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1 Introduction

The problem of the almost periodicity of solutions of non-linear almost periodic
second-order differential equations

" = f(t,z) (1)



2 David Cheban and Cristiana Mammana

with the monotone (with respect to the spacial variable x) right hand side f was
studied by many authors (see, for example, [3]-[15], [17, 18], [22, 23], [24], [29], [34]
and the bibliography therein).

In the present paper we consider a special class of equations (1), where the function
f:RxH — H (H is a Hilbert space) is uniformly monotone with respect to (w.r.t.)
x € H,ie. flL(t,x) > ml, where f,(t,x) is a self-adjoint operator and I is a unit
operator on H and m > (0. We also study a more general equation

7" = f(wt,x) (weQ), (2)

with the uniform monotone (with respect to the spacial variable =) right hand side
f, where Q is a compact metric space, (©,R,0) is a dynamical system on 2 and
wt := o(t,w). We give sufficient conditions for the existence of a compact invariant
manifold of equation (2). Almost periodic, quasi-periodic, almost automorphic,
pseudo recurrent solutions and chaotic sets of equation (2) are studied too.

The problem of almost periodicity of solutions of equation (1) (with a monotone,
but not strictly monotone, function f) was studied by Cieutat [22] and by Cheban
[18] (with a uniform monotone function f).

A special class of such equations is the class of the Lagrangian system
2" =V, V(t ). (3)

In [24] Corduneanu studied the existence of almost periodic solutions of (3) with a
uniform monotone function V,V (i.e. Vy V(t,x) > mlI). Zakharin and Parasyuk
[34] studied the problem of the existence of quasi-periodic solutions of the equation

2" =V, V(wt,z) (we Q)

when € is an m-dimensional torus 7™, (2, R, ¢) is an irrational winding of the torus
T™ and the right hand side V,V is uniformly monotone.

For the equation
2 =V, V(x)+ f(t)

Carminati [17] gives sufficient conditions of the existence and uniqueness of a
bounded solution and its almost periodicity (see also [3]-[15] and the bibliography
therein).

This paper is organized as follows.

Section 2 contains the notions of different types of motions (almost periodic, almost
automorphic, recurrent etc) and some properties of these classes of motions. We
also give certain examples of shift dynamical systems which play a very important
role in the study of the recurrence property (almost periodicity, almost automorphy,
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recurrence etc) of continuous functions and solutions of non-autonomous differen-
tial equations. Finally, in this section we present notions of cocycle, skew-product
dynamical systems, non-autonomous dynamical systems and continuous invariant
sections of non-autonomous dynamical systems which play a crucial role in our pa-

per.

Section 3 is devoted to the study of invariant manifolds (invariant continuous sec-
tions) of the second order differential equation (2) with uniform monotone (with
respect to spacial variable x) right hand side f. The main result of this paper
is Theorem 3.4 which contains the sufficient conditions of the existence of com-
pact invariant manifold of equation (2). Here, we study also the almost periodic,
quasi-periodic, almost automorphic, pseudo recurrent solutions (Corollary 3.8 and
Theorem 3.12) and chaotic sets (Theorem 3.15) of equation (2).

In section 4 we give sufficient conditions of the existence of at least one almost au-
tomorphic solution of differential equation (1) with almost authomorphic monotone
right hand side (Theorem 4.5).

2 Almost Periodic and Almost Automorphic Motions
of Dynamical Systems

2.1 Recurrent, Almost Periodic and Almost Automorphic Motions

Let X be a complete metric space, R (Z) be a group of real (integer) numbers, R
(Z+) be a semi-group of nonnegative real (integer) numbers, S be one of the two
sets Ror Z and T CS (S C T) be a sub-semigroup of the additive group S.

Let (X, T, ) be a dynamical system.

A number 7 € T is called an ¢ > 0 shift (respectively, almost period), if p(z7,z) < €
(respectively, p(x(7 +t),xt) < e for all t € T).

A point x € X is called almost recurrent (respectively, Bohr almost periodic), if for
any € > 0 there exists a positive number [ such that at any segment of length [ there
is an ¢ shift (respectively, almost period) of point z € X.

If the point « € X is almost recurrent and the set H(z) := {«t | t € T} is compact,
then x is called recurrent.

Denote M, := {{t,} C T : such that {m(¢,,x)} is convergent and {t,} — oco}.

A point € X of the dynamical system (X, T,7) is called Levitan almost periodic
[27], if there exists a dynamical system (Y, T, o) and a Bohr almost periodic point
y € Y such that 91, C N,.
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Remark 2.1 Let x; € X; (i = 1,2,...,m) be a Levitan almost periodic point of
the dynamical system (X;,T,m;). Then the point x = (x1,22,...,%m)) € X =
X1 x Xo x ... x Xy, is also Levitan almost periodic in the product dynamical
system (X, T,7), where m : T x X — X is defined by the equality w(t,z) :=
(mi(t, z1), m2(t,x2), -y T (t, ) for allt € T and x := (x1,22,...,2m) € X.

A point = € X is called stable in the sense of Lagrange (st.L), if its trajectory
{m(t,z) : t €T} is relatively compact.

A point x € X is called almost automorphic [27, 31] in the dynamical system
(X, T, ), if the following conditions hold:

(i) = is st.L;

(ii) there exists a dynamical system (Y, T, o), a homomorphism A from (X, T, )
onto (Y, T,o) and an almost periodic in the sense of Bohr point y € Y such
that h=1(y) = {z}.

