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1. Introduction

Compact global attractors play a very important role in the study of dynamical systems
(both autonomous – Babin and Vishik [1], Chueshov [15], Hale [22], Ladyzhenskaya [25], Sell
and You [31] and non-autonomous – Cheban [11, 13], Chepyzhov and Vishik [14], Kloeden
and Schmalfuss [24] and see also the bibliography therein). During the last ten years there
were published many works, where the object of study is compact global attractors of set-
valued dynamical systems (autonomous set-valued dynamical systems Ball [3, 4], Babin [2],
Cheban and Fakeeh [6, 7],[19], Fakeeh [16, 17, 18] and Melnik [26], Melnik and Valero [27]
and non-autonomous set-valued dynamical systems Cheban and Fakeeh [6, Ch.3-4], Cheban
and Schmalfuss [9], Cheban and Mammana [12], Melnik and Valero [28] and Pilyugin [29]
and see also the bibliography therein)

The present article is devoted to the study of the relation between forward and pullback
attractors of set-valued non-autonomous (cocycles) dynamical systems. It is proved that
every compact global forward attractor is also a pullback attractor of the set-valued non-
autonomous dynamical system. The inverse statement, generally speaking, is not true,
but we prove that every global pullback attractor of an α-condensing set-valued cocycle
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is always a local forward attractor. The main results of paper are Theorems 5.1 and 6.5
which establish the relation between forward and pullback attractors for set-valued non-
autonomous dynamical system. The obtained general results are applied while studying
periodic and homogeneous systems. We give also a new criterion of absolute asymptotic
stability of non-stationary discrete linear inclusions.

This paper is organized as follows.

In Section 2 we give some notions and known facts from the theory of set-valued dynamical
systems.

In Section 3 we introduce the notion of maximal compact invariant sets for set-valued dynam-
ical systems (both autonomous and non-autonomous) and establish some of their properties.
The main results in this section are Theorems 3.8 and 3.10.

Section 4 is devoted to the study of asymptotic stability in α-condensing set-valued dynam-
ical systems. We give an infinite dimensional analogue of the well known theorem of Zubov
on the asymptotical stability of compact invariant sets (see for example [36, Theorem 7] or
[37, Theorem 8] and also [10]) for set-valued dynamical systems. Theorems 4.12, 4.13 and
4.17 contain the main results of this section.

In Section 5 we establish some properties of pullback attractors of set-valued non-autonomous
dynamical systems. In particular, Theorem 5.1 states that every compact global pullback
attractor is asymptotically stable (i.e. global pullback attractor is a local forward attrac-
tor) and Theorem 5.3 contains the conditions under which every compact global pullback
attractor is an uniform global forward attractor. For dynamical systems with uniqueness
these results were established in the paper [10].

Section 6 is devoted to the study of global attractors of set-valued cocycles. We prove that
a compact global forward attractor is also a pullback attractor (Theorem 6.5). 5 and 6
sections contain the main results of paper.

In section 7 we give some applications of the general results obtained in sections 3.-6. In
particular, it is shown that for periodical systems every global pullback attractor is also
a global forward attractor (Theorem 7.2) and under some additional conditions we prove
that a global pullback attractor will be a uniform forward attractor (Theorem 7.3). The
applications of this results to periodical difference and differential inclusions are given. We
prove that for a homogeneous set-valued cocycle the global pullback attractor {Iy | ∈ Y } is
trivial (i.e. Iy = {0} for all y ∈ Y , where 0 is a null element of the euclidian space En) and
it is a global forward attractor (Theorem 7.13). Finally, we obtain a criterion of the absolute
asymptotic stability of non-stationary discrete linear inclusions (Theorem 7.17). This is a
generalization of the well known result [21] for the non-autonomous case.

2. Global attractors of autonomous set-valued dynamical systems.

Let (X, ρ) be a complete metric space, S be a group of real (R) or integer (Z) numbers, T
(S+ ⊆ T) be a semigroup of the additive group S. If A ⊆ X and x ∈ X, then let us denote
by ρ(x,A) the distance from the point x to the set A, i.e. ρ(x,A) = inf{ρ(x, a) : a ∈ A}.
Denote by B(A, ε) the ε-neighborhood of the set A, i.e. B(A, ε) = {x ∈ X : ρ(x,A) < ε}.
And by K(X) we denote the family of all non-empty compact subsets of X. For every point
x ∈ X and number t ∈ T we associate with it closed compact subset π(t, x) ∈ K(X) and,
hence, if π(P,A) =

⋃
{π(t, x) : t ∈ P, x ∈ A}(P ⊆ T).
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Definition 2.1. The triplet (X,T, π), where π : T×X → X, is called a set-valued semigroup
dynamical system (disperse dynamical system or dynamical system without uniqueness)if the
following conditions hold:

1.1. π(0, x) = x for all x ∈ X ;
1.2. π(t2, π(t1, x)) = π(t1 + t2, x) for all x ∈ X and t1, t2 ∈ T, if t2 · t2 > 0;
1.3. the mapping π is upper semi-continuous, i.e. lim

x→x0,t→t0
β(π(t, x), π(t0, x0)) = 0 for

all x0 ∈ X and t0 ∈ T, where β(A,B) = sup{ρ(a,B) : a ∈ A} is the semi-deviation
of the set A ⊆ X from the set B ⊆ X.

Let T = S and the next condition be fulfilled:

1.4. If p ∈ π(t, x), then x ∈ π(−t, p) for all x, p ∈ X and t ∈ T.

Then it is said that there is defined a dynamical system (X,T, π) or dynamical system
(bilateral or two-sided) without uniqueness.

Remark 2.2. Later on under the set-valued dynamical system (X,T, π) we will understand
a semi-group dynamical system unless otherwise stated, i.e. we will consider that T = S+.

Definition 2.3. Let T ⊂ T′ ⊂ S. A continuous mapping γx : T′ → X is called a motion of
the set-valued dynamical system (X,T, π) issuing from the point x ∈ X at the initial moment
t = 0 and defined on T′, if

a. γx(0) = x;
b. γx(t2) ∈ π(t2 − t1, γx(t1)) for all t1, t2 ∈ T′ (t2 > t1).

The set of all motions of (X,T, π), passing through the point x at the initial moment t = 0
is denoted by Φx(π) and Φ(π) :=

⋃
{Φx(π) | x ∈ X} (or simply Φ).

Definition 2.4. The trajectory γ ∈ Φ(π) defined on S is called a full (entire) trajectory of
the dynamical system (X,T, π).

Denote by F(π) the set of all full trajectories of the dynamical system (X,T, π) and Fx(π) :=
Φx(π)

⋂
F(π).

Theorem 2.5. [35] Let (X,T, π) be a set-valued dynamical system. The following affirma-
tions hold:

1. for every point x ∈ X there exists at least one γx ∈ Φx, i.e. Φx 6= ∅ for all x ∈ X;
2. if γ1, γ2 ∈ Φ are such that γ1(t1) = γ2(t2) for certain t1, t2 ∈ T̃ := D(γ1) ∩D(γ2)

(t2 > t1), where D(γi) is the domain of definition of γi (i = 1, 2), then the mapping
γ : T̃ → X defined by the equality

γ(t) := γ1(t) if t ∈ [0, t1] and
γ(t) := γ2(t− t1 + t2), for t > t1,

belong to Φ
3. if γ ∈ Φ, τ ∈ T and γτ (t) := γ(t+ τ) (t ∈ T), then γτ ∈ Φ and D(γτ ) = −τ +D(γ);
4. if xn → x0, γ

n ∈ Φxn and D(γn) ⊆ D(γn+1) for all n ∈ N, then there exists γ ∈ Φx0

and a subsequence {γnk} such that γnk uniformly converges to γ on every compact
from D(γ) = ∪n∈ND(γn).

Denote by C(T, X) the space of all continuous functions f : T → X equipped with the
compact-open topology. This space can be metrized (see for example [33, 34] and [32]) for
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example by the distance

d(γ1, γ2) := sup
l>0

min{max
|t|≤l

ρ(γ1(t), γ2(t)), l−1}.

On the space C(T, X) there is defined a dynamical system of translations (dynamical system
of shifts or dynamical system of Bebutov [32] and [33, 34]) (C(T, X),T, σ). The set Φ is
a closed and invariant (with respect to translations) subset of C(T, X) and, consequently,
on Φ there is induced by (C(T, X),T, σ) a dynamical system of translations (Φ,T, σ). This
system (with uniqueness) plays a very important role in the study of the set-valued dynamical
system (X,T, π) (see, for example, [6]).

Theorem 2.6. [35] Let Φ ⊆ C(T, X) and the conditions 1.-4. of Theorem 2.5 be fulfilled.
Then the triplet (X,T, π), where π(t, x) := {γ(t) | γ ∈ Φ and γ(0) = x} (x ∈ X, t ∈ T), is a
set-valued dynamical system and Φ(π) = Φ.

Remark 2.7. 1. Theorems 2.5 and 2.6 show that there exist two possibilities of definition
of set-valued dynamical systems: first - using semigroup of set-valued mappings and second
- using family of motions.

2. In works [3, 4] and [26, 27] (see also the bibliography therein) there was considered and
studied more general notion of set-valued dynamical systems.

