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ABSTRACT. This article is devoted to the study of dynamics of a nonautonomous Lorenz systems.
These systems are formulated and investigated in the context of nonautonomous dynamical systems.
First, we prove that such systems admit a compact global attractor and characterize its structure.
Then, we obtain conditions of convergence, under which all solutions of the nonautonomous Lorenz
systems approach a point attractor. Third, we derive a criterion for existence of almost periodic,
quasi-periodic, periodic, and recurrent motions. Finally, we prove a global averaging principle for
nonautonomous Lorenz systems.

1. INTRODUCTION

The following n-dimensional systems of differential equations are called autonomous Lorenz systems

[25]:
(1) u; = Zj7kbijkujuk + Xjau; + fi, i=1,2,...,n,

where Xb;;,usujuy is identically equal to zero, Ya;ju;u; is negative definite, and f; are constants. The
well-known three-dimensional Lorenz system for geophysical flows or climate modeling [20] is a special
case of this type of systems. In fact, the

three- dimensional Lorenz systemm is a three-mode t
truncation
of fluid equations for convection.

It is known that solutions of (1) imbed in some ellipsoid and do not leave it later, i.e. the autonomous
system (1) is dissipative, and hence admits a compact global attractor.

In the vector-matrix form the system (1) may be written as:
(2) v = Au+ B(u,u) + f,

where A is a positive definite matrix and B : H x H — H (H is a n-dimensional real or complex
Euclidean space) is a bilinear form satisfying the condition

(3) Re(B(u,v),w) = —Re(B(u,w), v)

for every u,v,w € H.
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When f is not constant but a bounded function of time ¢, it is known that the equation (2) also admits
a compact global attractor [17].

The aim of the present article is to study the nonautonomous version of the equation (2). Namely, in
this case, the matrix A, the bilinear form B, and the function f all depend on time t. This nonau-
tonomous Lorenz system may arise from, for example, an n—mode Galerkin truncation (as in [20, 26])
of the nonautonomous Navier-Stokes equations. Note that the nonautonomous Navier-Stokes equations
may arise, say, when homogenizing a time-dependent boundary condition or when reformulating the
momentum equations along a known unsteady flow (moving the known unsteady flow to the zero flow).
We also treat the evolution equation (2) as a model for developing nonautonomous dynamical systems
ideas about almost periodic and recurrent motions, attractors and global averaging principle. Thus
this class of systems are not only interesting for applications, but also interesting for the theory of
nonautonomous differential equations. Moreover, this is a class of nonlinear nonautonomous dynamical
systems that we have good understanding of asymptotic behavior and recurrent behavior. When these
Lorenz systems are subject to small disturbances or perturbations, an averaging principle is desired.

We will consider issues like compact global attractors, convergence, almost periodic (including periodic
and quasi-periodic) motions and recurrent motions, and averaging principles.

In the last 10-15 years, there have been interesting works on global attractors of nonautonomous systems;
see [9, 10, 11, 24] and references therein. There rae also recent works on global attractors of stochastic
orr random dynamical systems [1, 4, 5, 13, 22]. In this article we only consider the deterministic finite
dimensional nonautonomous dynamical systems.

This paper is organized as follows:

In Section 2 we introduce a class of nonautonomous Lorenz dynamical systems and establish its dissi-
pativity (Theorem 2.2).

In Section 3 we prove that asymptotic compact Lorenz systems admit a compact global attractor
(Theorem 3.7) and we characterize the structure of the global attractor. Furthermore, we obtain
conditions for convergence of these systems (Theorem 3.9), under which each section of the global
attractor contains a single point.

Section 4 is devoted to study of existence of almost periodic (periodic, quasi-periodic) and recurrent
solutions of nonautonomous Lorenz systems (Corollaries 4.2 and 4.6).

In Section 5 we prove a uniform averaging principle for a class of nonautonomous dynamical systems
(Theorem 5.3). With the help of this uniform averaging principle, we prove a global averaging principle
for nonautonomous Lorenz systems on the semi-axis (Theorem 6.4) in Section 6.

2. NONAUTONOMOUS LORENZ SYSTEMS

Let 2 be a compact metric space, R = (—o0, +00), (2, R, ) be a dynamical system on 2 and H be a real
or complex Hilbert space. We denote L(H) (L?(H)) the space of all linear (bilinear) endomorphisms on
H. When W is some metric space, C'(£2, W) denotes the space of all continuous functions f : Q@ — W ,
endowed with the topology of uniform convergence.

Let us consider the nonautonomous Lorenz system

(4) ' = A(wt)u + B(wt)(u,u) + f(wt), weQ,
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where wt = o(t,w), A € C(Q,L(H)),B € C(,L*(H)) and f € C(Q,H). Note that when the
autonomous Lorenz system (2) is perturbed by periodic, quasi-periodic, almost periodic or recurrent
forces, it can then be written as (4). Moreover, we assume that the following conditions are fulfilled:

(i) There exists o > 0 such that

(5) Re(A(w)u,u) < —alul?
for all w € Q and u € H, where |- | is a norm in H, generated by the scalar product (-, -);
(ii)
(6) R€<B(CU)(U,’U),UJ> = —Re(B(w)(u,w),v)

for every u,v,w € H and w € Q0 .
Remark 2.1. a. It follows from (6) that
(7) Re(B(w)(u,v),v)) =0
for every u,v € H and w € Q.
b. From bilinearity and continuity, we obtain
(8) [B(w)(u,v)| < Cplullv]
for all u,v € H and w € Q, where Cp = sup{|B(w)(u,v)| : w € Q, u,v € H, |u| <1, and |v] < 1}.