Remark 2.2 1. Every almost automorphic point x € X is also Levitan almost
periodic.

2. A Levitan almost periodic point x with relatively compact trajectory {m(t,z) t €
T} is also almost automorphic (see [1, 2], [16], [27], [31] and also [25] and [28]).
In other words, an Levitan almost periodic point x is almost periodic if and only if
its trajectory {m(t,x) t € T} is relatively compact.

3. Let (X,T,n) and (Y, T,0) be two dynamical systems, x € X and the following
conditions be fulfilled:

(i) a point y € Y is Levitan almost periodic;

(i) N, CN,.

Then the point x is Levitan almost periodic, too.

4. Let x € X be a st.L point, y €Y be an almost automorphic point and N, C N,.
Then the point x is almost automorphic too.

Remark 2.3 1. We note (see, for example, [27] and [33]) that if y € Y is a sta-
tionary (T-periodic, almost periodic, quasi periodic, recurrent) point of the dynam-
ical system (Y,To,0) and h :' Y — X is a homomorphism of the dynamical system
(Y, Ty, 0) onto (X, Ty, 7), then the point x = h(y) is a stationary (T-periodic, almost
periodic, quasi periodic, recurrent) point of the system (X, Ty, ).
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2. Ify €Y is an almost automorphic point of the dynamical system (Y,T,o) and
h Y — X is a homomorphism of the dynamical system (Y,S,o) onto (X,T,n),
then the point © = h(y) is an almost automorphic point of the system (X, T, ).

2.2 Shift Dynamical Systems, Almost Periodic and Almost Auto-
morphic Functions

Below we indicate one general method of construction of dynamical systems on the
space of continuous functions. In this way we will get many well known dynamical
systems on the functional spaces (see, for example, [16, 32]).

Let (X, T,n) be a dynamical system on X, Y be a complete pseudo metric space
and P be a family of pseudo metrics on Y. We denote by C(X,Y") the family of
all continuous functions f : X — Y equipped with a compact-open topology. This
topology is given by the following family of pseudo metrics {d5-} (p € P, K €
C (X)), where

di(f,g9) = jg}gp(f(w),g(x))

and C(X) a family of all compact subsets of X. For all 7 € T we define a mapping
o, : C(X,Y) — C(X,Y) by the following equality: (o-f)(z) := f(n(1,2)) (z € X).
We note that the family of mappings {o; : 7 € T} possesses the next properties:

a. op = ’L'dc(_)gy);

b. V7,72 €T 07 00, = Ory47y;

c. Vr € T o, is continuous.

Lemma 2.4 [20] The mapping o : Tx C(X,Y) — C(X,Y), defined by the equality
o(r,f)=0.f (feC(X,Y), 7€T), is continuous.

Corollary 2.5 The triple (C(X,Y),T,0) is a dynamical system on C(X,Y).

Consider now some examples of dynamical systems of the form (C(X,Y),T,o),
useful in the applications.

Example 2.6 Let X = T and we denote by (X, T,7) a dynamical system on T,
where 7(t,z) := x +t. The dynamical system (C(T,Y),T,o) is called Bebutov’s
dynamical system [32] (a dynamical system of translations, or shifts dynamical sys-
tem).
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We will say that the function ¢ € C(T,Y’) possesses a property (A), if the motion
o(-,¢) : T — C(T,Y) possesses this property in the dynamical system of Bebutov
(C(T,Y),T,o), generated by the function . As property (A) we can take period-
icity, quasi-periodicity, almost periodicity, almost automorphy, recurrence etc.

Example 2.7 Let X := T x W, where W is some metric space and by (X, T, )
we denote a dynamical system on X defined in the following way: w(t, (s,w)) :=
(s +t,w). Using the general method proposed above we can define on C(T x W, Y)
a dynamical system of translations (C(T x W,Y), T, o).

The function f € C(T x W,Y) is called almost periodic (quasi-periodic, recurrent,
almost automorphic, etc) with respect to ¢ € T uniform on w on every compact
from W, if the motion o(-, f) is almost periodic (quasi-periodic, recurrent, almost
automorphic, etc.) in the dynamical system (C(T x W,Y), T, o).

Remark 2.8 Let W be a compact metric space, then the topology on C(W,Y) is
metrizable. For example by the equality

there is defined a complete metric on the space C(W, X) which is compatible with the

compact-open topology on C(W,X), where di(f,g) = ‘ |<rl£1axwp(f(t,x),g(t,x)).
t|I<k, xz€

The space C(T x W,Y') is topologically isomorphic to C(T,C(W,Y)) [32], and also
the shifts dynamical systems (C(T x W,Y),T,o) and (C(T,C(W,Y)),T,0) are dy-

namically isomorphic.

2.3 Cocycles, Skew-Product Dynamical Systems and Non-
Autonomous Dynamical Systems
Let Ty C Ty be two sub-semigroups of the group S (Sy C T).

A triplet (X, Ty, ), (Y, Te,0), h), where h is a homomorphism from (X, Ty, ) onto
(Y, Ty, 0), is called a non-autonomous dynamical system.

Let (Y, Ty, 0) be a dynamical system on Y, W be a complete metric space and ¢ be
a continuous mapping from T; x W x Y in W, possessing the following properties:

a. (0,u,y) =u (uec W,y €Y);

b. p(t+7,u,y) = @(1,0(t,u,y),0(t,y)) (t,7€T,uec W,yeY).
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Then the triplet (W, ¢, (Y, T2, 0)) (or shortly ) is called [30] a cocycle on (Y, T2, 0)
with the fiber W.