3. The relation between these two theories for multi-valued dynamical systems was studied
in paper [5].

Definition 2.8. Let M be some family of subsets of X. We will call a dynamical system
(X,T, π) M-dissipative, if there exists a compact set K ⊆ X, such that for any ε > 0 and
M ∈ M there exists L = L(ε,M) > 0 such that πtM ⊆ B(K, ε) for every t ≥ L(ε,M),
where πtM = {π(t, x) : x ∈ M}. In addition, we will call the set K an attractor of the
family M.

The most interesting for applications are cases when M = {{x} : x ∈ X},M = K(X),M =
{B(x, δx) : x ∈ X, δx > 0 is fixed } or M = B(X) ( where B(X) is the family of all bounded
subsets of X).

Definition 2.9. A system (X,T, π) is called [6]:

- pointwise dissipative, if there exists K ∈ B(X) such that for all x ∈ X

(1) lim
t→+∞

β(πtx,K) = 0;

- compactly dissipative, if equality (1) holds uniformly w.r.t. x on compact subsets
from X;

- locally dissipative, if for any point p ∈ X there exists δp > 0 such that equality (1)
holds uniformly w.r.t. x ∈ B(p, δp).

Let (X,T, π) be compactly dissipative and K be a compact set being the attractor of all
compact subsets of X. Denote

(2) J := ω(K) =
⋂
t≥0

⋃
τ≥t

πτK.

We can show [6] that the set J defined by equality (2) does not depend on the choice of the
attractor K, but is characterized only by properties of the dynamical system (X,T, π). The
set J is called a center of Levinson of the compactly dissipative system (X,T, π).

Let us state some known facts that we will need later.
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Theorem 2.10. [6] If (X,T, π) is a compactly dissipative dynamical system and J is its
center of Levinson then :

(1) J is invariant, i.e. πtJ = J for all t ∈ T;
(2) J is orbitally stable, i.e. for any ε > 0 there exists δ(ε) > 0 such that ρ(x, J) < δ

implies β(πtx, J) < ε for all t ≥ 0 ;
(3) J is the attractor of the family of all compact subsets of X;
(4) J is the maximal compact invariant set of (X,T, π).

Definition 2.11. A dynamical system (X,T, π) is called :

- locally completely continuous, if for any point p ∈ X there exists δp > 0 and lp > 0
such that πlpB(p, δp) is relatively compact ;

- trajectory dissipative, if there exists a non-empty compact K such that

lim
t→+∞

ρ(ϕx(t),K) = 0

for all x ∈ X and ϕx ∈ Φx.
Remark 2.12. Notice that every set-valued dynamical system (X,T, π) with locally-compact
phase space X is locally completely continuous.
Theorem 2.13. [6] Let (X,T, π) be trajectory dissipative and (X,T, π) be locally completely
continuous. Then (X,T, π) is locally dissipative.
Lemma 2.14. [6] Let M ∈ B(X). Then the following conditions are equivalent :

1. for any {xk} ⊆ M and tk → +∞ the sequence {yk}(yk ∈ π(xk, tk)) is relatively
compact ;

2. ω(M) 6= ∅, is compact, invariant and

lim
t→+∞

β(πt(M), ω(M)) = 0;

3. there exists a non-empty compact K ⊆ X such that

lim
t→+∞

β(πt(M),K) = 0.

Theorem 2.15. [6] A dynamical system (X,T, π) is pointwise (compactly) dissipative if and
only if the dynamical system (Φ,T, σ) also is.
Theorem 2.16. [6] If the dynamical system (X,T, π) is locally complete continuous, then
the following conditions are equivalent:

(1) the dynamical system (X,T, π) is pointwise dissipative;
(2) the dynamical system (X,T, π) is locally dissipative.

3. Maximal compact invariant sets.

Let (X,T1, π) and (Y,T2, σ) (S+ ⊆ T1 ⊆ T2 ⊆ S) be two set-valued dynamical systems.
Definition 3.1. A mapping h : X → Y is called a homomorphism (respectively isomor-
phism) of the dynamical system (X,T1, π) on (Y,T2, σ), if the mapping h is continuous
(respectively homeomorphic) and h(π(t, x)) = σ(t, h(x)) ( t ∈ T1, x ∈ X). In this case the
dynamical system (X,T1, π) is an extension of the dynamical system (Y,T2, σ) w.r.t. the
homomorphism h, but the dynamical system (Y,T2, σ) is called a factor of the dynamical
system (X,T1, π) w.r.t. the homomorphism h. The dynamical system (Y,T2, σ) is called
also a base of the extension (X,T1, π).
Definition 3.2. The triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism of (X,
T1, π) on (Y,T2, σ), is called a non-autonomous dynamical system.
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Let W, Y be two complete metric spaces and (Y,T2, σ) be a set-valued dynamical system
on Y.
Definition 3.3. The triplet 〈W,ϕ, (Y,T2, σ)〉 is said to be a set-valued cocycle over (Y,T2, σ)
with the fiber W , if ϕ is a mapping of T1×W ×Y onto K(W ) and possesses the properties:

(1) ϕ(0, u, y) = u for all u ∈W and y ∈ Y ;
(2) ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all t, τ ∈ T1 and (u, y) ∈ W × Y , where

ϕ(t, A, y) :=
⋃
{ϕ(t, u, y) : u ∈ A};

(3)
lim

t→t0,u→u0,y→y0
β(ϕ(t, u, y), ϕ(t0, u0, y0)) = 0

for all (t0, u0, y0) ∈ T1 ×W × Y.

We denote by X := W × Y ; then (X,T1, π) is a set-valued dynamical system on X defined
by the equality π := (ϕ, σ), i.e. πtx := {(v, q) : v ∈ ϕ(t, u, y), q ∈ σ(t, y)} for every t ∈ T1

and x = (u, y) ∈ X = W × Y. Then the triplet 〈(X,T1, π), (Y,T2, σ), h〉 is a set-valued
non-autonomous dynamical system (a skew-product system), where h := pr2 : X 7→ Y.

Thus, if we have a set-valued cocycle 〈W,ϕ, (Y,T2, σ)〉 over the set-valued dynamical system
(Y,T2, σ) with the fiberW , then it generates a set-valued non-autonomous dynamical system
〈(X,T1, π), (Y,T2, σ), h〉 (X := W×Y ), which is called a non-autonomous dynamical system
generated by the cocycle 〈W,ϕ, (Y,T2, σ)〉 over (Y, T2, σ).
Example 3.4. Let En be an n–dimensional real or complex Euclidian space Y be a closed
subset from Em. Denote by KV (En) the family of all convex compacts in En and by
C(Y × En,KV (En)) the set of all α–continuous mapping F : Y × En → KV (En) endowed
with the topology of uniform convergence on compacts. Let us consider the system of
differential inclusions

(3)
{
u̇ ∈ F (y, u),
ẏ ∈ G(y)

where G ∈ C(Y,KV (Em)) and F ∈ C(Y × En,KV (En)). We suppose that for system (3)
the conditions of the existence and nonlocal continuability to the right are fulfilled. Denote
by (Y,R+, σ) the set-valued dynamical system on Y generated by the second inclusion of
system (3). Along with system (3), we consider differential inclusions

(4) u̇ ∈ F (σ(y, t), u) (y ∈ Y )

and put ϕ(t, u, y) = {ϕ(t) | ϕ is a solution of inclusion (4) defined on R+ and ϕ(0) = u}.
Then the mapping ϕ : R+ × Y × En → K(En) is β–continuous and satisfies the following
conditions:

(1) ϕ(0, u, y) = u for all u ∈W (W := En) and y ∈ Y ;
(2) ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all t, τ ∈ T+ and (u, y) ∈ W × Y , where

ϕ(t, A, y) :=
⋃
{ϕ(t, u, y) : u ∈ A}.

Thus the system (3) naturally generates a non-autonomous dynamical system 〈(X,R+, π),
(Y,R+, σ), h〉 (where X = Em × Y , π = (ϕ, σ) and h = pr2 : X → Y ).
Definition 3.5. The family {Iy | y ∈ Y }(Iy ⊂ W ) of non-empty compact subsets of W
is said to be the maximal compact invariant set of the set-valued cocycle ϕ, if the following
conditions are fulfilled:

(1) {Iy | y ∈ Y } is invariant, i.e. ϕ(t, Iy, y) = Iyt for every y ∈ Y and t ∈ T+;
(2) I =

⋃
{Iy | y ∈ Y } is relatively compact;
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(3) {Iy | y ∈ Y } is maximal, i.e. if the family {I ′y | y ∈ Y } is relatively compact and
invariant, then I

′

y ⊆ Iy for every y ∈ Y .
Lemma 3.6. The family {Iy | y ∈ Y } is invariant w.r.t. set-valued the cocycle ϕ if and
only if the set J =

⋃
{Jy | y ∈ Y } (Jy = Iy × {y}) is invariant w.r.t. the dynamical system

(X,T, π), that is πtJ = J for all t ∈ T where πt := π(t, ·).

Proof. Let the family {Iy | y ∈ Y } be invariant, J =
⋃
{Jy | y ∈ Y } and Jy = Iy × {y}.

Then we have

πtJ =
⋃
{πtJy | y ∈ Y } =

⋃
{(ϕ(t, Iy, y), yt) | y ∈ Y }

=
⋃
{Iyt × {yt} | y ∈ Y } =

⋃
{Jyt | y ∈ Y } = J(5)

for all t ∈ T.