We will call the system (4) with conditions (5) and (6) a nonautonomous Lorenz system or a nonau-
tonomous system of hydrodynamic type.

We note that from the conditions (6) -(8) it follows that
9) |B(w)(x1,21) = B(w)(w2, 22)| < Cp(|z1] + |22])]21 — 22
for all x1,22 € H and w € Q.

Since the coefficients of (4) are locally Lipschitzian with respect to u € H, through every point z € H
passes a unique solution ¢(t,x,w) of equation (4) at the initial moment ¢ = 0. And this solution is
defined on some interval [0,%(, ,,)). Let us note that

w'(t) = 2Re(Y' (t, x,w), p(t, 7, w)) = 2Re(A(wt)p(t, z,w), o(t, z,w)) +
2Re(B(wt)(p(t, z,w), o(t, z,w)), p(t, z,y)) + 2Re(f (wit), o(t, z,w))
(10) = 2Re(A(wt)p(t, z,w), p(t, z,w)) + 2Re(f (wt), o(t, z,w))

< —2alp(t,z,w)]* + 2| flle(t, 2, W),
where || f]] := max{|f(w)| : w € Q} and w(t) = |p(t, z,w)|?. Then

(11) w' < —2aw + 2| f|lw?.
Thus
(12) w(t) < o(t)

for all ¢ € [0,%(4,.,), where v(t) is a solution of equation
(13) v = 20w + 2||f[[v?,

satisfying condition v(0) = w(0) = |z|. Hence

(14) o) = [(je] — 1Ly emor o Wle
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and consequently

A1 e, I
(15) lo(t, 2z, w)| < (|z] - 7)6 + o

for all t € [0,%(4,4,))- It follows from the inequality (15) that solution ¢(t,x,w) is bounded and therefore
it may be extended to a global solution on R} = [0, 4+00).

Thus we have proved the following theorem.

Theorem 2.2. (Dissipativity) Let the conditions (5) and (6) are fulfilled. Then the following statements
hold:

(i)
(16) lp(t, 2, w)| < C(|]),

forall t>0, weQ and x € H, where C(r) =1 ifr > 1o = Ul and C(r) =rg if r <ro;

[0

(17) limsup sup{|¢(t,z,w)| : |z] < rw e Q} < H%'
t——4o00

for every r > 0.

The item (i) in this Theorem means that the nonautonomous Lorenz flow is bounded on bounded
sets, while the item (ii) implies that the nonautonomous Lorenz system is dissipative, i.e., it admits a
bounded absorbing set.

3. NONAUTONOMOUS ATTRACTORS AND THEIR STRUCTURE

Let Q and W be two metric spaces and (2,R,0) be an autonomous dynamical system on 2. Let us
consider a continuous mapping ¢ : RT™ x W x 2 — W satisfying the following conditions:

30(07 '7("')) = ZdW g&(t + T,Jf,(.d) = QO(t,gO(T,J?,W),CUT)

for all t,7 € Rt, w € Q and x € W. Here wr is the short notation for o, (w) := o(7,w). Such a mapping
¢ (or more explicitly (W, ¢, (2,R,0))) is called a cocycle on (Q, R, o) with fiber W; see [1, 23].

Example 3.1. Let E be a Banach space and C(R x E,E) be a space of all continuous functions
F: R x E — FE equipped by the compact-open topology. Let us consider a parameterized differential
equation

dx
i Flow,z), we
on a Banach space E with Q = C(R x E| E), where oyw := o(t,w). We will define oy : Q — Q by

ow(-,+) = w(t+-,-) for each t € R and interpret ¢(t,z,w) as solution of the initial value problem
d
—x
dt
Under appropriate assumptions on F: Q x E — E (or even F : R XxE — E with w(t) instead of oyw

in (18)) to ensure forward existence and uniqueness, then ¢ is a cocycle on (C(R x E,E),R, o) with
fiber E.

(18) (t) = F(ow,z(t)), z(0)==x.
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Let ¢ be a cocycle on (2, R, o) with the fiber E. Then the mapping 7 : RT x E x Q — E x Q defined
by

m(t,z,w) = (p(t, z,w), orw)
for all t € RY and (z,w)€ E x Q forms a semi-group {7 (¢, -, ) };cr+ of mappings of X := Q x F into
itself, thus a semi-group dynamical system on the state space X, which is called a skew-product flow
[23]. The triplet ((X,R4,m), (2, R,0),h) (where h := pro : X — Q) is a nonautonomous dynamical
system; see [3, 9].

A cocycle ¢ over (Q,R, o) with the fiber W is called a compact (bounded) dissipative cocycle, if there
is a nonempty compact set K C W such that

(19) Jim sup{S(U(¢w)M, K) |we Q} =0

for any M € C(W) (respectively M € B(W)), where C(W)( B(W)) denotes the family of all compact
(bounded) subsets of W, 3 is the semi-distance of Hausdorff and U(t,w) := ¢(t, -, w). We can similarly
define a compact or bounded dissipative skew-product system.

Lemma 3.2. Let Q be a compact metric space and (W, ¢, (Q,R, o)) be a cocycle over (Q, R, o) with the
fiber W. In order for (W, p, (Q,R,0)) to be compact (bounded) dissipative, it is necessary and sufficient
that the skew-product dynamical system (X,R,m) is compact (bounded) dissipative.