Let X := W x Y and let us define a mapping 7 : X x Ty — X as follows:
m((u,y),t) = (p(t,u,y),0(t,y)) (ie. ® = (p,0)). Then it is easy to see that
(X, Ty, 7) is a dynamical system on X, which is called a skew-product dynamical
system [30] and h = pry : X — Y is a homomorphism from (X, Ty, 7) onto (Y, Te, o)
and, hence, (X, Ty, 7), (Y, Ty,0),h) is a non-autonomous dynamical system.

Thus, if we have a cocycle (W, p, (Y, T2, 0)) on the dynamical system (Y, Ty, o) with
the fiber W, then it generates a non-autonomous dynamical system ((X,Ty,n),
(Y, Ty,0),h) (X :=W xY), called a non-autonomous dynamical system generated
by the cocycle (W, ¢, (Y, Te,0)) on (Y, Te,0).

Non-autonomous dynamical systems (cocycles) play a very important role in the
study of non-autonomous evolutionary differential equations. Under appropriate
assumptions every non-autonomous differential equation generates a cocycle (a non-
autonomous dynamical system). Below we give some examples of this type.

Example 2.9 Consider the system of differential equations

u'= F(y,u)
! 4
{vZ & ()
where Y C E™, G € C(Y,E™) and F € C(Y x E™, E™). Suppose that for the system
(4) the conditions of the existence, uniqueness and extendability on R are fulfilled.
Denote by (Y,R4,0) a dynamical system on Y generated by the second equation of
the system (4) and by ¢(t,u,y) we denote the solution of the equation

u' = F(o(t,y),u)

passing through the point u € E™ for t = 0. Then the mapping ¢ : Ry x E" XY —
E™ satisfies the conditions a. and b. from definition of cocycle and, consequently,
system (4) generates a non-autonomous dynamical system (X, R, 7), (Y,Ry,0),h)
(where X := E" XY, 7m:=(p,0) and h:=pro: X —Y).

Example 2.10 Let E be a Banach space and (Y,R, o) be a dynamical system on
the metric space Y. We consider the system

/
{ u = F(U(yat)7u) (5)
ye Y,

where F' € C(Y x E,FE). Suppose that for equation (5) the conditions of the
existence, uniqueness and extendability on Ry are fulfilled. The non-autonomous
dynamical system ((X,Ry,7), (Y,R,0),h) (respectively, the cocycle (E, ¢, (Y,R, o))
), where X := ExXY, 7 := (¢,0), ¢(-,x,y) is the solution of (5) and h :=prg : X —
Y is generated by equation (5).
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2.4 Invariant Sections of Non-Autonomous Dynamical Systems

Let ((X, S4, m), (Y, S, o), h)) be a non-autonomous dynamical system.

A mapping v : Y — X is called a section (selector) of a homomorphism h, if
h(y(y)) =y for all y € Y. The section 7 of the homomorphism h is called invariant,
if y(o(t,y)) =m(t,y(y)) for all y € Y and t € S.

Remark 2.11 Note that (v(Y),S, ) is a group subsystem of the semigroup dynam-
ical system (X,S4,m), if v is a continuous section of the homomorphism h from
(X,S4,m) onto (Y,S,0).

Denote by I' = T'(Y, X) the family of all continuous sections of h, i.e. T'(Y,X) =
{yeC(Y,X): hoy = Idy}. We will suppose that I'(Y, X) # (. For applications
this condition is fulfilled in many important cases.

Remark 2.12 A continuous section v € T is invariant, if and only if v € T is a
stationary point of the semigroup {S* | t € S;}, where St : T'(Y, X) — (Y, X) is
defined by the equality (Sty)(y) := n(t,v(o(—t,y))) forally € Y andt € Sy.

We consider a special case of the foregoing construction. Let (W, ¢, (Y,S,0)) be
a cocycle over (Y,S, o) with the fiber W and ((X,S;,n), (Y,S,0),h) be the non-
autonomous dynamical system generated by this cocycle. Then h oy = Idy, and
since h = prg, then v = (¢, Idy), where v € T'(Y,X) and ¢ : Y — W. Hence,
to each section v a mapping ¥ : Y — W corresponds, and vice versa. There is a
one-on-one relation between I'(Y, W x Y) and C(Y, W), where C(Y, W) is the space
of continuous functions v : ¥ — W, we identify these two objects from now on.
The semigroup {S? | t € S;} naturally induces a semigroup {Q* | ¢t € S, } of the
mappings of C(Y,W). Namely,

(S (y) = 7'"v(0c™"y) = 7' (¥, Idy)(c""y) =
T (Yo ™'y), 07 y) = (Ut o "y)d(o"y), y) = (Q"4)(y), ),
where U(t,y) := o(t, -, y).
Hence, S*(¢, Idy) = (Q", Idy) with (Q"¢)(y) = U(t,o'y)v(c~"y) (y €Y). We
have the next properties:
a. Q¥ = Ide(y,wy;
b. QIQT = Q" (t, 7 €S,).
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A continuous function @ : Y — W is called an invariant section of the cocy-
cle (W,¢,(Y,T,o)) (or an invariant manifold of the cocycle ), if ¥(o(t,y)) =
o(t,(y),y) forallt € T and y € Y.