Conversely. Let J be an invariant set w.r.t. (X,T, π). Then

(6) π(t, J) =
⋃

y∈Y

π(t, Jy) =
⋃

y∈Y

Jσ(t,y)

and

(7) π(t, Jy) = (ϕ(t, Iy, y), σ(t, y)), Jσ(t,y) = (Iσ(t,y), σ(t, y))

for all t ∈ T and y ∈ Y. From (6) and (7) we obtain the equality ϕ(t, Iy, y) = Iσ(t,y) for all
t ∈ T and y ∈ Y. �

Theorem 3.7. [35] Let (X,T, π) be a set-valued dynamical system. If y ∈ π(t, x), then there
exists ϕ ∈ Φx such that ϕ(t) = y.

Theorem 3.8. Let a family of sets {Iy | y ∈ Y } be maximal, relatively compact and invari-
ant with respect to the set-valued cocycle ϕ. Then I :=

⋃
{Iy | y ∈ Y } is closed.

Proof. We note that the set J =
⋃
{Jy | y ∈ Y } (Jy = Iy × {y}) is relatively compact and

according to Lemma 3.6 it is invariant. Let K = J . Then K is compact. We have to show
that K is invariant. In fact, if x ∈ K, then there exists {xn} ⊂ J such that x = lim

n→+∞
xn.

Thus xn ∈ J = πtJ for all t ∈ T+, therefore by Theorem 3.7 for t ∈ T+ there exists x̄n ∈ J
and ϕx̄n

∈ Φx̄n
such that xn = ϕx̄n

(t). Since J is relatively compact, it is possible to suppose
that the sequences {x̄n} and {ϕx̄n

} are convergent, moreover the sequence {ϕx̄n
} uniformly

converges on every compact from T. We denote x̄ = lim
n→+∞

x̄n and ϕx := lim
n→+∞

ϕxn
. Then

ϕx̄ ∈ Φx̄, x̄ ∈ J, x = ϕx̄(t) ∈ πtx̄ and, consequently, x ∈ πtJ for all t ∈ T+, i.e. J = πtJ.

Let I′ = pr1K, where by pr1 we denote the first projection of X = W × Y on W . Then
we have I′ =

⋃
{I ′y | y ∈ Y }, where I ′y = {u ∈ W | (u, y) ∈ K} and Ky = I ′y × {y}. Since

the set K is invariant, then according to Lemma 3.6 the set I′ is also invariant w.r.t. the
set-valued cocycle ϕ. The set I′ is compact, because K is compact and pr1 : X 7→ W is
continuous. By the maximality of the family {Iy | y ∈ Y } we have I ′y ⊆ Iy for every y ∈ Y
and, consequently, I′ ⊆ I.

On the other hand, I = pr1J = I′ and, consequently, I′ = I. Thus the set I is compact. The
theorem is proved. �

Definition 3.9. Let 〈W,ϕ, (Y,T, σ)〉 be a set-valued cocycle. The family {Iy | y ∈ Y } (Iy ⊂
W ) of non-empty compact subsets of W is said to be a compact pullback attractor (uniform
pullback attractor) of the set-valued cocycle ϕ, if the following conditions are fulfilled:

a. I :=
⋃
{Iy | y ∈ Y } is relatively compact ;
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b. I is invariant w.r.t. the set-valued cocycle ϕ, i.e. ϕ(t, Iy, y) = Iσ(t,y) for all t ∈ T
and y ∈ Y ;

c. for every y ∈ Y and K ∈ C(W )

(8) lim
t→+∞

β(ϕ(t,K, σ(−t, y)), Iy) = 0,

where β(A,B) = sup{ρ(a,B) : a ∈ A} is a semi-distance of Hausdorff (equality (8)
holds uniformly with respect to y ∈ Y ).

Theorem 3.10. The family {Iy | y ∈ Y } of nonempty compact subsets of W will be maximal
compact invariant set w.r.t. the set-valued cocycle ϕ, if {Iy | y ∈ Y } is a compact pullback
attractor w.r.t. the set-valued cocycle ϕ.

Proof. Let {Iy | y ∈ Y } be a compact pullback attractor of the set-valued cocycle ϕ. Since
the family {I ′y | y ∈ Y } is a compact and invariant set of the set-valued cocycle ϕ, we have

β(I ′y, Iy) = β(ϕ(t, I ′y, σ(−t, y), Iy) ≤ β(ϕ(t,K, σ(−t, y), Iy) → 0

as t→ +∞, where K =
⋃
{I ′y | y ∈ Y }. Hence I ′y ⊆ Iy for every y ∈ Y , i.e. {Iy | y ∈ Y } is

maximal. �

Remark 3.11. The family {Iy | y ∈ Y } (Iy ⊂W ) is a maximal compact invariant set w.r.t.
the set-valued cocycle ϕ if and only if the set J =

⋃
{Jy | y ∈ Y }, where Jy = Iy × {y}, is a

maximal compact invariant set in the dynamical system (X,T, π).

4. Asymptotic stability in α- condensing set-valued dynamical systems

Let (X,T, π) be a set-valued dynamical system. An ω-limit set of a set M is defined as
follows:

ω(M) :=
⋂
τ≥0

⋃
t≥τ

π(t,M).

Definition 4.1. A set M is called Lyapunov stable, if for any ε > 0 there exists δ > 0 such
that π(t, B(M, δ)) ⊆ B(U, ε) for t ≥ 0.

Definition 4.2. The set W s(M) := {x ∈ X | lim
t→+∞

β(π(t, x),M) = 0} is called a domain

of attraction of the set M .

Definition 4.3. A set M is said to be a local attractor, if there exists a neighborhood
B(M,µ) (µ > 0) of M such that B(M,µ)⊆W s(M).

Definition 4.4. A Lyapunov stable set M , which is a local attractor, is called asymptotically
stable.

Theorem 4.5. [6] Let (X,T, π) be a set-valued dynamical system and M ⊆ X be a compact
and positively invariant set. Then the next conditions are equivalents:

(1) the set M is asymptotically stable;
(2) W s(M) is open and for each ε > 0 and x ∈ W s(M) there are δ = δ(ε, x) > 0 and

τ = τ(ε, x) > 0 such that

β(π(t, B(x, δ)),M) < ε

for all t ≥ τ(ε, x);
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(3) W s(M) is open and the set M attracts every compact from W s(M), i.e.

lim
t→+∞

β(π(t,K),M) = 0

for every K ∈ C(W s(M));
(4) W s(M) is open, every compact K ⊂ W s(M) is stable in the sense of Lagrange in

positive direction (i.e. the set Σ+(K) :=
⋃
{π(t,K) | t ∈ T+} is relatively compact)

and ∅ 6= J+
x ⊆M for all x ∈W s(M).

Definition 4.6. An invariant compact set M is said to be locally maximal, if there exists
a number δ > 0 such that any invariant compact set contained in the open δ-neighborhood
B(M, δ) of M in fact is contained in M .
Definition 4.7. The mapping λ : B(X) → R+, satisfying the following conditions:

(1) λ(A) = 0 if and only if A ∈ B(X) is relatively compact;
(2) λ(A ∪B) = max(λ(A), λ(B)) for every A, B ∈ B(X).

is called [22, 30] a measure of non-compactness on X.
Definition 4.8. The measure of non-compactness of Kuratowsky α : B(X) → R+ is defined
by the equality α(A) := inf{ε > 0 | A admits a finite ε-covering }.
Definition 4.9. A set-valued dynamical system (X,T, π) is called α–condensing, if there
exists t0 ∈ T (t0 > 0) such that π(t0, B) is bounded and

α(π(t0, B)) < α(B)

for any bounded set B of X with α(B) > 0.
Remark 4.10. In the book [22] there are a some class of dynamical systems (with unique-
ness) which possesses with property of α-condensingness. For example: every dynamical
system on finite-dimensional space, every dynamical system with compact πt(t > 0) or
πt = m(t) + r(t), where m(t) : X → X is compact for every t > 0 and r(t)x → 0 as
t→ +∞ uniformly w.r.t. x on every bounded subset from X.

Definition 4.11. An entire trajectory of the semi-group dynamical system (X,T, π) (re-
spectively, of the cocycle 〈W,ϕ, (Y,S, σ)〉 over (Y,S, σ) with the fiber W ), passing through
the point x ∈ X (respectively, (u, y) ∈ W × Y ) is called a continuous mapping γ : S → X
(respectively, ν : S → W ) satisfying the conditions : γ(0) = x (respectively, ν(0) = w) and
γ(t+ τ)∈ πtγ(τ) (respectively, ν(t+ τ)∈ ϕ(t, ν(τ), yτ)) for all t ∈ T and τ ∈ S.
Theorem 4.12. Let M be a compact positively invariant set for an α-condensing semi-
dynamical system (X,T, π). Then M is Lyapunov stable if and only if

αx ∩M = ∅
for all x 6∈ M, where αx := {y ∈ X : there exist {γn} ⊂ Φx and {tn} → +∞ such that
[−tn,+∞) ⊂ D(γn) and {γn(−tn)} → y}, where [−τ,+∞) := {t ∈ S : t+ τ ≥ 0}.