This assertion directly follows from the corresponding definitions (see for example [14],[9]).

We now define whole trajectories of the semi-group dynamical system (X, R, 7) (or whole trajectories
of the cocycle (W, ¢, (2, R, o)) over (2, R, o) with the fiber W). A whole trajectory passes through the
point x € X ((u,y) € W x Q) is a continuous mapping v : R — X (or v : R — W) which satisfies the
conditions : v(0) =z (‘or v(0) = u) and 7'y(7) = y(t+7) (or v(t+7) = p(t,v(7),wT)) for all t € Ry
and 7 € R.

Moreover, for M C W, we denote by

(20) QM) = (U ¢l M)
t>0T1>t
for every w € 2, where w™" := o(—7,w). This formula is useful in the construction of global attractors.

We recall the following result.

Theorem 3.3. ([7],[9]) Let Q be a compact metric space, (W, p,(Q,R,0)) be a compact (bounded)
dissipative cocycle and K be the nonempty compact set in the dissipation property (19). Then the
following assertions hold:

(i) The set I, := Q,(K) # 0, is compact, I, C K and
(21) lim BU(t,w K, 1,)=0

t——+oo

for every w € Q;
(ii) U(t,w)ly = Lyt for allw € Q and t € Ry ;
(iii)
(22) lim BU(t,w " )M,I,) =0

t——+o0

for all M € C(W) (respectively M € B(X)) and w € Q ;
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(23) Jim sup{B(U (1w )M, Dlw € 0} = 0

for any M € C(W) (respectively M € B(X)) , where I = U{l, : w € Q};
(v) I, :=pridy, for allw € Q, where J is a Levinson’s centre of (X,Ry,7), and, hence, I = priJ;
(vi) The set I is compact;
(vil) The set I is connected if the spaces W and 2 are connected.

Note that a Levinson’s centre is defined in [12, 15]. Now we define the concept of compact global
attractors. The family of compact sets {I,|w € Q} (I, C W is nonempty compact for every w € Q) is
called the compact global attractor of cocycle ¢ if the following conditions are fulfilled [7]:

(i) The set I :=|J{I,] w € Q} is precompact, i.e. its closure is a compact set.
(i) {l,| w € Q}isinvariant w.r.t. the cocycle @, i.e. p(t,w,I,) = I,,, for all t € R} and w € Q.
(iii) The equality . li? sup B(¢(t, K,w),I) = 0 holds for every nonempty bounded set K C W.
TP we Q

The set I, will be called a section of the global attractor.

Corollary 3.4. Under the conditions of Theorem 3.3, the cocycle ¢ admits a compact global attractor.

Dynamical system (X,Ry,7) is called asymptotic compact (see [14]) if for any positively invariant
bounded set A C X , there is a compact K4 C X such that

(24) lim B(r'A, Ka) = 0.

t——+oo

Dynamical system (X,R,, ) is called compact

or completely continuous, if for every bounded set A C X there exists a positive number { = [(A) such
that the set 7' A is precompact, i.e., the closure of this set is compact.

It is easy to verify (see for example [9]) that every compact dynamical system (X, R, 7) is asymptotic
compact.

The cocycle (W, ¢, (Y, R, o) is called compact (asymptotic compact, respectively) if the associated skew-
product dynamical system (X, R, 7) with X = W xY and 7 = (¢, 0) is compact (asymptotic compact,
respectively).

Let (X,R4,m) be compact dissipative and K be a compact set, which attracts all compact subsets of
X. Let

(25) J =Q(K),

where Q(K) = (,59U,>; 7K. The set J defined by the equality (25) does not depend on selection
of the attracting set K, and is characterized only by the properties of the dynamical system (X, R, )
itself. The set J is called the Levinson’s centre of the compact dissipative system (X,R., 7).

Theorem 3.5. ([7],[9]) Let (E,$,h) be a local-trivial Banach fibering, ((E,Ry,m), (Q,R,0),h) be a
nonautonomous dynamical system and the dynamical system
(E,Ry,m) be completely continuous. Then the following two statements are equivalent :

(i) There is a positive number r such that for any x € X there will be 7 = 7(x) > 0 for which
|z7| < r; here x7 := (T, ).
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(ii) Dynamical system (E,R, ) is compact dissipative and

(26) lim sup p(xt,J) =0
oo le<r
for any R > 0, where J is a Levinson’s centre of dynamical system (E,R.,m), that is, the
nonautonomous system ((E,Ry, ), (Q,R,0),h) admits a compact global attractor J.

A dynamical system (X,Ry,7) satisfies conditions of Ladyzhenskaya (see [18] and also [9]) if for any
bounded set A C X there is a compact K4 C X such that the equality (24) holds.

Theorem 3.6. ([7],[9]) Let ((E,Ri,7),(Q,R,0),h) be a nonautonomous dynamical system and let
(E,R,7) satisfy the condition of Ladyzhenskaya. Then the statements (i) and (ii) of Theorem 8.5 are
equivalent.

Applying the above general theorems about nonautonomous dissipative systems to nonautonomous
system constructed in the example 3.1, we will obtain series of facts concerning the nonautonomous
Lorenz system (4). In particular, from Theorems 2.2, 3.3 and 3.6, we have the following results.