Remark 2.13 Let X := E XY and w:= (¢,0). Then the mapping h : Y — X is
a homomorphism of the dynamical system (Y, Tq,0) onto (X,T1,n), if and only if
h(y) = (v(y),y) for ally € Y, where v : Y — E is a continuous mapping with the
condition that y(yt) = p(t,v(y),y) for ally € Y and t € Ts.

3 Invariant Manifolds of Second Order Differential
Equations

3.1 Invariant manifolds

Let Q be a compact metric space and (€2, R, o) be an autonomous dynamical system
on €. Let E be a Banach space. Denote by [E] the space of all linear continuous
operators acting on E and endowed with an operator norm.

Denote by H a Hilbert space with the scalar product (-, -) and the norm |-|? := (-,-),
by C(Q, E) we denote the Banach space of all continuous function ¢ : Q@ — F
equipped with the norm |[[¢[|cq g) = max lo(w)|E-

we

A function ¢ € C(Q, E) is called:

- differentiable in the point wy along the flow (2, T, o), if there exists a limit

Vo (wo) = il—r% SD(U(S’WU()S) - SO(WO);

In this case ¢, (wp) is called a derivative of the function ¢ € C(Q, E) at the
point wy € Q along the flow (2, T, o) (shortly, o).

- differentiable on €2 along the flow o, if it is differentiable at every point w € §;

- continuously differentiable on ) along the flow o, if it is differentiable at €2
and ¢, € C(Q, E).

Denote by C'(€, E) a Banach space of all continuously differentiable (on Q along
the flow o) functions ¢ € C(Q, E) endowed with the norm

lelleno,p) = llellcw.r + 1€lowr)-



10 David Cheban and Cristiana Mammana

Let us consider a differential equation of the second order
x’ = f(th :E)v (w € Q) (6)

where f € C'(Q2x H, H), and give a criterion of the existence of an invariant manifold
for this equation. Below we will suppose that the function f is regular, i.e. for all
x.y € H the equation (6) admits a unique solution ¢(t, z,y,w) defined on R4 with
the initial conditions (0, z,y,w) =z and ¢’ (0, z,y,w) = y.

As we know, we can reduce the equation (6) to the equivalent system

=y
y' = flwt,x)
(w € Q) or to the equation
2 = F(wt,z) (7)

on the product space H? := H x H, where z := (z,y) and F € C(Q x H? H?)
is the function defined by the equality F(w,z) := (y, f(w,z)) for all w € Q and
z = (v,y) € H>.

Remark 3.1 1. Since (o(t,x,y,w), ¢’ (t, z,y,w)) is a cocycle, generated by equation
(7), then we have the following equality

p(t+1,2,y,w) = ot o(r,2,y,w), ¢ (1,2,y,w), wr) (8)
forallt, T e Ry, x,y € H and w € Q2.
2. The function = (v,8) € C(Q, H?) (7,6 € C(, H)) is a continuous invariant
section of the cocycle (p(t,z,y,w), ¢ (t,x,y,w)), generated by equation (7), if and
only if the following conditions are fulfilled:
(i) v € CHQ, H);

(i17) v(wt) = o(t,y(w), Yo (w),w) for allt € R and w € Q.

Cheban [18] and Cieutat [22] have studied the existence of almost periodic and
asymptotically almost periodic solutions of (6) (in the case, when 2 = H(f) and
(Q, R, 0) is a shift dynamical system).

A special class of such systems is the class of the following Lagrangian system:

2 =V, V(wt,2), (weQ), (9)
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where V € C(2 x H,R) and V(w,-) is differentiable for each w € Q (V,V(w,")
denotes the gradient of the function V(w,-)). Corduneanu [24] and Zakharin and
Parasyuk [34] have studied the existence of almost periodic solutions of (9).

A particular case of equation (9) is the following equation:
o = VIV(ZU) + f(“‘}t)a (w € Q)a (10)

where f € C(£2, H). Carminati [17] gives sufficient conditions for the existence and
uniqueness of bounded or almost periodic solutions of (10).

Lemma 3.2 Let M >0 and f € C(Q, H). By the formula

+o00 0
v<w>=2¢1ﬁ{ 0/ eV f(wr)dr +4 /" f(wr)dr | (11)

there is defined a continuous function on € possessing the following properties:

+o0 ¢
~y(wt) = 2\/ljw{e‘/ﬂt / e_mTf(wT)dT + e_\/MT/ emTf(WT)dT}

forallw e QY and t € R;

oo 0
Yo (w) = ;{/ ffmtf(un')dT — / emTf(WT)dT}
0 —00

for all w € Q;

3. y(wt) = ¢(t,7(w),Jo(w),w) for all t € R and w € Q, where p(t,z,y,w) is
a unique solution of the equation ¥’ = Mx + f(wt) (w € Q) with the initial
conditions ¢(0,z,y,w) =z and ¢'(0,z,y,w) = y.

Proof. Since the integrals figuring in the equality (11) are convergent (uniformly
in w € Q), then by (11) there is correctly defined a continuous function v on €.
The fact that the function v defined by equality (11) possess properties 1.-3. can
be proved by a simple calculation. [

Corollary 3.3 Let v : Q — H be the function defined by (11), then the following
statements hold:
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(i) v € CH (2, H);
(i) Wlc@.m < gl fllowm;
(ii) |[Yllo@mr) < ﬁHfHC(Q,H)%

() Vlleno,m) < (37 + ﬁ)”f”cm,m-

Theorem 3.4 Let f € C(Q2 x H,H) be continuously differentiable w.r.t. © € H
and let exist ro > 0 such that

(i) |f(w,z)] < A(r) < +oo for all (w,z) € Q x B[0,7] and 0 < r < ro;

(ii) there exists positive numbers m and M (r) such that for all (w,x) € Qx B[0,r],
0<r<rg,ml<fl(wz)<M(rI (is a unit operator from [H]) and the
operator fl(w,x) is self-adjoint;

(i1i) A(0) < mrg.