Proof. The proof of necessity was given by Zubov in [36, Theorem 7] for dynamical systems
with uniqueness on the locally compact space X. This proof remains also true for set-valued
dynamical systems on non locally compact space under consideration here. Indeed, let M
be a compact positively invariant set of (X,T, π), stable in positive direction. If we suppose
that this assertion is not true, then there exist x 6∈ M such that αx

⋂
M 6= ∅, i.e., there

exist γx ∈ Φx and τn → −∞ such that ρ(γx(τn),M) → 0 as n → ∞. Let 0 < ε < ρ(x,M)
and δ(ε) > 0 be the corresponding positive number from the definition of the stability of
the set M . Then for a sufficiently large n we have ρ(γx(τn),M) < δ(ε) and, consequently,
β(πtγx(τn),M) < ε for all t ≥ 0. In particular, for t = −τn we have x ∈ π−τnγx(τn)
and ρ(x,M) ≤ β(π−τnγx(τn),M) < ε. The obtained contradiction proves our assertion.
To prove sufficiency let us consider first the case when T = Z+. Suppose that M is not
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Lyapunov stable, but that the other condition of the theorem holds. Then there exist ε0 > 0
and sequences δn → 0, xn ∈ B(M, δn), kn → ∞ such that π(kt0, xn) ⊆ B(M, ε0) for 0 ≤
k ≤ kn − 1 and π(knt0, xn) 6⊆ B(M, ε0) (t0 is the positive number from the α-condensing
property of the set-valued dynamical system (X,T, π) ). Since the set M is compact and
positively invariant, then the number ε0 has to be chosen sufficiently small so that

β(π(t, B(M, ε0)),M) <
δ0
2
.

for all t ∈ [0, 2t0]. Define A = {xn} and B = ∪n∈N{π(kt0, xn) | 0 ≤ k ≤ kn−1}. Then α(A)
= 0 (α is the measure of non-compactness of Kuratowsky), since A is relatively compact.
In addition, π(t0, B) ⊆ B(M, δ0), so π(t0, B) is bounded. Suppose that B is not relatively
compact, so α(B) > 0. The properties of the measure of non-compactness for the non
relatively compact set B imply that

α(B) = α(A ∪ π(t0, B) ∩B) ≤ max(α(A), α(π(t0, B))) = α(π(t0, B)) < α(B)

and this is a contradiction. It shows that B is relatively compact. Let yn ∈ π(knt0, xn)
⋂

(X\
B(M, ε0)) and γ̃n ∈ Φxn such that γ̃n(knt0) = yn. We may suppose that the sequence {yn} is
convergent. We define γn by equality γn(s) := γ̃(knt0 +s) for all −knt0 ≤ s < +∞. Without
loss of generality we may suppose that the sequence {γn} is convergent. Let γ := lim

n→+∞
γn,

i.e., γ(k) = lim
n→+∞

γn(k) for every k ∈ Z. Then γ ∈ Φy (y := lim
n→+∞

yn). It is clear that

αγ

⋂
M 6= ∅, where

αγ :=
⋂
t≤0

⋃
τ≤t

γ(τ).

On the other hand γ(0) = y, αγ ⊆ αy and y ∈ B(M, ε0) \M, so αy

⋂
M = ∅ holds by our

assumptions. This contradiction proves the sufficiency of the condition in the discrete–time
case.

Now let T = R+ and suppose that αx ∩M = ∅ where x 6∈ M holds for the continuous–
time system. Then this also holds for the restricted discrete–time system generated by
π1 := π(t0, ·), because α̃x ⊆ αx, where α̃x (respectively αx) is the α-limit set of point
x with respect to discrete-time dynamical system (X,π1) (respectively, dynamical system
(X,R+, π)). Hence, the set M is Lyapunov stable with respect to the restricted discrete–
time dynamical system generated by π1. Since M is compact, for every ε > 0 there exists µ
> 0 such that

ρ(π(t, x),M) < ε for all t ∈ [0, t0], x ∈ B(M,µ).

In view of the first part of the proof above, there is δ > 0 such that

ρ(π(nt0, x),M) < min(µ, ε) for x ∈ B(M, δ) for n ∈ Z+.

The Lyapunov stability of M for the continuous dynamical system (X,R+, π) then follows
from the semi–group property of π. �

Theorem 4.13. Let M be a compact and positively invariant subset of the set-valued dy-
namical system (X,T, π). Then M is asymptotically stable if and only if ω(M) is locally
maximal and asymptotically stable.

Proof. Suppose that M is asymptotically stable. Then there exists a closed positively in-
variant closed neighborhood C of M contained in its domain of attraction W s(M). The
mapping π can be restricted to the complete metric space C to form a semi–dynamical
system (C,T, π). Since M is a locally attracting set it attracts compact subsets of C. The
assertion then follows from Theorem 2.10 because ω(M) =

⋂
t∈T π(t,M).
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Suppose instead that ω(M) is asymptotically stable and locally maximal. Since M is com-
pact, ω(M) =

⋂
t≥0 π(t,M). Hence there exist η > 0 and τ ∈ T such that

π(τ,M) ⊂ B(ω(M), η) ⊂W s(ω(M)).

Since M is compact and the mapping π(τ, ·) : X → K(X) is upper semi-continuous, the set
π(τ,M) is compact and, consequently, there is a number ν > 0 such that

B(π(τ,M), ν) ⊂ B(ω(M), η) ⊆W s(ω(M)).

In view of the integral continuity for the numbers τ and ν there exists a number δ > 0 such
that

(9) π(τ,B(M, δ)) ⊂ B(π(τ,M), ν) ⊂ B(ω(M), η) ⊆W s(ω(M)).

From the inclusion (9) it follows that

B(M, δ) ⊆W s(ω(M)) ⊆W s(M).

Then, if M was not Lyapunov stable, there would exist ε0 > 0, δn → 0, xn ∈ B(M, δn),
ϕxn

∈ Φxn
and tn → ∞ such that

(10) ρ(ϕxn(tn),M) ≥ ε0.

For sufficiently large n0, the set {xn}n≥n0
would then be contained in B(M, δ) ⊆W s(ω(M)).

Since the set M is compact, the set {xn}n≥n0
also is. According to Theorem 4.5 this set

would thus be attracted by ω(M) ⊂ M , which contradicts (10) . �

Definition 4.14. A set-valued dynamical system (X,T, π) is called asymptotically compact,
if for every bounded and positively invariant set M ⊆ X there exists a nonempty compact
set K ⊆ X such that lim

t→+∞
β(π(t,M),K) = 0.

Lemma 4.15. Let M be a compact and positively invariant set for the asymptotically com-
pact semi–dynamical system (X,T, π). Then the set M is asymptotically stable if and only
if ω(M) is locally maximal and Lyapunov stable.

Proof. The necessity follows from Theorem 4.13. Suppose instead that ω(M) is locally
maximal and Lyapunov stable. Then for any ε > 0 there exists δ > 0 such that

π(t, B(ω(M), δ)) ⊂ B(ω(M), ε) for all t ≥ 0.

In virtue of the assumption of the asymptotic compactness of (X,T+, π) and Lemma 2.14
the set ω(B(ω(M), δ)) is nonempty and compact with

lim
t→∞

β(π(t, B(ω(M), δ)),ω(B(ω(M), δ))) = 0.

Since ω(M) is locally maximal, ω(B(ω(M), δ)) ⊂ ω(M) for sufficiently small δ > 0, which
means that ω(M) is asymptotically stable. So, the conclusion follows from Theorem 4.13.

�

Corollary 4.16. Let (X,T, π) be asymptotically compact and let M be a compact invariant
set. Then M is asymptotically stable if and only if M is locally maximal and Lyapunov
stable.

Proof. Indeed, M = ω(M) here, so we just apply Lemma 4.15. �

The next theorem is a generalization for infinite dimensional spaces and α-condensing set-
valued dynamical systems of Theorem 8 of Zubov [36] characterizing the asymptotic stability
of a compact set.
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Theorem 4.17. Let (X,T, π) be an α-condensing semi–dynamical system and let M ⊂ X
be a compact invariant set. Then the set M is asymptotically stable if and only if

(i) M is locally maximal, and
(ii) αx ∩M = ∅ for any x 6∈M .

Proof. By Lemmas 2.3.1 and 2.3.2 in [6] any α-condensing set-valued dynamical system is
asymptotically compact, so the assertion follows easily from Theorem 4.12 and Corollary
4.16. �

Definition 4.18. A set-valued cocycle 〈W,ϕ, (Y,T, σ)〉 is called α-condensing if there exists
t0 > 0 (t0 ∈ T) such that the set ϕ(t0, B, Y ) is bounded and

α(ϕ(t0, B, Y )) < α(B)

for any bounded subset B of W with α(B) > 0.
Lemma 4.19. Suppose that the cocycle 〈W,ϕ, (Y,T, σ)〉 is α-condensing. Then the associ-
ated skew–product flow (X,T, π) is also α-condensing.

Proof. Let M :=
⋃
{My × {y} | y ∈ Y } be a bounded set in X. Then M can be covered by

finite number of balls Mi ⊂ X, i = 1, · · · , n, of largest radius α(M) + ε for an arbitrary ε
> 0. The sets pr1Mi ⊂ W , i = 1, · · · , n, cover pr1M . The sets Mi are balls, so α(pr1Mi)
= α(Mi) < α(M) + ε for i = 1, · · · , n. It is easily seen that

π(t,M) =
⋃
{π(t, (My, y)) | y ∈ Y } =⋃

{(ϕ(t,My, y), σty) | y ∈ Y } ⊂ ϕ(t,pr1M,Y )× Y.

