach �bering, h(E;R+ ; �);

(
;R; �); hi be a nonautonomous dynamical system and the dynamical system

(E;R+ ; �) be completely continuous. Then the following two statements are equiv-

alent :

(i) There is a positive number r such that for any x 2 X there will be � = �(x) � 0

for which jx� j < r; here x� := �(�; x).
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(ii) Dynamical system (E;R+ ; �) is compact dissipative and

lim
t!+1

sup
jxj�R

�(xt; J) = 0(26)

for any R > 0, where J is a Levinson's centre of dynamical system (E;R+ ; �),

that is, the nonautonomous system h(E;R+ ; �); (
;R; �); hi admits a compact

global attractor J .

A dynamical system (X;R+ ; �) satis�es conditions of Ladyzhenskaya (see [23] and

also [13]) if for any bounded set A � X there is a compact KA � X such that the

equality (24) holds.

Theorem 3.6. ([11],[13]) Let h(E;R+ ; �); (
;R; �); hi be a nonautonomous dy-

namical system and let (E;R+ ; �) satisfy the condition of Ladyzhenskaya. Then

the statements 1. and 2. of Theorem 3.5 are equivalent.

Applying the above general theorems about nonautonomous dissipative systems to

nonautonomous system constructed in the example 3.1, we will obtain series of facts

concerning the nonautonomous Lorenz system (4). In particular, from Theorems

2.2, 3.3 and 3.6, we have the following results.

Theorem 3.7. (Compact global attractor) Let 
 be a compact metric space, (
;R; �)

be a dynamical system on 
 and the conditions (5) and (6) are ful�lled. If the co-

cycle ' generated by nonautonomous Lorenz system (4) is asymptotically compact,

then for every ! 2 
, there exists a non-empty compact connected set I! � H such

that the following conditions hold:

(i) The set I = [fI! : ! 2 
g is compact and connected in H ;

(ii)

lim
t!+1

sup
!2


�(U(t; !�t)M; I) = 0

for any bounded set M � H, where U(t; !) = '(t; �; !) and � is the semi-

distance of Hausdor�;

(iii) U(t; !)I! = I!t for all t 2 R+ and ! 2 
;

(iv) I! consists of those and only those points x 2 H through which passing the

bounded solutions (on R) of the nonautonomous Lorenz system (4).

This theorem states that I = [fI! : ! 2 
g is the compact global attractor of

the nonautonomous Lorenz system (4) and also characterizes the structure of the

sections I! of the attractor.

Theorem 3.8. (Flow estimate on sections of global attractor) Under conditions of

Theorem 3.7

j'(t; x; !)j �
kfk

�
(27)

for all t 2 R; ! 2 
 and x 2 I!, where ' is the cocycle generated by Lorenz

nonautonomous system (4). This establishes the 
ow estimate on each section of

the compact global attractor.

Proof. According to Theorem 3.3 the set J =
S
fI! � f!g : ! 2 
g is a Levinson's

centre of dynamical system (X;R+ ; �) and according to (25) for any point (u0; y0) =
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z 2 J there exists tn ! +1; un 2 H and !n 2 
 such that the sequence fung

is bounded, u0 = lim
n!+1

'(tn; un; !n) and !0 = lim
n!+1

!ntn: From the inequality

(15), it follows that ju0j �
kfk

�
; i.e. '(t; x; !) 2 I!t for all ! 2 
 and t 2 R, hence

j'(t; x; !)j �
kfk

�
for any t 2 R; x 2 I! and ! 2 
: The theorem is proved.

Theorem 3.9. (Convergence Theorem) Let ' be the cocycle generated by the Lorenz

nonautonomous system (4). Under conditions of Theorem 3.7 and further assume

that �
�2
CBkfk < 1. Then this cocycle ' is convergent, i.e. for any ! 2 
 the set

I! contains a single point u!.