Then for an arbitrary A(0)m=! < r < ry there emist a unique function vy €
CY(Q, B[0, 7]) such that y(wt) = p(t,v(w),¥(w),w) for all w € Q and t € R,
where o(t,u,v,w) is a unique solution of equation (6) with the initial conditions
©(0,u,v) = u and ¢'(0,u,v) = v.

Proof. Let A(0)m ™ <r <ro. Assume B,(Q) := {¢|p € C(Q,H), ||¢llc@,m < T}
Further, define an operator ® from B, (f2) to B,.(2) by the equality

+00 0
(Py)(w) = %}M{ / e*mTF(wT,go(wT))dT + / €mTF(WT,g0(WT)dT},
0 —00

where F(w,z) = f(w,z) — Mz. Let ¢ € B.(2). We consider a differential equation

20
Z? = Mz + f(wt, p(wt)) — Mp(wt).

Note that Fl(w,z) = f.(w,z) — MI, and since f.(w,x) is self-adjoint, we have

|| Fy(w, x)|| = El\l—pl |(Fp(w, ), 8)| = El\l—pl |(fo(w,x)E,6) — M| =
= IM = (f1(w,2)E,€)] < M(r) —m

(12)

for all w € Q and = € B[0,r|. From inequality (12) it follows that

|F(w,21) = F(w,22)| < (M —m)|z1 — 22
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for all w € Q and x1, 22 € B[O, r].

Note that g € C(Q, H), where g(w) := F(w, p(w)). According to Lemma 3.2 ¢ :=
O(p) € C(Q, H) and

1 1
191l < 3 ll9ll = 57 max | F(w, p(w ))I <

2 max | F(w, p(w)) — “ZOHMW‘F(WAO)' (13)
%(M_m)”SDHC(Q,H)‘F (O)S ——r+ )

M M M
From inequality (13) it follows that ¢ € B,(), because » > A(0)m~!. From
the above said it follows that ®B,.(2) C B,(2). In addition, B,(Q2) is a closed
subspace of the full metric space C(2, H). Let us show that ® : B,(Q) — B,(Q) is

a contracting mapping. Let @1, p2 € B,(Q), ¥; := ®Py; (1 = 1,2) and ¢ := 11 — 1ha.
Then the function ¥ (wt) (w € ) satisfies the equation

A2z

3 = M+ F(wt, p1(wh)) = F(wt, pa(wt))

and can be estimated like this:
llc@m = [t — velle@m < M~ Ic£1€a§>2<|F(w,g01(w))—

M-m, [
2 e = el

F(w, p2(w))| <
i.e.
@1 — Poal|cio,m) < allvr — vallo@,m)

for all 1,99 € B.(Q), where a = M~Y(M — m) < 1. Consequently, there exists a
unique fixed point of the operator ® that, obviously, is the desired function. The
theorem is proved. [J

Corollary 3.5 Let (2, R, 0) be a compact minimal dynamical system. If the point
w € Q is almost periodic (respectivelly, almost automorphic), then under the condi-
tions of Theorem 3.4 the equation (6) admits at least one almost periodic (respec-
tively, almost automorphic) solution.

Remark 3.6 1. For almost periodic system Corollary 3.5 was proved before by first
author [18] (see, also, [22]).

2. For almost periodic finite-dimensional Lagrangian systems (9) Corollary 3.5 was

established by Corduneanu [24].
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3.2 Linear case

Corollary 3.7 Let A € C(Q,[H]) be a self-adjoint operator-function. If there exist
positive numbers m and M such that for all w € Q

ml < A(w) < M1, (14)

then for any function f € C(, H) there exists a unique function y € C’l(Q, H) such
that

(1) y(wt) = p(t,y(w),¥(w),w) for allw € Q and t € R, where p(t,u,v,w) is a
unique solution of the equation

7" = A(wt)x + f(wt) (15)
with the initial conditions ¢(0,u,v,w) =u and ¢'(0,u,v,w) = v;

(i)
| fllew,m
Wllewum < —moiB i,

Proof. Let F(w,z) := Aw)z + f(w), A € C(Q,[H]) be a self-adjoint operator-
function, f € C(92, H) and the condition (14) be held. Note that |F(w,x)| < A(r) :=
rll Al o, + I flle@.m for allw € Q and « € B0, 7], where 7 € [m ™| fllc(o,m), 0]
and 70 > || fllc(q, H)mfl. Now to finish the proof it is sufficient to apply Theorem
3.4, because all its conditions are fulfilled. [

3.3 Quasi-Periodic Solutions

An m-dimensional torus is denoted by 7™ := R™/2nZ. Let (7™, T, o) be an irra-
tional winding of 7™.

A function ¢ : T — H is called quasi-periodic with the frequency w :=
(Wi,w2,...,wy) € T™, if there exists a continuous function ® : 7™ — H such
that ¢(t) := ®(wt) for all t € T, where wt := o(t,w) and (7™, T, o) is an irrational
winding of the torus 7™.