Theorem 3.7. (Compact global attractor) Let Q be a compact metric space, (2, R, o) be a dynamical
system on S and the conditions (5) and (6) are fulfilled. If the cocycle ¢ generated by nonautonomous
Lorenz system (4) is asymptotic compact, then for every w € S, there exists a non-empty compact
connected set I,, C H such that the following conditions hold:

(i) The set I =U{l, : w € Q} is compact and connected in H;
(if)
lim sup B(U(t,w ")M,I) =0
=400,

for any bounded set M C H, where U(t,w) = ¢(t,-,w) and 3 is the semi-distance of Hausdorff;
(i) U(t,w)l, = It for allt € Ry and w € Q;
(iv) 1, consists of those and only those points x € H, such that a bounded solution (on R) of the

nonautonomous Lorenz system (4) passes through x.

This theorem states that I = U{l,, : w € Q} is the compact global attractor of the nonautonomous
Lorenz system (4) and also characterizes the structure of the sections I, of the attractor.

Theorem 3.8. (Flow estimate on sections of global attractor) Under conditions of Theorem 3.7

(27) fott, )] <
forallt e R, w e Q and x € 1, where ¢ is the cocycle generated by Lorenz nonautonomous system

(4). This establishes the flow estimate on each section of the compact global attractor.

Proof. According to Theorem 3.3 the set J = (J{I, X {w} : w € 2} is a Levinson’s centre of dynamical
system (X, Ry, 7) and according to (25) for any point (ug,yo) = z € J there exists t,, — +oo,u, € H

and w, € Q such that the sequence {u,} is bounded, up = Um @(tn, un,w,) and wy = lm  wpty,.
n—-+oo n——+oo

From the inequality (15), it follows that |ug| < %, ie. p(t,z,w) € I, for all w € Q and ¢t € R, hence
lo(t, z,w)| < @ for any t € R,z € I, and w € Q. The theorem is proved. O

Theorem 3.9. (Convergence Theorem) Let ¢ be the cocycle generated by the Lorenz nonautonomous
system (4). Under conditions of Theorem 3.7 and further assume that a=2Cp||f|| < 1. Then this
cocycle ¢ is convergent, i.e. for any w € Q) the set I, contains a single point u,,.
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Proof. Let w € Q and uy,ug € I,,. We define 9(t) = o(t, u1,w) — ¢(t, uz,w) and

(28) w(t) = ‘Qo(tvuhw) - (p(t,UQ,W)|2.

According to Theorem 3.8, the function w(t) is bounded on R. On the other hand, in view of (10) and
(5), we have

(29) w'(t) < —20w(t) + 2Re(B(wt)(¥(1), o(t, uz, w)), ¥ (t))-
From the inequalities (9), (29) and Theorem 3.8, it follows that

w'(t) < —2aw(t) + 203%Hw(t).

Hence, w(t) < w(0)e~2@=CalEht o

‘@(tuh(ﬂ) - (P(t7’11/2,w)| < |u1 — u2|6_(a—HQﬂCB)t
for all £ > 0, w € @ and uy,up € I,. In particular,
(30) |u1 - u2| < |90(t7 90(7757 Uut, U(it#‘j))?w) - 90(757 @(*ty Uz, U(*t,w))ywﬂei(a*@cB)t

for all t > 0,w € Q and uy, us € J,. Note that |p(t, ur,w) — ¢(t, uz,w)| is bounded on R. Thus from
(26) it follows that u; = ug, where p(—t,2,w) 1= Uyt ) forallz € I, t > 0 and w € Q. The theorem
is proved. O

4. ALMOST PERIODIC MOTIONS AND RECURRENT MOTIONS

In this section, we discuss almost periodic and recurrent solutions of nonautonomous Lorenz systems.
Let T =R or Ry and (X, T, n) be a dynamical system. Let p be a metric on X. The point z € X is
called a stationary (7-periodic, 7 > 0,7 € T) point, if zt = x (z7 = x respectively) for all ¢t € T, where
at == 7w(t, x).

A number 7 € T is called € > 0 shift (almost period) of point x € X if p(a7,z) < e (p(z(r + 1), xt) < ¢,
for all t € T, respectively).

A point z € X is called almost recurrent (almost periodic) if for any € > 0, there exists a positive
number [ such that on any segment of length [, there is a e shift (almost period) of point z € X.

If a point z € X is almost recurrent and the set H(z) = {at | ¢ € T} is compact, then z is called
recurrent.

The solution ¢(t, z,w) of nonautonomous Lorenz system (4) is called recurrent (almost periodic, quasi-
periodic, periodic), if the point (z,w) € H x Q is a recurrent (almost periodic, quasi-periodic, periodic)
point of skew-product dynamical system (X,R;,7) (X = H x Q and m = (¢, 0)).

We note (see, for example, [21] and [19]) that if w € Q is a stationary (7-periodic, almost periodic,
quasi periodic, recurrent) point of dynamical system (Q,R,0) and h : Q@ — X is a homomorphism of
dynamical system (€2, R, o) onto (X, R, m), then the point = h(w) is a stationary (7-periodic, almost
periodic, quasi periodic, recurrent) point of the system (X, R, 7).

Let X = H x Q and m = (p,0), then mapping h : Q@ — X is a homomorphism of dynamical system
(Q,R,0) onto (X,Ry,m) if and only if h(w) = (u(w),w) for all w € €2, where u : Q@ — H is a continuous
mapping with the condition that u(wt) = ¢(t, u(w),w) for all w € Q and t € R;.
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Theorem 4.1. Let Q be a compact metric space and suppose the cocycle p, generated by the nonau-
tonomous Lorenz system (4), is asymptotic compact. If the conditions (5), (7)-(8) are fulfilled with
Hf(‘}# < 1, then the set I, contains a unique point x,, (I, = {x,}) for every w € Q, the mapping

u:Q — H defined by u(w) := x,, is continuous and u(wt) = o(t,u(w),w) for allw € Q and t € Ry.