Proof. Let ! 2 
 and u1; u2 2 I!: We de�ne  (t) = '(t; u1; !)� '(t; u2; !) and

w(t) = j'(t; u1; !)� '(t; u2; !)j
2
:(28)

According to Theorem 3.8, the function w(t) is bounded on R. On the other hand,

in view of (10) and (5), we have

w
0(t) � �2�w(t) + 2RehB(!t)( (t); '(t; u2; !));  (t)i:(29)

From the inequalities (9), (29) and Theorem 3.8, it follows that

w
0(t) � �2�w(t) + 2CB

kfk

�
w(t):

Hence, w(t) � w(0)e�2(��CB
kfk
�
)t, i.e.

j'(t; u1; !)� '(t; u2; !)j � ju1 � u2je
�(��

kfk
�

CB)t

for all t � 0, ! 2 
 and u1; u2 2 I! . In particular,

ju1 � u2j � j'(t; '(�t; u1; �(�t; !)); !)� '(t; '(�t; u2; �(�t; !)); !)je
�(��

kfk
�

CB)t

(30)

for all t � 0; ! 2 
 and u1; u2 2 J!: Note that j'(t; u1; !)� '(t; u2; !)j is bounded

on R. Thus from (26) it follows that u1 = u2; where '(�t; x; !) := u�(�t;!) for all

x 2 I!; t � 0 and ! 2 
. The theorem is proved.

4. Almost periodic and recurrent solutions of nonautonomous

Lorenz systems

In this section, we discuss almost periodic and recurrent solutions of nonautonomous

Lorenz systems. Let T = R or R+ and (X;T; �) be a dynamical system. The point

x 2 X is called a stationary (� -periodic, � > 0; � 2 T) point, if xt = x (x� = x

respectively) for all t 2 T, where xt := �(t; x).

A number � 2 T is called " > 0 shift (almost period) of point x 2 X if �(x�; x) < "

(�(x(� + t); xt) < ", for all t 2 T, respectively).

A point x 2 X is called almost recurrent (almost periodic) if for any " > 0, there

exists a positive number l such that on any segment of length l, there is a " shift

(almost period) of point x 2 X .

If a point x 2 X is almost recurrent and the set H(x) = fxt j t 2 Tg is compact,

then x is called recurrent.
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The solution '(t; x; !) of nonautonomous Lorenz system (4) is called recurrent

(almost periodic, quasi-periodic, periodic), if the point (x; !) 2 H�
 is a recurrent

(almost periodic, quasi-periodic, periodic) point of skew-product dynamical system

(X;R+ ; �) (X = H �
 and � = ('; �)).

We note (see, for example, [26],[27] and [24]) that if ! 2 
 is a stationary (� -

periodic, almost periodic, quasi periodic, recurrent) point of dynamical system

(
;R; �) and h : 
 ! X is a homomorphism of dynamical system (
;R; �) onto

(X;R+ ; �), then the point x = h(!) is a stationary (� -periodic, almost periodic,

quasi periodic, recurrent) point of the system (X;R+ ; �).

Let X = H � 
 and � = ('; �), then mapping h : 
 ! X is a homomorphism

of dynamical system (
;R; �) onto (X;R+ ; �) if and only if h(!) = (u(!); !) for

all ! 2 
, where u : 
 ! H is a continuous mapping with the condition that

u(!t) = '(t; u(!); !) for all ! 2 
 and t 2 R+ :

Theorem 4.1. Let 
 be a compact metric space, the cocycle ', generated by the

nonautonomous Lorenz system (4), is asymptotic compact and the conditions (5),

(7)-(8) are ful�lled with
kfkCB
�2

< 1: Then the set I! contains a unique point

x! (I! = fx!g) for every ! 2 
, the mapping u : 
! H de�ned by u(!) := x! is

continuous and u(!t) = '(t; u(!); !) for all ! 2 
 and t 2 R+ :