Corollary 3.8 Let the conditions of Theorem 3.4 be fulfilled and the point w €
be stationary (respectively, T-periodic, quasi-periodic, Bohr almost periodic, almost
automorphic, recurrent). Then equation (6) has a unique stationary (respectively,
T-periodic, quasi-periodic, Bohr almost periodic, almost automorphic, recurrent) so-
lution.
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Remark 3.9 1. For almost periodic equations (6) Corollary 3.8 was proved by
Cheban [18] and for finite-dimensional Lagrangian equation it was established by
Corduneanu [24].

2. For finite-dimensional quasi-periodic Lagrangian equations (9) Corollary 3.8 im-
proves Theorem 4.3 of Zakharin and Parasyuk [34].

3.4 Invariant Manifold of The Equation 2" = VV (z) + f(wt)

Let us consider now equation (10).

Corollary 3.10 Assume that the following conditions are held:

(i) the function V. € C(H,R) has a local minimum at xo € H, and let ro be a
positive number such that V' is bounded on Bz, rol;

(ii) for all x € Blxg,ro] :={x € H : |x —xo| < 1o} the function V is of the form
V(z) = %(Ax,x} +o(a),
where A € [H] is a self-adjoint operator and
(Ax,z) > Oé|l‘|2

for all x € H, and v € CY(H,R) is a convex function on Blxg,70], i.e
Vazv(z) > 0 for x € Blxg,ro|;

(iii) the function f € C(Q, H) satisfies the inequality
I flle@,m) < aro.
Then

1

(i) for an arbitrary r € [||fllcma ™", r0] there exist a unique function vy €

Cl(Q,B[O,To]) such that
Y(wt) = ot (W), ¥(w), w)

for allw € Q and t € R, where ¢(t,u,v,w) is a unique solution of equation
(10) with the initial conditions p(0,u,v) =u and ¢'(0,u,v) = v;

(i)

v = zollc.m < o M fllow.m)-
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Proof. Making the change of variable x = 2y + y in equation (10) we obtain
y' =V, V(o +y)+ fwt).
We denote by F(w,y) := V,V(zo+y)+ f(w) ((w,y) € Q x B[0,r¢]). Then
Fé(w, y) =V, V(zg +y) = A+ Vyv(zo +v),
because )
V(zo +y) = §<A($0 +y),z0 +y) +v(zo +y).
Since v is convex on B[z, 7] (this means that Vy,v(x) > 0 on B[z, r]), we obtain

a- I < Fy(wy) <M(r)-I

for all (w,y) € 2 x B[0,r] and r € [0,79]. As the function v is bounded on B[z, ro],
then there exists a function A : [0,79] — R4 such that |v(zo + y)| < A(r) for all
y € BJ0,7] (in our case, for example, we can take

A(r) == sup |VyV(zo+y)| + | fllew,m
y€B[0,r]

and A(0) = || fllc(o,))- To finish the proof of Corollary 3.10 it is sufficient to apply
Theorem 3.4. UJ

3.5 Pseudo Recurrent Motions

A dynamical system (€2, T, o) is said to be pseudo recurrent (see [19]), if the following
conditions are fulfilled:
a) € is compact;

b) (2, T,o) is transitive, i.e. there exists a point wyg € € such that Q =
{o(t,wpy) | t € T};

c) every point w € ) is stable in the sense of Poisson, i.e. 9, =# (.

Lemma 3.11 [21] Let ((X,T,n),(Q2,T,0),h) be a non-autonomous dynamical sys-
tem and the following conditions be fulfilled:

1) (2, T,0) is pseudo recurrent;

2) v € C(Q,X) is an invariant section of the homomorphism h : X — (.

Then the autonomous dynamical system (y(2), T, 7) is pseudo recurrent too.
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Lemma 3.11 implies that under the conditions of Theorem 3.4 (respectively, Corol-
laries 3.7 and 3.10) equation (6) (respectively, equation (15) or equation (10)) admits
a pseudo recurrent invariant manifold.

Therefore, we have the following result.

Theorem 3.12 Assuming that the driving dynamical system (Q,T,o) is pseudo
recurrent, and assuming the conditions of Theorem 3.4 (respectively of Corollaries
3.7 or 3.10) are satisfied, we get that equation (6) (respectively, equation (15) or
equation (10)) admits a pseudo-recurrent invariant manifold.

3.6 Chaotic Motions

Let (X, p) be a metric space and (X, T, 7) be a dynamical system.

A subset M C X is called transitive, if there exists a point g € X such that
H(zg) == {n(t,x0) |t € T} = M.

{p,q} C X is called a Li-Yorke pair, if simultaneously

liminf p(7(t, p), 7(t,q)) = 0 and limsup p(n(t, p), 7(¢,)) > 0.

t——+o0

A set M C X is called scrambled, if any pair of distinct points {p,q} C M is a
Li-Yorke pair.
A dynamical system (X, T, 7) is said to be chaotic, if X contains an uncountable
subset M satisfying the next conditions:

(i) the set M is transitive;

(ii) M is scrambled;

(iii) P(M) = M, where P(M) :={x € M | Ny # 0} (i.e. z € P(M), if and only if

x is contained in its omega limit set) and by bar we denote the closure in X.

Theorem 3.13 [21] Let (X, T, ) and (2, T,0) be two dynamical systems and v :
X — Q be a homeomorphism of (2, T,0) onto (X, T,n). Assume that (2, T,o) is
chaotic. Then the dynamical system (X, T, ) is chaotic too.