Since ϕ is α-condensing, there exists t0 ∈ T (t0 > 0) such that the set ϕ(t0,pr1M,Y ) is
bounded. Hence

α(π(t0,M)) ≤ α(ϕ(t0,pr1M,Y )× Y )(11)
≤ α(ϕ(t0,pr1M,Y )) < α(pr1M) ≤ α(M).

The second inequality above is true by the compactness of Y . Indeed, Y can be covered by
finite number of open balls Yi of arbitrarily small radius. Hence

α(ϕ(t0,pr1M,Y )× Y ) ≤ max
i
α(ϕ(t0,pr1M,Y )× Yi) ≤ α(ϕ(t0,pr1M,Y )) + ε

for an arbitrarily small ε > 0. The conclusion of the lemma follows in virtue of (11). �

5. Uniform pullback attractors and global attractors

It was seen earlier that the set
⋃
{Iy × {y} | y ∈ Y } ⊂ X which was defined in terms of the

pullback attractor I = {Iy | y ∈ Y } of the set-valued cocycle 〈W,ϕ, (Y,T, σ)〉 is the maximal
π-invariant compact subset of the associated skew–product set-valued system (X,T, π), but
not necessarily is a global attractor [10]. However, this set is always a local attractor under
the additional assumption that the set-valued cocycle ϕ is α-condensing.
Theorem 5.1. Let Y be a compact space, 〈W,ϕ, (Y,T, σ)〉 be an α-condensing set-valued
cocycle with the pullback attractor I = {Iy | y ∈ Y } and let us define J =

⋃
{Iy×{y} | y ∈ Y }.

Then

(i) the α-limit set αx of any point x ∈ X \ J is empty;
(ii) J is asymptotically stable with respect to π.
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Proof. Suppose that there exists a point x = (u, y) ∈ X \ J such that αx 6= ∅. Then
there exist sequences {γn} ⊂ Φx and −τn → ∞ such that γn(τn) converges to a point in
αx. The set K = pr1

⋃
n∈N γn(τn) is compact, since

⋃
n∈N γn(τn) is compact too. Also I =

{Iy | y ∈ Y } is a pullback attractor, so

lim
n→+∞

β(ϕ(−τn,K, yτn), Iy) = 0

from which it follows that u ∈ Iy. Hence (u, y) ∈ J , which is a contradiction. This proves
the first assertion.

By Lemma 4.19 (X,T, π) is α-condensing. According to Theorem 3.10 and Remark 3.11 the
set J is the maximal compact invariant set of (X,T, π), as I is the pullback attractor of the
cocycle ϕ. The second assertion then follows from Theorem 5.1 and from the first assertion
of this theorem. �

Remark 5.2. If in addition to the assumptions of Theorem 5.1 the stable set W s(J) of
J satisfies W s(J) = X, then the skew-product dynamical system (X,T, π) is compactly
dissipative and J is its Levinson center (see Lemma 1.4.10 and Theorem 1.4.11 from [6]).
Theorem 5.3. Suppose that Y compact, 〈W,ϕ, (Y,T, σ)〉 is a set-valued cocycle with the
pullback attractor I = {Iy | y ∈ Y } and suppose that W s(J) = X, where J =

⋃
{Iy× {y} | y ∈

Y }.

If the mapping y → Iy is lower semi–continuous, then I is a uniform pullback attractor and
hence a uniform forward attractor.

Proof. Suppose that the uniform convergence

lim
t→∞

sup
y∈Y

β(ϕ(t,D, y), Iσ(t,y)) = 0

is not held for some D ∈ C(W ). Then there exist ε0 > 0, a set D0 ∈ C(W ) and sequences
tn → ∞, yn ∈ Y , pn ∈ σ(tn, yn), un ∈ D0 and ũn ∈ ϕ(tn, un, yn) such that:

(12) ρ(ũn, Ipn
) ≥ ε0.

Now Y is compact and J is a global attractor by Remark 5.2, so we can suppose that the
sequences {ũn} and {pn} are convergent. Let ū = lim

n→∞
ũn and ȳ = lim

n→∞
pn. Then ū ∈ Iȳ

because x̄ = (ū, ȳ) ∈ J . On the other hand, by (12),

ε0 ≤ ρ(ũn, Ipn) ≤ ρ(ũn, Iȳ) + β(Iȳ, Ipn).

By the lower semi–continuity of y → Iy it follows then that ū /∈ Iȳ, which is a contradiction.
�

Remark 5.4. Theorem 5.3 is in general not true without the assumption that W s(J) = X
(see [10] and also [13, Ch.8]).

6. Global attractors of set-valued cocycles

Let (Y,T, σ) be a bilateral set-valued dynamical system on Y,W be a complete metric space
and 〈W,ϕ, (Y,T, σ)〉 be a set-valued cocycle over (Y,T, σ) with the fiber W .

If M ⊆W , then we will set

(13) ωy(M) =
⋂
t≥0

⋃
τ≥t

U(τ, σ(−τ, y))M

for every y ∈ Y , where U(t, y) := ϕ(t, ·, y).



14

Lemma 6.1. The following affirmations take place:

1. a point w ∈ ωy(M) if and only if, there exist tn → +∞, {xn} ⊆ M and wn ∈
U(tn, σ(−tn, y))xn such that w = lim

n→+∞
wn;

2. if the mapping U(t, y) is lower semi-continuous, then U(t, y)ωy(M) ⊆ ωyt(M) for
all y ∈ Y and t ∈ T;

3. if there exists a non-empty compact K ⊂W such that

(14) lim
t→+∞

β(ϕ(t,M, σ(−t, y)),K) = 0,

then ωy(M) 6= ∅, is compact,

(15) lim
t→+∞

β(ϕ(t,M, σ(−t, y)), ωy(M)) = 0,

and

(16) ωyt(M) ⊆ U(t, y)ωy(M)

for all t ∈ T.

Proof. The first affirmation of the lemma follows directly from equality (13). The second
affirmation of the lemma follows from the definition of the sets U(t, y)ωy(M) and ωyt(M),
from the equality U(t, y)U(τ, σ(−τ, y)) = U(t + τ, σ(−t − τ, σ(t, y))) for all t, τ ≥ 0, y ∈ Y
and the α-continuity of the mapping ϕ : T+ ×W × Y → C(W ). Indeed,

U(t, y)ωy(M) = U(t, y)(
⋂
s≥0

⋃
τ≥s

U(τ, σ(−τ, y))M)

⊆
⋂
s≥0

U(t, y)(
⋃
τ≥s

U(τ, σ(−τ, y))M) ⊆
⋂
s≥0

⋃
τ≥s

U(t, y)U(τ, σ(−τ, y))M =

⋂
s≥0

⋃
τ≥s

U(t+ τ, σ(−t− τ, σ(t, y)))M ⊆
⋂
s≥0

⋃
τ≥s

U(τ, σ(−τ, σ(t, y)))M = ωσ(t,y)(M).

Equality (15) follows directly from the first affirmation of lemma and equality (14).

We will show that inequality(16) takes place. For this aim it is enough to show that
ωσ(t,y)(M) ⊆ U(t, y)ωy(M) for all y ∈ Y and t ∈ T. Let y ∈ Y, t ∈ T and w ∈ ωσ(t,y)(M).
Then according to the first affirmation of the lemma there exists xn ∈ M, tn → +∞
and wn ∈ U(tn, σ(t − tn, y))xn such that w = lim

n→+∞
wn. Since U(tn, σ(t − tn, y))xn =

U(t, y)U(tn − t, σ(t − tn, y))xn for a sufficiently big n (tn ≥ t), then there exists wn ∈
U(tn − t, σ(t − tn, y))xn such that wn ∈ U(t, y)wn. Under the conditions of Lemma 6.1 we
can suppose that the sequence {wn} is convergent. Let w = lim

n→+∞
wn. Then according to

the first affirmation of the lemma w ∈ ωy(M) and, consequently, w ∈ U(t, y)ωy(M), i.e.
ωσ(t,y)(M) ⊆ U(t, y)ωy(M). The lemma is proved. �

Definition 6.2. The cocycle ϕ over (Y,T, σ) with the fiber W is said to be compactly dis-
sipative, if there exists a non-empty compact K ⊆W such that

(17) lim
t→+∞

sup{β(U(t, y)M,K) : y ∈ Y } = 0

for all M ∈ K(W ).
Lemma 6.3. Let Y be a compact and 〈W,ϕ, (Y,T, σ)〉 be a set-valued cocycle over (Y,T, σ)
with the fiber W . For 〈W,ϕ, (Y,T, σ)〉 to be compactly dissipative it is necessary and sufficient
that the skew-product dynamical system (X,T+, π)(X := W × Y, π := (ϕ, σ)) would be
compactly dissipative.
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Proof. The formulated affirmation directly follows from the respective definitions. �

Definition 6.4. We will say that the space X has property (S), if for any compact K ⊆ X
there exists a compact connected set M ⊆ X such that K ⊆M .