Proof. According to Theorems 3.3 and 3.9, it is suÆcient to show that the mapping

u : 
! H de�ned above is continuous. Let ! 2 
; f!ng � 
 and !n ! !: Consider

the sequence fxng := fx!ng � I :=
S
fI! j ! 2 
g: Since the set I is compact, then

the sequence fxng is precompact. Let x0 be a limit point of this sequence, then

there is a subsequence fxkng such that xkn ! x
0
: Let J be a Levinson's centre of the

skew-product dynamical system (X;R+ ; �), generated by the cocycle '. Note that

the point (xkn ; !kn) 2 J!kn := I!kn � f!kng � J and taking in the consideration

that J is compact we obtain that (x0; !) 2 J: Thus (x0; !) 2 J! = I! � f!g and,

consequently, x0 2 I! = fx!g, i.e. the precompact sequence fxng has a unique

limit point x!. This means that the sequence fxng converges to x! as n ! +1:

The theorem is proved.

Corollary 4.2. Let 
 be a compact minimal (almost periodic minimal, quasi-

periodic minimal or periodic minimal) set of dynamical system (
;R; �). Then

under the conditions of Theorem 4.1, the nonautonomous Lorenz system (4) ad-

mits a compact global attractor I, and for all ! 2 
, the section I! of the attractor

contains a unique point x! through which passes a recurrent (almost periodic, quasi-

periodic, or periodic) solution of equation (4).

Let H be a d-dimensional complex Euclidean space, i.e. H = C
d . Denote by

HC(C d�
; C d ) the space of all continuous functions f : C d�
! C
d holomorphic

in z 2 C
d and equipped with compact-open topology. Consider the di�erential

equation

dz

dt
= f(z; �t!); (! 2 
)(31)

where f 2 HC(C d �
; C d): Let '(t; !; z) be the solution of equation (31) passing

through point z at t = 0 and de�ned on R+ . The mapping ' : R+ � 
� C
d ! C

d

has the following properties (see, for example, [14] and [19]):
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a) '(0; z; !) = z for all z 2 C
d .

b) '(t+ �; z; !) = '(t; '(�; z; !); ��!) for all t; � 2 R
+
; ! 2 
 and z 2 C

d
:

c) Mapping ' is continuous.

d) Mapping U(t; !) := '(t; �; !) : C d ! C
d is holomorphic for any t 2 R

+ and

! 2 
:

The cocycle hC d ; '; (
;T; �)i is called (see [5],[10],[12],[13]) C -analytic if the map-

ping U(t; !) : C d ! C
d is holomorphic for all t 2 R+ and ! 2 
.

Example 4.3. Let (HC(R � C
d
; C

d );R; �) be a dynamical system of translations

on HC(R�C
d
; C

d ) (Bebutov's dynamical system (see, for example, [26] and [13])).

Denote by F the mapping from C
d � HC(R � C

d
; C

d ) to C
d
de�ned by equality

F (z; f) := f(0; z) for all z 2 C
d
and f 2 HC(R � C

d
; C

d ): Let 
 be the hull

H(f) of given function f 2 HC(R � C
d
; C

d ), that is 
 = H(f) := ff� j� 2 Rg,

where f� (t; z) := f(t + �; z) for all t; � 2 R and z 2 C
d
: Denote the restriction of

(HC(R � C
d
; C

d );R; �) on 
 by (
;R; �). Then, under appropriate restriction on

the given function f 2 HC(R � C
d
; C

d ), the di�erential equation
dz
dt

= f(z; t) =

F (z; �tf) generates a C�analytic cocycle.

Theorem 4.4. ([12]) Let 
 be a compact minimal (almost periodic minimal, quasi-

periodic minimal, or periodic minimal) set of dynamical system (
;R; �), and

let hC d ; '; (
;T; �)i be a C�analytic cocycle admitting a compact global attractor

fI!j ! 2 
g. Then the following assertions hold:

(i) For every ! 2 
, the set I! consists of a unique point u(!).

(ii) u(�t!) = '(t; u(!); !) for all ! 2 
 and t 2 R+ .

(iii) The mapping ! ! 
(!) is continuous, where 
 := (u; Id
).