Proof. According to Theorems 3.3 and 3.9, it is sufficient to show that the mapping u : Q2 — H defined
above is continuous. Let w € Q,{w,} C 2 and w, — w. Consider the sequence {z,} = {z,, } C I :=
U{L, | w € Q}. Since the set I is compact, then the sequence {x,} is precompact. Let z’ be a limit
point of this sequence, then there is a subsequence {zj, } such that zy, — z’. Let J be a Levinson’s
centre of the skew-product dynamical system (X,R.,7), generated by the cocycle ¢. Note that the
point (zy,,wr,) € Ju,, = L, *x{wk,} € J and taking in the consideration that J is compact we
obtain that (z',w) € J. Thus (2/,w) € J, = I, x {w} and, consequently, 2’ € I, = {z,}, i.e. the
precompact sequence {z,} has a unique limit point x,,. This means that the sequence {z,} converges
to x, as n — 400. The theorem is proved. (Il

Corollary 4.2. Let Q be a compact minimal (almost periodic minimal, quasi-periodic minimal or
periodic minimal) set of dynamical system (Q,R, o). Then under the conditions of Theorem 4.1, the
nonautonomous Lorenz system (4) admits a compact global attractor I, and for all w € Q, the section
1, of the attractor contains a unique point x,, through which passes a recurrent (almost periodic, quasi-
periodic, or periodic) solution of equation (4).

Let H be a d-dimensional complex Euclidean space, i.e. H = C%. Denote by HC(C% x Q, C%) the space
of all continuous functions f : C% x  — C? holomorphic in z € C* and equipped with compact-open
topology. Consider the differential equation

d
(31) == frow), Wew)
where f € HC(C? x Q,C%). Let o(t,w, z) be the solution of equation (31) passing through point z at
t = 0 and defined on R*. The mapping ¢ : RT x Q x C? — C? has the following properties (see, for

example, [12] and [15]):
a) p(0,z,w) = z for all z € CY.
b) p(t +7,2,w) = (t, (T, 2,w),0,w) for all t,7 € R*,w € Q and z € C™.
¢) Mapping ¢ is continuous.
d) Mapping U(t,w) := o(t,-,w) : C* — C? is holomorphic for any ¢t € R* and w € €.

The cocycle (C?, ¢, (Q,T,0)) is called (see [8],]9]) C-analytic if the mapping U(t,w) : C* — C? is
holomorphic for all ¢ € Ry and w € €.

Example 4.3. Let (HC(R x C4,C%),R, ) be a dynamical system of translations on HC(R x C%, C?)

(Bebutov’s dynamical system (see, for evample, [21] and [9])). Denote by F the mapping from C% x

HC(R x C%,C%) to C? defined by equality F(z, f) := f(0,z) for all z € C and f € HC(R x C%,C%).

Let Q be the hull H(f) of given function f € HC(R x C%, C%), that is Q = H(f) := {f-|7 € R}, where

f-(t,2) :== f(t +7,2) for all t,7 € R and z € C%. Denote the restriction of (HC(R x C¢,C?%),R,0) on

Q by (U R,0). Then, under appropriate restriction on the given function f € HC(R x C% C%), the
dz

differential equation S = f(z,t) = F(z,0¢f) generates a C—analytic cocycle.

Theorem 4.4. ([8]) Let 2 be a compact minimal (almost periodic minimal, quasi-periodic minimal, or
periodic minimal) set of dynamical system (Q,R,0), and let (C% ¢, (Q,T,0)) be a C—analytic cocycle
admitting a compact global attractor {1,| w € Q}. Then the following assertions hold:
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i) For every w € Q, the set I, consists of a unique point u(w).
(i) u(ow) = p(t,u(w),w) for allw € Q and t € R,.
il) The mapping w — v(w) is continuous, where v := (u, Idg).
)
)

(

i
(iv) Ewery point y(w) is recurrent (almost periodic, quasi-periodic or periodic).
(v) The continuous invariant section v is global uniformly asymptotically stable, i.e.
a. The fact that for arbitrary € > 0, there exists §(e) > 0 such that p(z,v(w)) < §, implies
plp(t,w, z),v(ow)) < e for allt >0 and w € Q.
b.

lim p(p(t, z,w),u(oww)) =0

t——+o0

for allw € Q and z € C.

Theorem 4.5. Let H = C%, Q be a compact minimal set and the conditions (5), (7)-(8) are fulfilled.
Then the nonautonomous Lorenz system admits a compact global attractor {I, | w € Q} and the set I,
contains a unique point x, (I, = {x,}) for every w € Q, the mapping u : Q@ — H defined by equality
u(w) =z, s continuous and u(wt) = @(t, u(w),w) for allw € @ and t € Ry, where ¢ is a cocycle
generated by the nonautonomous Lorenz system.