Theorem 6.5. Let Y be a compact, 〈W,ϕ, (Y,S, σ)〉 be a compactly dissipative cocycle, K
be a non-empty compact appearing in equality (17), (X,T, π) be a skew-product dynamical
system associated by cocycle ϕ and J be the Levinson center of (X,T, π). Then:

1. Iy := pr1(Jy) 6= ∅, is a compact subset from K and

(18) lim
t→+∞

β(U(t, σ(−t, y))K, Iy) = 0

for every y ∈ Y, where Jy := J
⋂
Xy and Xy := h−1(y) (h := pr2 : X → Y, and

X := W × Y );
2. U(t, y)Iy = Iσ(t,y) for all y ∈ Y and t ∈ T+;
3.

(19) lim
t→+∞

β(U(t, σ(−t, y))M, Iy) = 0

for all M ∈ K(W ) and y ∈ Y ;
4.

(20) lim
t→+∞

sup{β(U(t, y)M, I) : y ∈ Y } = 0

for any M ∈ K(W ), where I := pr1J =
⋃
{Iy : y ∈ Y };

5. the set I is compact and connected if one of the following two conditions is fulfilled:
a. T = R+ and spaces W and Y are connected;
b. T = Z+ and the space W ×Y has the property (S) or it is connected and locally

connected.

Proof. Let K̃ := K×Y and ω(K̃) its ω-limit set with respect to (X,T, π). Under the condi-
tions of Theorem the set K̃ attracts every compact subset from (X,T, π) and, consequently,
J = ω(K̃). It easy to see that ωy(K) × {y} ⊆ ωy(K̃) for all y ∈ Y and, consequently,
ωy(K) ⊆ Iy for all y ∈ Y, where ωy(K̃) := ω(K̃)

⋂
Xy. Since ωy(K) ⊆ Iy then by Lemma

6.1 we have the equality (18).

To prove the seconde statement we note that π(t, Jy) = Jσ(t,y) for all y ∈ Y and t ∈ T. Since
Jy = Iy × {y} and π(t, Jy) = (U(t, y)Iy, σ(t, y)), then we obtain U(t, y)Iy = Iσ(t,y).

If we will suppose that equality (19) does not take place, then there are ε0 > 0, y0 ∈ Y,M0 ∈
C(W ), tn → +∞ and wn ∈ U(tn, y−tn

0 )M0 such that

(21) ρ(wn, Iy0) ≥ ε0.

According to (18) for ε0 and y0 ∈ Y there will be found t0 = t0(ε0, y0) > 0 such that

(22) β(U(t, y−t
0 )K, Iy0) <

ε0
2

for all t ≥ t0. Notice that

(23) U(tn, y−tn
0 ) = U(t0, y−t0

0 )U(tn − t0, y
−tn
0 ).

Let wn ∈ U(tn − t0, y
−tn
0 )M0 so that wn ∈ U(t0, y−t0

0 )wn. By the compact dissipativity
of the set-valued cocyle 〈W,ϕ, (Y,S, σ)〉 the sequences {wn} and {wn} can be considered
convergent. Let the set w = lim

n→+∞
wn and w = lim

n→+∞
wn. Then w ∈ U(t0, y−t0

0 )w and
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according to (17) w ∈ K. Passing to the limit in (21) as n→ +∞ and taking into account
(23) we will get

(24) ρ(w, Iy0) ≥ ε0.

On the other hand, since w ∈ K, then from (22) we have U(t0, y−t0
0 )w ⊆ B(Iy0 ,

ε0
2 ) and,

consequently,
w ∈ U(t0, y−t0

0 )w ⊆ B(Iy0 ,
ε0
2

),

which contradicts to (24). The obtained contradiction proves the required affirmation.

Now we will prove equality (20). If it does not take place, then there exist ε0 > 0,M0 ∈
C(W ), yn ∈ Y, {xn} ⊆M0, tn → +∞ and wn ∈ U(tn, y−tn

n )xn such that

(25) ρ(wn, I) ≥ ε0.

In virtue of the compactness of Y we can suppose that the sequence {yn} is convergent.
Let y0 = lim

n→+∞
yn and according to (19) for the number ε0 > 0 and y0 ∈ Y there is t0 =

t0(ε0, y0) > 0 such that equality (22) takes place for all t ≥ t0(ε0, y0). By the compactness of
M0 and compact dissipativity of the cocycle 〈W,ϕ, (Y,S, σ)〉 the sequences {wn} and wn can
be considered convergent, where {wn} ∈ U(tn − t0, y−tn

n )xn and wn ∈ U(t0, y−t0
n ){wn}. Let

us notice that according to (17) w ∈ K. From equality (23) it follows that w ∈ U(t0, y−t0
0 )w,

hence from (25) we have

(26) w /∈ B(Iy0 ,
ε0
2

).

Relation (26) contradicts to (22), which completes the proof of the fourth affirmation of
theorem.

The compactness and connectedness of the set I follows from that fact that under the
conditions of Theorem 6.5 the center of Levinson J of the dynamical system (X,T, π) is
compact and connected according to Consequence 1.8.7 and Theorem 1.8.15 from [6], and
consequently, I is also connected as a continuous image of a connected set. The theorem is
proved. �

7. Applications

Several examples illustrating the application of the above results are now presented.

7.1. Periodic systems. Let (Y,S, σ) be a bilateral set-valued dynamical system and Ψy be
the set of all the trajectories of this system passing through the point y ∈ Y at the initial
moment t = 0 and Ψ(σ) :=

⋃
{Ψy | y ∈ Y } (or simply Ψ). Note that Ψ ⊆ C(S, Y ) and it is

invariant (with respect to translations) and closed in C(S, Y ) and, consequently, on the set
Ψ by the dynamical system of Bebutov (C(S, Y ),S, σ) (dynamical system of translations or
dynamical system of shifts) there is induced the dynamical system of translations (Ψ,S, σ).
Definition 7.1. A bilateral set-valued dynamical system (Y,S, σ) is called periodic, if every
trajectory ψ ∈ Ψ is periodic in the dynamical system (Ψ,S, σ), i.e. there exists a positive
number τ ∈ S such that ψ(t+ τ) = ψ(t) for all t ∈ S.

Let us consider a periodical dynamical system (Y,S, σ).
Theorem 7.2. Suppose that a set-valued α-condensing cocycle 〈W,ϕ, (Y,S, σ)〉 over the
periodical dynamical system (Y,S, σ) has a pullback attractor I = {Iy | y ∈ Y }. Then I is
a forward attractor for 〈W,ϕ, (Y,S, σ)〉, i.e.

lim
t→+∞

sup{β(U(t, y)M, I) : y ∈ Y } = 0



17

whatever is M ∈ K(W ), where I =
⋃
{Iy : y ∈ Y }.

Proof. Note that the set J :=
⋃
{Jy | y ∈ Y }, where Jy := Iy×{y}, is the maximal compact

invariant set of the skew-product dynamical system (X,T, π) (X := W ×Y and π := (ϕ, σ)).
By Theorem 5.1 the set J is asymptotically stable.

Let now Φ ⊆ C(T, X) be the set of all motions of the set-valued dynamical system (X,T, π)
and (Φ,T, σ) be the dynamical system (with uniqueness) of shifts on Φ. (Φ,T, σ) is a
subsystem of Bebutov’s dynamical system (C(T, X),T, σ). Denote F := {γ ∈ Φ | γ is an
entire trajectory of (X,T, π) and γ(S) ⊆ J}. Then F is a nonempty maximal compact
invariant set of the dynamical system (Φ,T, π).

We will prove that under the conditions of Theorem 7.2 the set F is orbitally stable with
respect to (Φ,T, π). In fact, if we suppose that it is not so, then there are ε0 > 0, δn ↘
0, γn ∈ Φ and tn ∈ T such that

(27) d(γn,F) < δn and d(γtn
n ,F) ≥ ε0,

where γs is an s-shift of γ (i.e. γs(t) := γ(t+ s) for all t ∈ T) and by d there is denoted the
distance on Φ. Since the set F is invariant, then tn → +∞. From inequality (27) it follows
the existence of a sequence {t′n} (t′n = tn + τn and |τn| ≤ 1

ε0
) such that

(28) ρ(γn(tn), J) ≥ ε0 and ρ(γn(0), J) < δn

for all n ∈ N because ρ(γ(0), J) ≤ d(γ,F) for all γ ∈ Φ. But the inequality (28) contradicts
to the asymptotic stability of the set J . The obtained contradiction proves the orbital
stability of the set F w.r.t. (Φ,T, σ).