(iv) Every point 
(!) is recurrent (almost periodic, quasi-periodic or periodic).

(v) The continuous invariant section � is global uniformly asymptotically stable,

i.e.

a. The fact that for arbitrary " > 0, there exists Æ(") > 0 such that �(z; �(!)) <

Æ, implies �('(t; !; z); �(�t!)) < " for all t � 0 and ! 2 
:

b.

lim
t!+1

�('(t; z; !); u(�t!)) = 0

for all ! 2 
 and z 2 C
d
:

Theorem 4.5. Let H = C
d
; 
 be a compact minimal set and the conditions (5),

(7)-(8) are ful�lled. Then the nonautonomous Lorenz system admits a compact

global attractor fI! j ! 2 
g and the set I! contains a unique point x! (I! = fx!g)

for every ! 2 
, the mapping u : 
 ! H de�ned by equality u(!) := x! is

continuous and u(!t) = '(t; u(!); !) for all ! 2 
 and t 2 R+ ; where ' is a

cocycle generated by the nonautonomous Lorenz system.

Proof. We note that under the conditions of Theorem 4.5 the right-hand side

f(!; z) := A(!)z +B(!)(z; z) + f(!) is C -analytic because Dzf(!; z)h = A(!)h+

B(!)(h; z)+B(!)(z; h) for all ! 2 
 and z 2 C
d
; where Dzf(!; z) is a derivative of

function f(!; z) w.r.t. z 2 C
d
: Now our statement directly results from Theorems

3.7 and 4.4. The proof is complete.
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Corollary 4.6. (Amost periodic and recurrent motions) Let 
 be a compact min-

imal (almost periodic minimal, quasi-periodic minimal or periodic minimal) set of

dynamical system (
;R; �). Then under the conditions of Theorem 4.5, the nonau-

tonomous Lorenz system (4) admits a compact global attractor I and for all ! 2 
,

the set I! contains a unique point x! through which passes a recurrent (almost

periodic, quasi-periodic or periodic) solution of equation (4).

5. Uniform averaging principle

Now we consider a uniform averaging principle for a general class of di�erential

equations. In the next section, we apply this averaging principle to the nonau-

tonomous Lorenz system (4).

Let C(R �H;H) be the space of all continuous functions f : R �H ! H equipped

with compact open topology and let F � C(R �H;H). In Hilbert space H (with

the norm j � j induced by the scalar product) we will consider the family of equations

x
0 = "f(t; x); f 2 F ;(32)

containing a small parameter " 2 [0; "0] ("o > 0).

We assume that on the set R+ � B[0; r]; where B[0; r] := fx 2 H j jxj � rg is a

ball of radius r > 0 in H , the functions f 2 F are uniformly bounded, i.e. there

exists a positive constant M such that

jf(t; x)j �M(33)

for every f 2 F ; t 2 R+ and x 2 B[0; r], and satis�es the condition of Lipschitz

jf(t; x1)� f(t; x2)j � Ljx1 � x2j (x1; x2 2 B[0; r])(34)

with a constant L > 0 depending neither on t 2 R+ nor on f 2 F :

Furthermore, we assume that the mean value of f is uniform with respect to (w.r.t.)

f 2 F and x 2 B[0; r]

f0(x) = lim
T!+1

1

T

Z T

0

f(t; x)dt;(35)

i.e. for every " > 0 there exists a l = l(") > 0 such that

j
1

T

Z T

0

f(t; x)dt� f0(x)j < "(36)

for all T � l("); x 2 B[0; r] and f 2 F , and the function f0 does not depend on

f 2 F :

Lemma 5.1. The condition (35) holds if and only if there exists a decreasing con-

tinuous function m : R+ ! R+ , satisfying the condition m(t) ! 0 as t ! 0, such

that

j
1

T

Z T

0

f(t; x)dt� f0(x)j � m(T )(37)

for all T > 0; x 2 B[0; r] and f 2 F . The function m depends neither on x 2 B[0; r]

nor on f 2 F .
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Proof. Denote by

k(T ) := sup
f2F;x2B[0;r]

j
1

T

Z T

0

f(t; x)dt� f0(x)j:(38)

The mapping k possesses the following properties:

(i) 0 � k(T ) � 2M; where M := supfjf(t; x)j : f 2 F ; jxj � rg;

(ii) k(T )! 0 as T ! +1.