Proof. We note that under the conditions of Theorem 4.5 the right-hand side f(w,z) := A(w)z +
B(w)(z,2) + f(w) is C-analytic because D, f(w,z)h = A(w)h + B(w)(h,z) + B(w)(z,h) for all w € Q
and z € C¢, where D, f(w,z) is a derivative of function f(w,z) w.r.t. z € C% Now our statement
directly results from Theorems 3.7 and 4.4. The proof is complete. |

Corollary 4.6. (Almost periodic and recurrent motions) Let  be a compact minimal (almost periodic
minimal, quasi-periodic minimal or periodic minimal) set of dynamical system (Q,R o). Then under
the conditions of Theorem 4.5, the nonautonomous Lorenz system (4) admits a compact global attractor
I and for all w € Q, the set I, contains a unique point x,, through which passes a recurrent (almost
periodic, quasi-periodic or periodic) solution.

5. UNIFORM AVERAGING PRINCIPLE
Now we consider a uniform averaging principle for a general class of differential equations. In the next
section, we apply this averaging principle to the nonautonomous Lorenz system (4).

Let C(R x H, H) be the space of all continuous functions f : R x H — H equipped with compact open
topology and let F C C'(R x H,H). In Hilbert space H (with the norm | - | induced by the scalar
product) we will consider the family of equations

(32) o' =cf(t,z), feF,
containing a small parameter € € [0, 0] (g, > 0).

We assume that on the set Ry x B[0,r], where B[0,r] := {x € H | |z| < r} is a ball of radius r > 0 in
H, the functions f € F are uniformly bounded, i.e. there exists a positive constant M such that

(33) |f(t,z)] < M
for every f € F, t € Ry and x € BJ[0,r], and satisfies the condition of Lipschitz
(34) |f(t,21) = f(t,22)] < Llzy — 32 (21,32 € B[O, 7])

with a constant L > 0 depending neither on ¢t € Ry nor on f € F.
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Furthermore, we assume that the mean value of f is uniform with respect to (w.r.t.) f € F and

x € B[0,7]

T—+o00

T
(35) fole) = jtim 7 [ seajan

i.e. for every € > 0 there exists a Il = [(¢) > 0 such that

T
(36) 7 [ fea— <

for all T > I(¢), € B[0,r] and f € F, and the function f; does not depend on f € F.

Lemma 5.1. The condition (35) holds if and only if there exists a decreasing continuous function
m: Ry — Ry, satisfying the condition m(t) — 0 as t — 0, such that

(37) 7 [ St @) <)

for allT >0, x € B[0,r] and f € F. The function m depends neither on x € B[0,r] nor on f € F.

Proof. Denote by
1 (T
(39) MT) = swp (o [ ke o)
feF,x€B[0,r] 0

The mapping k possesses the following properties:

(i) 0 < k(T) < 2M, where M :=sup{|f(t,x)| : feF,|z|<r}
(ii) k(T) — 0 as T — +o0.
Let
¢ = sup k(T),

T>n

then ¢, > ¢1 > ... > ¢, > ... and ¢, — 0 as n — +00. Define now the function m : Ry — Ry by the
equality

m(t) i =ch_1+(Et—n)(ch —cn_1) M<t<n+1,n=0,1,..),

where c_1 := ¢y + 1. The lemma is proved. O

Lemma 5.2. Let F C C(R x E,E) be a family of functions satisfying the condition (35), then for
every L > 0

l(e) = sup{|/0Tf(z,x)dtf0(ac)| c0<7<L, feF, |zg|<r}—0

as € — 0.
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Proof. According to Lemma 5.1 there exists a decreasing continuous function m : Ry — R, with the
condition m(t) — 0 as t — 0 and such that the inequality (37) holds. Let v € (0,1), then

z(g)gsupﬂ/ f(g,a:)dt\ L0<T<e fEF, ol <+
0
sup{\/ f(é,x)dﬂ e <7<L, feF, |jz|<r}=
0
(39) Sup{T‘E/E fta)dt]  0<r<e, feF, ol <r}+
T Jo

sup(r|S [* fta)dt] ¥ ST <L feF fol v <
0

m(0)e” + Lm(s"™) — 0

as € — 0. The lemma is proved. O

Under the assumptions above, it is expedient to consider along with equation (32) the averaged equation
(40) ' =ef,(x).

From (35) we see that the function fy also satisfies the conditions (33) and (34). Let ¢(t,x) (0 <t < Tp)
be a solution of equation

(41) y' = fo(y).

taking values in B[0, 7] and passing through the point x at the initial moment ¢ = 0. Then, as can easily
be seen, the function (¢, z, ) := @(et, z) is the solution of equation (41) on the interval 0 < ¢ < % We

will establish a connection between ¢(t,x, ) and the solution (¢, z, f,e) of the unaveraged equation
(32) with the initial condition ¥(0,z, f,€) = .

More precisely, we will prove the following assertion.

Theorem 5.3. (Uniform averaging principle) Suppose that on Ry x B0, r] the function f € F satisfy
the conditions (33)-(35). Then for any n > 0 there exists an e > 0 (0 <& < ep) such that the estimate

holds uniformly w.r.t. f € F and x € B[0,r].

We need an auxiliary result in order to

prove this theorem. Denote by K the family of all solutions (bounded by r) x : [0,Ty] — B[0,7] of the
equation (41).

Lemma 5.4. Let F C C(R x H, H) be a family of functions satisfying the conditions (33)-(35). Then
the equality

lim/o f(g,x(s))ds :/0 fo(z(s))ds, 0<7<Ty

e—0

holds uniformly w.r.t. x € I, T € [0,To] and f € F.