Now we will establish the equality W s(X) = X. Let x = (u, y) ∈ X = W × Y and γ(u,y) ∈
Φx ⊆ Φ. Then νy ∈ Ψy, where νy(t) := pr2γ(u,y)(t) (for all t ∈ T), Ψy is the set of all the
motions of the set-valued dynamical system (Y,T, σ) passing through the point y ∈ Y at
the initial moment t = 0 and Ψ :=

⋃
{Ψy | y ∈ Y }. Since the dynamical system (Y,S, σ) is

periodic, then there exists a positive number τ ∈ S such that νy(t+ τ) = νy(t) for all t ∈ S.
Under the conditions of Theorem 7.2 we have

lim
n→+∞

ρ(γ(u,y)(nτ), Jy) = lim
n→+∞

ρ(γ(u,y)(nτ), Jνy(−nτ)) = 0

because
ρ(γ(u,y)(nτ), Jνy(−nτ)) ≤ distW (U(nτ, y)u, Iσ(−nτ,y)) → 0

as n → +∞. Thus the sequence {γ(u,y)(nτ)} is relatively compact and, consequently, the
functional sequence {γ(u,y)(t + nτ)} also is (in the compact-open topology in C(T+, X)).
This fact implies that the positive semi-trajectory of the point γ(u,y) ∈ Ψ is relatively
compact and, consequently, γ(u,y) ∈ W s(F), because F is the maximal compact invariant
set of (Ψ,T, σ) and the ω-limit set of the point γ(u,y) is nonempty, compact and invariant.
This means that W s(F) = Φ and, consequently (see, for example, [13, Ch.I]), (Φ,T, σ)
is compactly dissipative. By Theorem 2.15 the dynamical system (X,T, π) is compactly
dissipative too. Now to finish the proof of the theorem it is enough to apply Lemmas 6.1
and 6.3. �

Theorem 7.3. Let 〈W,ϕ, (Y,S, σ)〉 be a set-valued α-condensing cocycle and the following
conditions be held:

(1) the dynamical system (Y,S, σ) is periodic and minimal (i.e. (Y,S, σ) is a dynamical
system with uniqueness and there exists a τ -periodic point y0 ∈ Y such that Y =
{σ(t, y0) |t ∈ [0, τ)});

(2) the set-valued cocycle ϕ has a pullback attractor I = {Iy | y ∈ Y };
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(3) the mapping ϕ : T ×W × Y → K(W ) is continuous with respect to the Hausdorff
distance α (α(A,B) := max{β(A,B), β(B,A)} for all A,B ∈ K(W )).

Then I is a uniform forward attractor for 〈W,ϕ, (Y,S, σ)〉, i.e.

(29) lim
t→+∞

sup{β(U(t, y)M, Iσ(t,y)) : y ∈ Y } = 0

whatever is M ∈ K(W ).

Proof. This statement directly follows from Theorems 5.3 and 7.2. For this is sufficient
to note that under the conditions of the theorem the set-valued mapping y → Iy is lower
semi-continuous. Really, consider a sequence yn → y. By the periodicity and minimality
of the system (Y,T, σ) there exists a sequence τn ∈ [0, τ ] such that yn = σ(τn, y). By its
compactness, there is a convergent subsequence (indexed here for our convenience like a full
one) τn → τ0 ∈ [0, τ ]. Hence

y = lim
n→∞

yn = lim
n→∞

σ(τn, y) = σ(τ0, y)

which means that τ0 = 0 or τ . Suppose that τ0 = τ . Then

lim
n→∞

β(Iy, Iyn
) = lim

n→∞
β(Iy, ϕ(τn, Iy, y))

= β(Iy, ϕ(τ, Iy, y)) = β(Iy, Iσ(τ,y)) = 0,

since ϕ is continuous with respect to the Hausdorff distance H and Iyn
= Iσ(τn,y) =

ϕ(τn, Iy, y) by the ϕ–invariance of {Iy | y ∈ Y }. Hence the set valued mapping y → Iy
is lower semi–continuous. �

Example 7.4. (Differential inclusions ) Let En be an n-dimensional Euclidean space. We
denote by KV (En) the family of all convex compacts from En, and by C(R×En,KV (En))
we denote the set of all continuous in Hausdorff’s metric mappings F : R× En → KV (En)
allotted by the uniform convergence topology on compacts. Let us consider the differential
inclusion

(30) u′ ∈ F (t, u),

where F ∈ C(R×En,KV (En)). Along with inclusions (30) we will also consider the family
of differential inclusions

(31) v′ ∈ G(t, v),

where G ∈ H(F ) = {Fτ : τ ∈ R}, Fτ is a translation by variable t of the function F on τ
and by bar there is denoted the closure in C(R× En,KV (En)).
Remark 7.5. 1. Let F ∈ C(R×En,KV (En)). The set H(F ) is compact if and only if the
function F is bounded on R w.r.t. t uniformly w.r.t. x on every compact subset from En.

2. If the function F ∈ C(R×En,KV (En)) is almost periodic w.r.t. t uniformly w.r.t. x on
every compact subset from En, then H(F ) is compact.
Definition 7.6. A function F ∈ C(R × En,KV (En)) is said to be regular, if for every
inclusion (31) there is fulfilled the condition of existence and non-local extendability to the
right, i.e. for any G ∈ H(F ) and v ∈ En there exists at least one solution ϕ(v,G)(t) of the
inclusion (31) passing through the point v when t = 0 and defined on R+.

Let F ∈ C(R × En,KV (En)) be regular. We put ϕ(t, v, g) = {ϕ(v,G)(t) : ϕ(v,G) ∈ Φ(v,G)},
where Φ(v,G) is the set of all solutions of inclusion (31) defined on R+ and passing through
the point v at the initial moment t = 0 . From the general properties of differential inclusions
[20] it follows that the following properties take place :
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a. ϕ(0, v,G) = v for all v ∈ En, G ∈ H(F );
b. ϕ(t+ τ, v,G) = ϕ(t, ϕ(τ, v,G), Gτ ) for all v ∈ En, G ∈ H(F ) and t, τ ∈ R+;
c. the mapping ϕ : R+ × En ×H(F ) → C(En) is β-continuous.

Denote Y := H(F ) and by (Y,R, σ) the dynamical system of translations on Y. Then
the triplet 〈En, ϕ, (Y,R, σ)〉 is a set-valued cocycle over (Y,R, σ) with the fiber En. Thus
differential inclusion (30) with the regular right hand side F ∈ C(R×En,KV (En)) generates
a non-autonomous set-valued dynamical system 〈(X,R+, π), (Y,R, σ), h〉, where X = En ×
Y, π = (ϕ, σ) and h = pr2 : X → Y .

Applying to the constructed dynamical system the general results from sections 3.-6. we
will obtain, for example, the following results.
Theorem 7.7. Let F ∈ C(R × En,KV (En)),H(F ) be τ -periodic (F (t + τ, x) = F (t, x)
for all (t, x) ∈ ×En, where τ > 0 ) and let F be regular. Then the next statements are
equivalent:

(1) equation (30) admits a compact global pullback attractor, i.e. there exists a family
of nonempty compacts {Is | s ∈ [0, τ ]} such that
(a) the set I :=

⋃
{Is | s ∈ [0, τ ]} is relatively compact in En;

(b) Is+τ = Is for all s ∈ [0, τ ] and ϕ(s, I0, F ) = Is for all s ∈ [0, τ ];
(c) the equality

lim
t→+∞

β(ϕ(t,M, Fs−t), Is) = 0

holds for each M ∈ K(En) and s ∈ [0, τ ].
(2) equation (30) admits a compact global forward attractor, i.e. there exists a family

of nonempty compacts {Is | s ∈ [0, τ ]} such that
(a) the set I :=

⋃
{Is | s ∈ [0, τ ]} is relatively compact in En;

(b) Is+τ = Is for all s ∈ [0, τ ] and ϕ(s, I0, F ) = Is for all s ∈ [0, τ ];
(c) the equality

lim
t→+∞

sup
s∈[0,τ ]

β(ϕ(t,M, Fs), I) = 0

holds for every M ∈ C(En), where I :=
⋃
{Is | s ∈ [0, τ ]}.

Theorem 7.8. Let F ∈ C(R× En,KV (En)),H(F ) be τ -periodic (F (t+ τ, x) = F (t, x) for
all (t, x) ∈ ×En, where τ > 0 ), F be regular and the mapping ϕ : R+×En×H(F ) → K(En)
be continuous w.r.t. the Hausdorff’s distance in K(En). Then the following statements are
equivalent:

(1) equation (30) admits a compact global pullback attractor;
(2) equation (30) admits a compact global uniform forward attractor, i.e. there exists a

family of nonempty compacts {Is | s ∈ [0, τ ]} such that
(a) the set I :=

⋃
{Is | s ∈ [0, τ ]} is relatively compact in En;

(b) Is+τ = Is for all s ∈ [0, τ ] and ϕ(s, I0, F ) = Is for all s ∈ [0, τ ];
(c) the equality

lim
t→+∞

sup
s∈[0,τ ]

β(ϕ(t,M, Fs), Is) = 0

holds for every M ∈ K(En), where I :=
⋃
{Is | s ∈ [0, τ ]}.

Example 7.9. ( Difference inclusions ). Let us consider the difference inclusion

(32) u(t+ 1) ∈ F (t, u(t)),

where F ∈ C(Z × En,K(En)). Along with difference inclusion (32) we will consider the
family of difference inclusions

(33) v(t+ 1) ∈ G(t, v(t)),
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where G ∈ H(F ) = {Fτ : τ ∈ Z}, Fτ (t, u) = F (t + τ, u) and by bar there is denoted the
closure in C(Z× En,K(En)).

We denote by ϕ(v,G)(n) a solution of inclusion (33) passing through the point v for t = 0 end
defined for all t ≥ 0. We set ϕ(t, v,G) = {ϕ(v,G)(t) : ϕ(v,G) ∈ Φ(v,G)}, where Φ(v,G) is the
set of all solutions of inclusion (33) , passing through the point v for t = 0. From the general
properties of difference inclusions it follows that the mapping ϕ : Z+×En×H(F ) → K(En)
possesses the next properties :

1. ϕ(0, v,G) = v for all v ∈ En, G ∈ H(F );
2. ϕ(t+ τ, v,G) = ϕ(t, ϕ(τ, v,G), Gτ ) for all v ∈ En, G ∈ H(F ) and t, τ ∈ Z+;
3. the mapping ϕ : Z+ × En ×H(F ) → K(En) is β− continuous.