Let

cn := sup
T�n

k(T );

then co � c1 � ::: � cn � ::: and cn ! 0 as n ! +1. De�ne now the function

m : R+ ! R+ by the equality

m(t) := cn�1 + (t� n)(cn � cn�1) (n � t � n+ 1; n = 0; 1; :::);

where c�1 := c0 + 1: The lemma is proved.

Lemma 5.2. Let F � C(R�E;E) be a family of functions satisfying the condition

(35), then for every L > 0

l(") := supfj

Z �

0

f(
t

"
; x)dt� f0(x)j : 0 � � � L; f 2 F ; jxj � rg ! 0

as "! 0:

Proof. According to Lemma 5.1 there exists a decreasing continuous function m :

R+ ! R+ with the condition m(t) ! 0 as t ! 0 and such that the inequlity (37)

holds. Let � 2 (0; 1); then

l(") � supfj

Z �

0

f(
t

"
; x)dtj : 0 � � � "

�
; f 2 F ; jxj � rg+

supfj

Z �

0

f(
t

"
; x)dtj : "� � � � L; f 2 F ; jxj � rg =

supf� j
"

�

Z �
"

0

f(t; x)dtj : 0 � � � "
�
; f 2 F ; jxj � rg+(39)

supf� j
"

�

Z �
"

0

f(t; x)dtj : "� � � � L; f 2 F ; jxj � rg �

m(0)"� + Lm("��1)! 0

as "! 0. The lemma is proved.

Under the assumptions above, it is expedient to consider along with equation (32)

the averaged equation

x
0 = "fo(x):(40)

From (35) we see that the function f0 also satis�es the conditions (33) and (34).

Let '(t; x) (0 � t � T0) be a solution of equation

y
0 = f0(y):(41)

taking values in B[0; r] and passing through the point x at the initial moment

t = 0: Then, as can easily be seen, the function '(t; x; ") := '("t; x) is the solution
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of equation (41) on the interval 0 � t �
T0
"
: We will establish below a connection

between '(t; x; ") and the solution '(t; x; f; ") of equation (32) with the initial

condition '(0; x; f; ") = x:

More precisely, we will prove the following assertion.

Theorem 5.3. (Uniform averaging principle) Suppose that on R+ �B[0; r], func-

tions f 2 F satisfy the conditions (33)-(35). Then for any � > 0 there exists an

" > 0 (0 < " < "0) such that the estimate

j'(t; x; f; ")� '(t; x; ")j � � (0 � t �
T0

"
)

holds uniformly w.r.t. f 2 F and x 2 B[0; r]:

Denote by K the family of all solutions (bounded by r) x : [0; T0] ! B[0; r] of the

equation (41). Let us prove an auxiliary assertion.

Lemma 5.4. Let F � C(R �H;H) be a family of functions satisfying the condi-

tions (33)-(35). Then the equality

lim
"!0

Z �

0

f(
s

"
; x(s))ds =

Z �

0

f0(x(s))ds (0 < � � T0)

holds uniformly w.r.t. x 2 K; � 2 [0; T0] and f 2 F :

Proof. Observe that

lim
"!0

Z �

0

f(
�

"
; x)d� = �f0(x)(42)

or, equivalently,

lim
"!0

"

�

Z �

"

0

f(t; x)dt = f0(x)(43)

uniformly w.r.t. x 2 K; � 2 [0; T0] and f 2 F . In fact, according to Lemma 5.2

j
"

�

Z "