Proof. Observe that

(42) lim /OT f(g,x)dr = 7fo(x)

e—0
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or, equivalently,

(43) lim — / ft,x)dt = fo(x)

e—=0T

uniformly w.r.t. 2 € K, 7 € [0,Tp] and f € F. In fact, according to Lemma 5.2

|§/0? F(t,2)dt — fo(z)| — 0

as ¢ — 0 uniformly w.r.t. € B[0,r], f € F and 7 € [0,Tp]. Let us note that the equality (43) is
equivalent to (35). From (42) it follows that for any 71,72 € [0, Tp] we have

lim ’ f(;x)dT = / ’ fo(z)dr

e—0 -

uniformly w.r.t. « € B[0,r], 7 € [0,Tp] and f € F. Hence for any 0 < 71 < 75 < .71 < Tpp =
To, xx € B[0,7] (k=1,2,...,n), we conclude that

(44) gii%z/ﬂ“ f(T,%g)dT:Z/Tk Folan)dr
1 Tk—1 1 Tk—1

uniformly w.r.t. z1,z9,...,z, € B[0,r] and f € F.

If we introduce the step functions &, (7) := z(7%) (Tp—1 <7 < 75 Tk — The1 = %; k=1,2,...,n and
x € K), then from the equality (44), we have the following relation

(45) lim / 72 aa(s))ds = /0 fol@

Under our assumption the family of functions K is equicontinuous on [0, Tp] and, consequently,

(46) sup sup |[|Zn(7) —2(7)[| — 0
zeK 0<7<T,

as n — +o00. Using the condition of Lipschitz (34) for the family of functions F we obtain the estimate

(47) I Tf(fm(s))ds . / otateds| < [ If(;:v(S)) — 7 (s)) s+

| / ~ folea(s)))ds| + / Fola(s)) — foldn(s))lds <

2LTysup sup |Z,(7) —z(7T)| + |/ — fo(2n(5))]ds|.
zeK 0<7<Ty
From (44) - (47) immediately we obtain the results in the lemma. O

Now we prove Theorem 5.3.

Proof. of Theorem 5.3. Denote by (7, x, f, ) (respectively 1(7,z)) a unique solution of equation
(48) 7 = f(Z,a)
€

(respectively (41)) passing through point = € B[0,7] at the moment 7 = 0 and defined on [0, £2]. The
functions ¢(7,z, f,e) and (7, z) satisfy the integral equations

’(/J(T,l‘,f,E) = x+/0 f(g,’(/J(S,x,f,E))dS
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and
Y(1, ) =2 +/ fo(ih(s,x))ds,

respectively. Using the condition of Lipschitz (34), we obtain the estimate

o f.6) = Bl = | [ 000 1,6)) = folilo,a)lds] <
|G vtz o) = FC bl +| [ 1Ebs.) = foli(s.a)lds| <

L/ |’(/}(87.’£,f,€)—'I/_J(S,if)|d8+6(€),
0
where

c(e) = sup |/ fo* z(s)) — fo(x(s))]ds|.

0<7<Ty,zeK
According to the Gronwall-Bellman inequality [15], we can now conclude that

(7,2, f.e) — ¥(r,2)| < exp(2L7)c(e)
and it remains only to note that in virtue of Lemma 5.4, ¢(¢) — 0 as ¢ — 0 and
|2(t,€) = y(et)| = [ (1,2, f,e) — (7, 2)| < exp(2LT)c(e) = exp(2Let))c(e)
for all ¢ € [0, %] The theorem is thus proved. O

In the next section, we will also need the following lemma.

Lemma 5.5. Let F be a transitive subset of C(R x H, H), i.e. there exists a function g € F such that
F = H(g), the hull of g. Then the following two assertions are equivalent:

(i) There exists fo € C(H, H) such that

T—+oco T

lim / f(t,z)dt = fo(x)

uniformly w.r.t. f € F and xz € B[0,r];
(ii) There exists fo € C(H, H) such that

T
lim l/ g(r,z)dT = fo(x)

T—+4o00 T

uniformly w.r.t t € R and x € B0, r].
Proof. Tt is evident that (i) implies (ii) because g, € F for all ¢ € R and, consequently,

1 [T 1 (T
T/ g(t,x)dr = T/ gt + 7, 2)dr — fo(x)
t 0

as T — +oo uniformly w.r.t ¢ € R and z € B[0,r].

Let now € > 0 and f € F = H(g), then there exists a sequence {t,} C R and L(g) > 0 such that
g, — f and

T
(49) I%/0 9(7 + tn,x)dT — fo(z)] <&
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for all T'> L(e). Passing to limit as n — +o0o in the inequality (49) we obtain

T
|%/O f(r,x)dr — fo(z)| < e

for all T > L(e). From the latter inequality, the required statement immediately follows. This proves
the lemma. ]

Remark 5.6. All the results of this section are also true in an arbitrary Banach space, not only for
Hilbert spaces.

6. GLOBAL AVERAGING PRINCIPLE

Now we consider a global averaging principle for the nonautonomous Lorenz systems. Let 2 be a
compact metric space and (2, R, o) be a dynamical system on 2. We consider the “perturbed” nonau-
tonomous Lorenz equation

d
(50) ditc = eA(wt)z + eB(wt)(z, x) + e f(wt),
where € € [0,e0] (g9 > 0) is a small parameter. Suppose that the conditions (5)—(8) are fulfilled and

the following averaging values exist uniformly w.r.t. w € Q:

T

(51) A= TETOO 5T / A(wt)dt,
T
. T

(52) B= TETDO oT / B(wt)dt,
=T

and

. T

(53) f= TEIEOO T / fwt)dt.
-7

Remark 6.1. The conditions (51) — (53) are fulfilled if a dynamical system (Q, R, o) is strictly ergodic,
i.e. there exists on Q a unique invariant measure p w.r.t. (,R,0).