Assume Y = H(F ) and denote by (Y,Z, σ) the dynamical system of translations on Y . Then
the triplet 〈En, ϕ, (Y,Z, σ)〉 is a set-valued cocycle over (Y,Z, σ) with the fiber En. Thus,
non-autonomous difference inclusion (32) in a natural way generates a non-autonomous
set-valued dynamical system 〈(X,Z+, π), (Y,Z, σ), h〉, where X = En × Y, π = (ϕ, σ) and
h = pr2 : X → Y. Applying the results of paragraphs 3.-6. to the constructed above non-
autonomous dynamical system we will obtain the analogues of Theorems 7.7 and 7.8 for
difference inclusions.

7.2. Homogeneous set-valued dynamical systems. Let Y be a compact metric space
and (X,h, Y ) be a fiber bundle [23] with the fiber E, (X, ρ) be a complete metric space,
T = S+ := {s ∈ S | s ≥ 0}, where S := R or Z.

Definition 7.10. 〈(X,T1, π),(Y,T2, σ), h〉 (T1 ⊆ T2 ⊆ S) is said to be homogeneous, if for
any x ∈ X and any γx ∈ Φx the function γ̃ : D(γx) → X (T1 ⊆ D(γx) := [rx,+∞) is the
domain of the definition of γx, where rx ∈ S) defined by the relation γ̃(t) := λγx(t) is the
motion of (X,T1, π) issuing from the point λx ∈ X, i.e. γ̃ ∈ Φλx.

Note that non-autonomous dynamical systems from Examples 7.4 and 7.9 are homogeneous,
if the set-valued mapping F which figures in these examples is homogeneous, i.e. F (t, λx) =
λF (t, x) for all (t, x) ∈ T× En.

If x ∈ X, then we put |x| := ρ(x, θh(x)), where θy (y ∈ Y ) is the null (trivial) element of the
linear space Xy and Θ := {θy | y ∈ Y } is the null (trivial) section of the vectorial bundle
(X,h, Y ). Let A ∈ K(X), then we denote |A| := max{|a| : a ∈ A}. Denote by Xs a stable
manifold of 〈(X,T1, π), (Y,T2, σ)〉, i.e. Xs := {x | x ∈ X, lim

t→+∞
|π(t, x)| = 0}.

Lemma 7.11. Let 〈(X,T1, π),(Y,T2, σ), h〉 (T1 ⊆ T2 ⊆ S) be a homogeneous non-auto-
nomous set-valued dynamical system and L be a nonempty maximal compact invariant set
from X. Then Jy = θy for all y ∈ Y , where Jy := {x ∈ J | h(x) = y}.

Proof. If we suppose that the statement of the lemma is not true, then there exists a point
y0 ∈ Y and x0 ∈ Jy0 such that x0 6= θy0 . By the homogeneity of the system (X,T1, π)
we have λFλx0 = Fλx0 for all λ ≥ 0 (λ ∈ R) and, consequently, λx0 ∈ J. But the last
inclusion contradicts to the compactness of the set J. The obtained contradiction proves our
statement. �

Definition 7.12. Let W be a Banach space. The cocycle 〈W,ϕ, (Y,S, σ), h〉 is said to
be homogeneous, if the skew-product set-valued dynamical system (X,T, π) also is (X :=
W × Y, π := (ϕ, σ)).
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Theorem 7.13. Let W be a Banach space, 〈W,ϕ, (Y,S, σ), h〉 be a homogeneous set-valued
α-condensing cocycle admitting a compact global pullback attractor {Iy | y ∈ Y }. Then the
following statements hold:

(1) Iy = 0 (0 is the null element of Banach space W ) for all y ∈ Y ;
(2)

lim
t→+∞

sup
y∈Y

|ϕ(t,M, σ(−t, y))| = 0

for all M ∈ K(W ).

Proof. Let {Iy | y ∈ Y } be a compact global pullback attractor of the set-valued α-
condensing cocycle ϕ. Then by Theorem 3.10 J :=

⋃
{Jy | y ∈ Y }, where Jy := Iy×{y} is the

maximal compact invariant set of the skew-product set-valued dynamical system (X,T, π)
(X := W × Y and π := (ϕ, σ)). According to Lemma 7.11 Jy = θy = {0} × {y} and,
consequently, Iy = {0} for all y ∈ Y .

Since the set J is compact, the set-valued mapping y → Jy is upper semi-continuous and,
consequently, the mapping y → Iy is too because Iy = pr1(Jy). Taking into account that Iy
contains a single point we obtain its continuity. Now to finish the proof of the theorem it is
sufficient to apply Theorem 5.3. �

Example 7.14. (Non-autonomous discrete linear inclusions). Let us consider a finite set
of non-stationary matrices M := {Ai(t) | i ∈ {1, ...,m}}, with each Ai(t) : En → En

(t ∈ Z+). Let F : Z+ × En → K(En) be the set-valued mapping defined by the equality
F (t, x) := {A1(t)x,A2(t)x, ..., Am(t)x} for all t ∈ Z+ and x ∈ En. Consider a difference
inclusion

(34) x(t+ 1) ∈ F (t, x(t)).

Note that the solution of this inclusion is a sequence {x(t)}t∈Z+ of vectors in En such that
x(t+ 1) = Ait(t)x(t) for some Ait(t) ∈M, i.e.

x(t) = Ait
(t)Ait−1(t− 1)...Ai1(1)x(0) (Ait

(t) ∈M).

Along with equation (34) we consider its H-class (see Example 7.9 ), i.e. the family of
inclusions

(35) x(t+ 1) ∈ G(t, x(t)),

where G ∈ H(F ) := {Fs | s ∈ Z+} and Fs(t, x) := F (t+ s, x) for all (t, x) ∈ Z+ × En.

Definition 7.15. Following [21], inclusion (34) is said to be absolutely asymptotically stable
(AAS) if for any trajectory {x(t)}t∈Z+ of any inclusion (35)

lim
t→+∞

x(t) = 0.

Remark 7.16. We note that in work [21] only stationary case is considered, i.e. the matrices
Ai(t) (i = 1, 2, ...,m) are not dependant on time t ∈ Z+. In this case the H-class of inclusion
(34) contains only the inclusion (34).

Theorem 7.17. Suppose that the matrices A1(t), A2(t), ..., Am(t) are bounded on Z+, i.e.
there is a positive number C such that ‖Ai(t)‖ ≤ C for all i ∈ {1, 2, ...,m} and t ∈ Z+.
Then the following two affirmations are equivalent:

1. inclusion (34) is absolutely asymptotically stable;
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2. inclusion (34) is uniformly exponentially stable, i.e. there are positive numbers N
and a (a ∈ (0, 1)) such that

|x(t)| ≤ Nat|x(0)|

for all t ∈ Z+, where {x(t) |t ∈ Z+} is an arbitrary solution of arbitrary inclusion
(35).

Proof. The implication 2. → 1. is obvious, therefore to prove Theorem it is sufficient to
show that 1. implies 2. Let 〈En, ϕ, (Y,Z+, σ)〉 be the set-valued cocycle generated by
inclusion (34). From condition 1. it follows that the skew-product set-valued dynamical
system (X,Z+, π) (X := En × Y and π := (ϕ, σ)) is trajectory dissipative and by Theorem
2.15 the dynamical system (Φ,Z+, σ) is pointwise dissipative, where by Φ there is denoted
the set of all motions of the set-valued dynamical system (X,Z+, π) and by (Φ,Z+, σ) we
denote the dynamical system of shifts on Φ. Under the conditions of the theorem the set
Y = H(A) is a compact subset of C(Z+,K(En)) (the space C(Z+,K(En)) is equipped with
the compact-open topology and K(En) is a metric space with the distance of Hausdorff).
Since the phase space X = En×H(A) is locally compact, then (see [6, Ch.I]) the space Φ (Φ
is a subspace of C(Z+, X) which is equipped with the compact-open topology) is also locally
compact. Thus, the dynamical system (Φ,Z+, σ) is pointwise dissipative and its phase space
Φ is locally compact. According to Theorem 2.16 the dynamical system system (Φ,Z+, σ) is
locally dissipative and by Theorem 1.6.7 [6] the skew-product dynamical system (X,Z+, π)
is also locally dissipative and, in particular, we have

lim
t→+∞

sup
|x|≤1

|π(t, x)| = 0.

Note that the non-autonomous dynamical system 〈(X,Z+, π),(Y,Z+, σ),h〉 (h = pr2 : X →
Y ) generated by the set-valued cocycle ϕ obviously is homogeneous. Now to finish the
proof of the theorem it is sufficient to apply Theorem 1.1 from [8], which states that for a
homogeneous set-valued non-autonomous dynamical system the local dissipativity implies
its uniform exponential stability. �

Remark 7.18. Theorem 7.17 is a generalization of the well know result (see [21]) on absolute
asymptotic stability for non-autonomous discrete linear inclusions .
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