�

0

f(t; x)dt� f0(x)j ! 0

as " ! 0 uniformly w.r.t. x 2 B[0; r]; f 2 F and � 2 [0; T0]: Let us note that the

equality (43) is equivalent to (35). From (42) it follows that for any �1; �2 2 [0; T0]

we have

lim
"!0

Z �2

�1

f(
�

"
; x)d� =

Z �2

�1

f0(x)d�

uniformly w.r.t. x 2 B[0; r]; � 2 [0; T0] and f 2 F . Hence for any 0 � �1 < �2 <

:::�n�1 < �n = T0; xk 2 B[0; r] (k = 1; 2; :::; n), we conclude that

lim
"!0

nX
1

Z �k

�k�1

f(�; xk; ")d� =

nX
1

Z �k

�k�1

f0(xk)d�(44)

uniformly w.r.t. x1; x2; :::; xn 2 B[0; r] and f 2 F :

If we introduce the step functions ~xn(�) := x(�k) (�k�1 � � � �k; �k � �k�1 =
1
n
; k = 1; 2; :::; n and x 2 K), then from the equality (44), we have the following
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relation

lim
"!0

Z �

0

f(
s

"
; ~xn(s))ds =

Z �

0

f0(~xn(s))ds:(45)

Under our assumption the family of functions K is equicontinuous on [0; T0] and,

consequently,

sup
x2K

sup
0���T0

k~xn(�)� x(�)k ! 0(46)

as n! +1: Using the condition of Lipschitz (34) for the family of functions F we

obtain the estimate

j

Z �

0

f(
s

"
; x(s))ds �

Z �

0

f0(x(s))dsj �

Z �

0

jf(
s

"
; x(s)) � f(

s

"
; ~xn(s))jds +(47)

j

Z �

0

[f(
s

"
; ~xn(s))� f0( ~xn(s))]dsj+

Z �

0

jf0(x(s)) � f0( ~xn(s))jds �

2LT0 sup
x2K

sup
0���T0

j~xn(�) � x(�)j + j

Z �

0

[f(
s

"
; ~xn(s))� f0( ~xn(s))]dsj:

From (44) - (47) immediately we obtain the results in the lemma.

Proof. of Theorem 5.2. Now we will prove Theorem 5.3. Denote by  (�; x; f; ")

(respectively � (�; x)) a unique solution of equation

x
0 = f(

�

"
; x)(48)

(respectively (41)) passing through point x 2 B[0; r] at the moment � = 0 and de-

�ned on [0; T0
"
]: The functions  (�; x; f; ") and � (�; x) satisfy the integral equations

 (�; x; f; ") = x+

Z �

0

f(
s

"
;  (s; x; f; "))ds

and

� (�; x) = x+

Z �

0

f0( � (s; x))ds;

respectively. Using the condition of Lipschitz (34), we obtain the estimate

j (�; x; f; ")� � (�; x)j = j

Z �

0

[f(
s

"
;  (s; x; f; "))� f0( � (s; x))]dsj �

Z �

0

jf(
s

"
;  (s; x; f; "))� f(

s

"
; � (s; x))jds+ j

Z �

0

[f(
s

"
; � (s; x)) � f0( � (s; x))]dsj �

L

Z �

0

j (s; x; f; ")� � (s; x)jds+ c(");

where

c(") := sup
0���T0;x2K

j

Z �

0

[f0
s

"
; x(s)) � f0(x(s))]dsj:

According to the Gronwall inequality (see, for example,[16] or [19]), we can now

conclude that

j (�; x; f; ")� � (�; x)j � exp(2L�)c(")

and it remains only to note that in virtue of Lemma 5.4, c(")! 0 as "! 0 and

jx(t; ")� y("t)j = j (�; x; f; ")� � (�; x)j � exp(2L�)c(") = exp(2L"t))c(")

for all t 2 [0; T0
"
]: The theorem is thus proved.
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In the next section, we will also need the following lemma.