Along with equation (50), we will also consider the averaged equation

d _ _ _
(54) d—fzsAm—l—sB(x,x)—&—af.
If we introduce the “slow time” 7 := et (¢ > 0), then the equations (50) and 54) can be written as
d
(55) T = AwDa+ Bwo)(@a) + ()
and
de — = —
(56) — = Ax+ B(z,z) + f.
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Remark 6.2. a. From the conditions (7) and (52) it follows that
(57) Re(B(u,v),v) =0
for allu,v € H;

b. From the inequality (5) it follows that

(58) Re(Ax,2)) < —alz|?

forallxz € H.

Theorem 6.3. Assume the conditions enumerated above are all satisfied. Then for all T > 0 and
p>rg = @ > 0, the solution for the “perturbed” monautonomous Lorenz equation (50) approaches
the solution of the averaged Lorenz equation (54) in the following sense:

(59) max{|p(t,z,w,e) —P(t,x,e)|: 0<t<T/e, |z|<p, weO}—0

as € — 0, where p(t,z,w, ) ( respectively B(t,x,€)) is a solution of equation (50) (respectively (54)),
passing through point x at the initial moment t = 0.

Proof. According to Theorem 2.2, we have |p(t,z,w,e)| < p and @(t,z,e)| < p for all t > 0, |z| <
p,w € Qand € € (0,e0]. If we take F := {F, | w € Q} C C(R x H, H), where f,(t,z) := A(wt)z +
B(wt)(z,z) + f(wt) for all t € R and = € H, then the relation (59) follows from Theorem 5.3. This
completes the proof. O

Theorem 6.4. (Global averaging principle for nonautonomous Lorenz systems) Let . be the cocycle
generated by the “perturbed” monautonomous Lorenz system (50). Assume the conditions enumerated
above are all satisfied. If the cocycle v ( € € [0,e0]) is asymptotic compact, then the following assertions
hold:

(i) The averaged equation (56) admits a compact global attractor I C H;
(ii) For every e € (0,&0] the equation (50) has a compact global attractor {I; | w € Q};
(iii) The set I = U{I¢ | € € [0,&0]} is bounded, where I° =T and I¢ = U{I%, | w € Q};
(iv)
(60) lim sup (I, 1) =0
e—=0,e0

and, in particular,

lim B(1°,T) = 0.

£—

Proof. The first three statements of the theorem follow from Theorems 2.2, 3.7 and Remark 6.2. Now
we will prove the fourth statement of the theorem. To this end, we will use the same arguments as in
[16, 6]. Let A > 0 and B(I,\) = {z € H | p(x,I) < A\}. According to orbital stability of the set T
(see, for example, [14, Ch.I] or Theorem 1.2.4 from [9]), for given A there exists 6 = §(A) > 0 (we may
consider 6(A) < A/2) such that

(61) B(t, B(I,6)) € B(I,\/2)

for all ¢ > 0. In virtue of boundedness of the set I = U{I° | 0 < e < g9} we may choose p < rg such
that I C B(0,p) = {x € H | |z| < p}. Since I is a compact global attractor of the system (56), then for
the closed ball B0, p] := {z € H||z| < p} and the number 6 > 0 there exists T'= T'(p,d) > 0 such that

(62) ®(t, Bl0,p]) c B(I,6/2), t>T.
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Let z € B0, p]. Then in virtue of Theorem 6.3 for the numbers p > ro and T'(p,d) > 0 there exists
= p(p,0) > 0 such that 0 < e < p, m(e) < A/2 (see (59)), i.e.

(63) |90(t7x,wa€) 7¢(t,$)| < 6/2

for all x € B[0,p], w € Q, t € [0,T/e] and 0 < € < p. According to (62) we have §(T /e, z,w,e) €
B(I,5/2). Thus, taking into account (63), we obtain (T /e, x,w,e) € B(I,§). Let us take the initial
point x1 := (T /e, z,w,e) and we will repeat for this point the same reasoning as above. Taking into
consideration the equality ¢(t,z,0(T/e,w),e) = @(t + T/e, xz,w,€), we will have

(64) lp(t+T/e,z,w,e)| = [p(t, 1) < 6/2

for all t € [0,T/e], x € B0, p| and w € Q, where z1 = o(T/e,z,w, ).

By the inequality (64) we obtain again zs := ¢(27 /¢, z,w,€) € B(I,d) and, consequently,
p(t+T/e,x,w,e) € B(I,A/2+6/2) C B(I,\).

If we continue this process and later (in virtue of uniformity w.r.t. |z| < p and w € § of the estimation
(63) it is possible), we will obtain

(65) o(t,z,w,e) € B(I,\)
forall t > T/e, x € B[0,p], w € Q and 0 < ¢ < p and, consequently,
o(t,z,0(—t,w),e) € B(I,\)
for all t > T'/e and |x| < p. Since I = U{I° | 0 < e < e} C B(0, p), then according to Theorem 3.3

Ifz = ﬂ U QP(T’B[QPLU(_T»"‘J)’E)'

t>071>t
Therefore, from (65) we have I5 C B(I,\) for all w € Q and 0 < ¢ < p. Note that ) is arbitrarily
chosen. Hence from the last inclusion we obtain the equality (60). The theorem is proved. ]
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