Remark 3.14 Let (W, ¢, (Q, T, 7)) be a cocycle over (2, T, ) with the fiber W and
w: Q — W be a continuous function satisfying the condition w(o(t,w)) = p(t,
w(w), w) for allt € T and w € Q. Then if the dynamical system (Q,T,o) is



18 David Cheban and Cristiana Mammana

chaotic ,the skew-product dynamical system (X, T,7) (X := W and (¢, (u,w)) :=
(p(t,u,w),o(t,w)) for all (u,w) € X and t € T) is chaotic too. In this case we say
that the cocycle ¢ is chaotic.

Using Theorem 3.13, Remark 3.14 and the results from sections 2-3 we obtain some
criteria of the existence of chaotic sets for the second-order differential equations.
For instance, the following statement holds.

Theorem 3.15 Let (2, T, 7) be a chaotic dynamical system. Then under the con-
ditions of Theorem 8.4 the cocycle ¢ defined by equation (6) admits a compact in-
variant chaotic set.

4 Almost Automorphic Solutions of Monotone Second-
Order Differential Equation

In this section we suppose that the space H is finite-dimensional. Let W be a
nonempty compact from H and (C(R x W, H),R, o) be a shift dynamical system on
C(RxW, H). Recall, that C(Rx W, H) is topologically isomorphic to C(R, C(W, H))
and the shift dynamical systems (C(R x W, H),R, o) and (C(R,C(W, H)),R, o) are
dynamically isomorphic.

Let K be a convex set of H.

The direction n € H is called normal to K at the point x € K, if (n,u —x) <0 for
all w € K. The set of all normal directions is called normal cone to K at x and is
denoted by N (K, z).

Recall [26, p.137] that N(K,x) # 0 for each z € 0K and N(K,z) = {0} for each
x € Int(K), where 0K is the boundary of K and Int(K) is its interior.

Let K C H be nonempty, compact, convex subset of H and f € C(R x K, H). We
formulate the following assumptions:
(C1) f is almost automorphic in ¢ uniformly for z € K, i.e. the motion o(t, f) is

almost automorphic in the shift dynamical system (C(R x K, H),R, 0);

(C2) the function f is monotone in z € K uniformly for ¢t € R, i.e. (f(t,z1) —
flt,xa),x1 —x2) > 0 for all z1,29 € K and t € R;

(C3) there exists tg € R such that (f(to,z1) — f(to, z2),x1 —x2) > 0 for all 1,29 €
K, such that x1 # 9;

(C4) (f(t,z),n) >0 for each x € 0K, n € N(K,z) and t € R.
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Lemma 4.1 Let W C H be a nonempty compact. The function f € C(R x W, H)
18 almost automorphic in t € R uniformly for x € W, if and only if the following
conditions hold:

(i) the function f is bounded, i.e. there exists a constant C° > 0 such that
|f(t,z)| < C for all (t,x) € R x W;

(ii) the function f is uniformly continuous on R x W;

(i1i) the function f is Levitan almost periodic in t € R uniformly for x € W.

Proof. According to Remark 2.2, the motion o(t, f) is almost automorphic, if
and only if it is Levitan almost periodic and stable in the sense of Lagrange. Now
to finish the proof of the lemma it is sufficient to note that, by Theorem 7 [30,
p.37], the motion o(¢, f) is stable in the sense of Lagrange in the shift dynamical
system (C(R x W, H),R, o), if and only if the function f is bounded and uniformly
continuous on the set R x W. [J

Theorem 4.2 [22] Let f € C(XK, H) be a bounded on R x K function. Then the
following statements hold:

(i) if the assumption (C4) is fulfilled, then the equation

2" = f(t, ) (16)
has at lest one bounded on R solution;

(i) if the assumptions (C2) and (C4) are fulfilled and equation (16) has two so-
lutions @1 and 2 defined on R with their values in K, then ¢1(t) — p2(t) =
costant for allt € R;

(iii) if, in addition, the condition (C38) is fulfilled, then (16) has a unique solution
defined and bounded on R.

Denote Xo := {(p, f) | ¢ € C(R,H), f € C(R x H,H), and let ¢ be a solution of
equation (16)}.

Lemma 4.3 The set Xg is invariant and closed in the product dynamical system
(C(R,H) x C(Rx H,H),R,0).

Proof. Let ¢ € C(R, H) be a solution of equation (16), then it is twice continuously
differentiable and

(1) = f(t o) (17)
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for all t € R. From (17) it follows that ¢”(t+7) = f(t+7,0(t+ 7)) for all t,7 € R,
ie. a(r, (¢, f)) == (o(1,9),0(7, f)) € Xo. We will show that the set Xy is closed in
the product space (C(R,H) x C(R x H,H). Let (¢,g) € X (Xp is the closure of
Xoin (C(R,H) x C(Rx H,H)). Then there exists a sequence {(¢n, fn)} € Xo such
that:

(i) {on} — ¢ in C(R, H);
(i) {fn} =g in C(R x H, H);
(iii) ¢n € C(R, H) is twice differentiable and

@Z(t) - fn(ta (pn(t)) (18)

for all t € R.