Lemma 5.5. Let F be a transitive subset of C(R � H;H); i.e. there exists a

function g 2 F such that F = H(g), the hull of g. Then the following two assertions

are equivalent:

(i) There exists f0 2 C(H;H) such that

lim
T!+1

1

T

Z T

0

f(t; x)dt = f0(x)

uniformly w.r.t. f 2 F and x 2 B[0; r];

(ii) There exists f0 2 C(H;H) such that

lim
T!+1

1

T

Z t+T

t

g(�; x)d� = f0(x)

uniformly w.r.t t 2 R and x 2 B[0; r].

Proof. It is evident that (i) implies (ii) because gt 2 F for all t 2 R and, conse-

quently,

1

T

Z t+T

t

g(�; x)d� =
1

T

Z T

0

g(t+ �; x)d� ! f0(x)

as T ! +1 uniformly w.r.t t 2 R and x 2 B[0; r].

Let now " > 0 and f 2 F = H(g); then there exists a sequence ftng � R and

L(") > 0 such that gtn ! f and

j
1

T

Z T

0

g(� + tn; x)d� � f0(x)j < "(49)

for all T > L("). Passing to limit as n! +1 in the inequality (49) we obtain

j
1

T

Z T

0

f(�; x)d� � f0(x)j � "

for all T > L("). From the latter inequality, the required statement immediately

follows. This proves the lemma.

Remark 5.6. All the results of this section are true for arbitrary Banach space

too, not only for Hilbert space.

6. Global averaging principle for the nonautonomous Lorenz

systems

Now we consider a global averaging principle for the nonautonomous Lorenz sys-

tems. Let 
 be a compact metric space and (
;R; �) be a dynamical system on 
.

We consider the \perturbed" nonautonomous Lorenz equation

dx

dt
= "A(!t)x + "B(!t)(x; x) + "f(!t);(50)
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where " 2 [0; "0] ("0 > 0) is a small parameter. Suppose that the conditions (5){(8)

are ful�lled and the following averaging values exist uniformly w.r.t. ! 2 
:

A = lim
T!+1

1

2T

TZ

�T

A(!t)dt;(51)

B = lim
T!+1

1

2T

TZ

�T

B(!t)dt;(52)

and

f = lim
T!+1

1

2T

TZ

�T

f(!t)dt:(53)

Remark 6.1. The conditions (51)�(53) are ful�lled if a dynamical system (
;R; �)

is strictly ergodic, i.e. there exists on 
 a unique invariant measure � w.r.t.

(
;R; �).

Along with equation (50), we will also consider the averaged equation

dx

dt
= "Ax+ "B(x; x) + "f:(54)

If we introduce the \slow time" � := "t (" > 0), then the equations (50) and 54)

can be written as

dx

d�
= A(!

�

"
)x +B(!

�

"
)(x; x) + f(!

�

"
)(55)

and

dx

d�
= Ax+B(x; x) + f:(56)

Remark 6.2. a. From the conditions (7) and (52) it follows that

RehB(u; v); vi = 0(57)

for all u; v 2 H;

b. From the inequality (5) it follows that

RehAx; x)i � ��jxj
2(58)

for all x 2 H.

Theorem 6.3. Assume the conditions enumerated above are all satis�ed. Then

for all T > 0 and � � r0 :=
kfk

�
> 0, the solution for the nonautonomous Lorenz

equation (50) approaches the solution of the averaged Lorenz equation (54) in the

following sense:

maxfj'(t; x; !; ")� '(t; x; ")j : 0 � t � T="; jxj � �; ! 2 
g ! 0(59)

as "! 0, where '(t; x; !; ") ( respectively '(t; x; ")) is a solution of equation (50)

(respectively (54)), passing through point x at the initial moment t = 0.



RECURRENT MOTIONS AND GLOBAL ATTRACTORSOF NONAUTONOMOUS LORENZ SYSTEMS17

Proof. According to Theorem 2.2, we have j'(t; x; !; ")j � � and �'(t; x; ")j � �

for all t � 0; jxj � �; ! 2 
 and " 2 (0; "0]. If we take F := fF! j ! 2 
g �

C(R�H;H), where f!(t; x) := A(!t)x+B(!t)(x; x)+f(!t) for all t 2 R and x 2 H;

then the relation (59) follows from Theorem 5.3. This completes the proof.

Theorem 6.4. (Global averaging principle for nonautonomous Lorenz systems)

Let '" be a cocycle generated by the equation (50). Assume the conditions enu-

merated above are all satis�ed. If the cocycle '"( " 2 [0; "0]) is asymptotically

compact, then the following assertions hold:

(i) The averaged equation (56) admits a compact global attractor I � H;

(ii) For every " 2 (0; "0] the equation (50) has a compact global attractor fI"! j ! 2


g;

(iii) The set I = [fI" j " 2 [0; "0]g is bounded, where I
0 = I and I

" = [fI"! j ! 2


g;

(iv)

lim
"!0

sup
!2


�(I"! ; I) = 0(60)

and, in particular,

lim
"!0

�(I"; I) = 0:

Proof. The �rst three statements of the theorem follow from Theorems 2.2, 3.7

and Remark 6.2. Now we will prove the fourth statement of the theorem. To this

end, we will use the same arguments as in [20, 8]. Let � > 0 and B(I; �) = fx 2

H j �(x; I) < �g. According to orbital stability of the set I (see, for example, [18,

Ch.I] or Theorem 1.2.4 from [13]), for given � there exists Æ = Æ(�) > 0 (we may

consider Æ(�) < �=2) such that

'(t; B(I; Æ)) � B(I; �=2)(61)

for all t � 0. In virtue of boundedness of the set I = [fI" j 0 � " � "0g we may

choose � � r0 such that I � B(0; �) = fx 2 H j jxj < �g. Since I is a compact global

attractor of the system (56), then for the closed ball B[0; �] := fx 2 H j jxj � �g

and the number Æ > 0 there exists T = T (�; Æ) > 0 such that

'(t; B[0; �]) � B(I; Æ=2); t � T:(62)

Let x 2 B[0; �]. Then in virtue of Theorem 6.3 for the numbers � � r0 and

T (�; Æ) > 0 there exists � = �(�; Æ) > 0 such that 0 < " � �; m(") < �=2 (see

(59)), i.e.

j'(t; x; !; ")� '(t; x)j < Æ=2(63)

for all x 2 B[0; �]; ! 2 
; t 2 [0; T="] and 0 < " � �. According to (62)

we have '(T="; x; !; ") 2 B(I; Æ=2). Thus, taking into account (63), we obtain

'(T="; x; !; ") 2 B(I; Æ). Let us take the initial point x1 := '(T="; x; !; ") and we

will repeat for this point the same reasoning as above. Taking into consideration

the equality '(t; x; �(T="; !); ") = '(t+ T="; x; !; "), we will have

j'(t+ T="; x; !; ")j = j'(t; x1)j < Æ=2(64)

for all t 2 [0; T="]; x 2 B[0; �] and ! 2 
, where x1 = '(T="; x; !; ").
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By the inequality (64) we obtain again x2 := '(2T="; x; !; ") 2 B(I; Æ) and, conse-

quently,

'(t+ T="; x; !; ") 2 B(I; �=2 + Æ=2) � B(I; �):

If we continue this process and later (in virtue of uniformity w.r.t. jxj � � and

! 2 
 of the estimation (63) it is possible), we will obtain

'(t; x; !; ") 2 B(I; �)(65)

for all t � T="; x 2 B[0; �]; ! 2 
 and o � " � � and, consequently,

'(t; x; �(�t; !); ") 2 B(I; �)

for all t � T=" and jxj � �. Since I = [fI" j 0 � " � "0g � B(0; �), then according

to Theorem 3.3

I
"
! =

\
t�0

[
��t

'(�; B[0; �]; �(��; !); "):

Therefore, from (65) we have I"! � B(I; �) for all ! 2 
 and 0 < " < �. Note that

� is arbitrarily chosen. Hence from the last inclusion we obtain the equality (60).

The theorem is proved.
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