Let [ > 0 be an arbitrary number. Since {p,} — 9 in C(R, H), then the set
Q1) := U521 on([—1,1]) is a compact subset of H. Note that the sequence {6,} — 6
in C(R, H), where 0,,(t) := @ (t) = fu(t, on(t)) and 0(t) := g(t,(t)) for all ¢t € R.
Really,

10(t) — On ()] < [g(t, ¥ () — g(t, en(t))] + (19)
lg(t, on(t)) — fu(t, on(t)] < an + B

for all t € [—[,], where

= () — g(t, on(t d B, = t,x) — folt, 7).
O 1= max l9(t,9(t)) — g(t, on(t))| and By g l9(t, ) — fult, z)|
Since {f,} — g in C(R x H, H), then {f,} — 0 as n — +oo. Note that {a,} also
converges to 0 as n — +o0o. If we suppose that it is not true, then there are g9 > 0

and a sequence {t,} C [, ] such that

|g(tna w(tn)) - g(tnv (Pn(tn))’ > €0 (20)

for all n € N. Without loss of generality we can suppose that the sequence {t,} is
convergent. Denote by t( its limit. Then lir}rl on(tn) = @(to), since
n—-roo

‘@n(tn) - SO(tO)‘ < ‘Son(tn) - ¢(tn)| + ‘Sp(tn) - (P(to)’ <

max lon(t) — @(@)] + [o(tn) — ¢ (to)]-

Passing into limit in inequality (20) as n — +o00, we get 0 > €g. The obtained
contradiction proves our statement. Now, passing into limit in inequality (19) as
n — +o0o we obtain that # = lim 6, in the space C(R, H).

n—-+00
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We will show that the sequence {¢/,(0)} is convergent. Indeed, since

on(t) = pa(0) + £, (0)t + /0 /0 0, (r)drds

and the sequences {p, }, {0,} C C(R, H) are convergent, we obtain that the sequence
{¢l.(0)} C H is convergent (in the space H) too. From this fact and the equality

(t) = £ (0) + / 0u(5)ds

we receive the convergence of the sequence {¢} } in the space C(R, H). Thus, the
sequences {¢n}, {¢),} and {¢!'} are convergent in the space C(R, H) and, conse-
quently, the function v is twice continuously differentiable, ¢’ (t) = 11111 ©h(t) and
n—-+0oo
P (t) = lirf ©r(t) for all t € R. Finally, passing into limit in equality (18) as
n—-+0oo
n — +oo, we obtain ¢ (t) = g(t,¥(t)) for all t € R, i.e. (¢,9) € Xo. O

Corollary 4.4 1. Xy is a complete metric subspace of the product space C(R, H) X
CRx H,H).

2. On the space X there is defined a shift dynamical system, induced by the product
dynamical system (C(R,H) x C(R x H, H),R, o).

Theorem 4.5 Let the assumptions (C1), (C2) and (C4) be fulfilled. Then the
following statements hold:

(i) equation (16) admits at least one almost automorphic solution;

(i) if the equation (16) has two solutions @1 and ¢ defined on R with their values
in K, then ¢1(t) — pa(t) = costant for all t € R;

(7i3) if, in addition, we assume that (C3) is fulfilled, then equation (16) has a unique
almost automorphic solution.

Proof. According to Lemma 4.1 and Theorem 4.2, to prove this theorem it is
sufficient to show that equation (16), under the conditions of the theorem, admits
at least one almost automorphic solution. Let ¢ be a bounded on R solution of
equation (16). By Landau’s inequality, we have

sup [¢/(£)] < 2\/sup "(1)], [sup o (t)]
teR teR teR

and, consequently, |¢'(¢)| < 2ab for all t € R, where

a:=sup|f(t,p(t))| < sup |f(t,x)| and b:= sup |p(t)].
teR teR, z€W teR
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Thus, the function ¢ € C(R, H) is bounded and uniformly continuous on R and by
Theorem 7 [30, p.37] the motion o (¢, ¢) is stable in the sense of Lagrange in the shift
dynamical system (C(R,H),R,0). Let us consider a non-autonomous dynamical
system ((X,R,7), (Y,R,0),h), where Y := H(f) (f is the restriction on R x W of

[, where W := p(R) ) and (Y, R, 0) is the shift dynamical system on H(f) induced
by (C(R x H,H),R,0), X := H(p, f) C Xo and (X,R,7) is the shift dynamical
system induced by (Xo,R,0) and h := pro : X — Y is the second projection. Now

we will prove that 0z C N, 7. In fact, let {tn} € 9. Then {fi,} — f in the

space C(R x W, H) (fr := o(r, f)). Since ¢ € C(R, H) is stable in the sense of
Lagrange, then H(yp) := {¢r | 7 € R} is a compact invariant set and the sequence
{4, } is relatively compact. Let {¢/,} be a subsequence of the sequence {t,}, such
that {¢s } converges and denote by P(yp) := ngrfm @y € H(p). By Lemma 4.3, the

function P(¢p) is a solution of equation (16) defined on R. Since P(¢)(R) C W, then
by Theorem 4.2 there exists ¢ € H such that

P(e)(t) = ¢(t) + ¢ (21)

for all t € R. From equality (21) we have P?(¢) = P(¢)+c=¢+2¢, ..., P*(p) =
¢ + ke for all k € N. On the other hand, {P*(¢)} C H(yp) and taking into account
the compactness of the set H(p) we obtain ¢ = 0, i.e. P(p) = ¢. Thus the sequence
{¢1,} is relatively compact and it has a unique limit point . This means that
the sequence {¢y, } is convergent, and consequently, {¢,} € N, 7 But f, under
the conditions of Theorem, is almost automorphic in ¢ € R uniformly for z € W,

and, hence, the function (¢, f) is also almost automorphic (and, in particular, the
function ¢ is too). O
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