
COMPACT GLOBAL ATTRACTORS OF DISCRETEINCLUSIONS
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Abstract. The paper is dedicated to the study of the problem of existenceof compact global attractors of discrete inclusions and to description of itsstructure. We consider a family of continuous mappings of a metric space Winto itself, and (W; fi)i2I is the family of discrete dynamical systems. On themetric space W we consider a discrete inclusion(1) ut+1 2 F (ut)associated to M := ffi : i 2 Ig, where F (u) = ff(u) : f 2 Mg for allu 2 W: We give su�cient conditions (the family of maps M is contractingin the extended sense) of existence of compact global attractor of (1). If thefamily M consists a �nite number of maps, then the corresponding compactglobal attractor is chaotic. We study this problem in the framework of non-autonomous dynamical systems (cocyles).

1. Introduction
The aim of this paper is the study of the problem of existence of compact globalattractors of discrete inclusions and control systems (see, for example, Bobylev,Emel'yanov and Korovin [6], Bobylev, Zalozhnev and Klykov [7], Emel'yanov, Ko-rovin and Bobylev [20] and the references therein). Let W be a metric space,M := ffi : i 2 Ig be a family of continuous mappings of W into itself and(W; fi)i2I be the family of discrete dynamical systems, where (W; f) is a discretedynamical system generated by positive powers of a continuous map f : W ! W .On the space W we consider a discrete inclusionut+1 2 F (ut)associated to M := ffi : i 2 Ig (DI(M)), where F (u) = ff(u) : f 2 Mg for allu 2W:
A solution of the discrete inclusion DI(M) is (see, for example, [6, 20, 24]) asequence ffxjg j j � 0g �W such thatxj = fijxj�1for some fij 2M (trajectory of DI(M)), i.e.xj = fijfij�1 :::fi1x0 all fik 2M:
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We can consider that it is a discrete control problem, where at each moment oftime j we can apply a control from the set M, and DI(M) is the set of possibletrajectories of the system.
The problem of existence of compact global attractors for a discrete inclusion arise ina number of di�erent areas of mathematics: control theory { Bobylev, Emel'yanovand Korovin [6], Bobylev, Zalozhnev and Klykov [7], Emel'yanov, Korovin andBobylev [20] , Molchanov [28]; linear algebra { Artzrouni [2], Beyn and Elsner[5], Bru, Elsner and Neumann [11], Cheban and Mammana [15, 16], Daubechiesand Lagarias [17], Elsner and Friedland [18], Elsner, Koltracht and Neumann [19],Gurvits [24], Kozyakin [27], Vladimirov, Elsner and Beyn [36], Wirth [38, 39];Markov chains { Gurvits [21], Gurvits and Zaharin [22, 23]; iteration processes {Bru, Elsner and Neumann [11], Opoitsev [29]; Bransley-Sloan's method of fractalimage compression { Barnsley and Sloan [4], Bondarenko and Dolnikov [8] and seealso the bibliography therein.
In 1988 Barnsley and Sloan [4] put forward some ideas, based on concepts of thetheory of dynamical systems, for the compression and storage of graphic informa-tion. Their method was called the method of fractal compression of information.They consider a �nite set of a�ne transformationsM = ffi : i = 1; 2; : : : ;mg(fi : Rd ! Rd), i.e. transformations fi of the form fi(u) := Aiu + bi; where Aiare square matrices of order d; and u; bi 2 Rd: These transformations possesses thefollowing properties:

(i) there exists a compactM0 � Rd such that fi(M) �M0 for allM 2 K(M0);where K(M0) is the set of all compact subsets of M0;(ii) jfi(u1)� fi(u2)j � kiju1�u2j; where ki 2 [0; 1) and j � j is the norm on Rd:
This set M is called an a�ne collage.
The mapping F : K(M0)! K(M0) de�ned by the equality

F (M) := m[
i=1 fi(M)

is called a collage mapping.
We consider an arbitrary collage M (M contains, generally speaking, an in�nitenumber of mappings f) on the complete metric space W (W is not obligatorycompact) and we give conditions which guarantee the existence of compact globalattractor for M. If M consists of a �nite number of maps, then we prove that Madmits a compact global chaotic attractor. We study this problem in the frameworkof non-autonomous dynamical systems (cocyles).
This paper is organized as follows.
In Section 2 we give some notions and facts from the theory of set-valued dynamicalsystems which we use in our paper.
Section 3 is dedicated to the study of upper semi-continuous (generally speakingset-valued) invariant sections of non-autonomous dynamical systems. They play a
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very important role in the study of non-autonomous dynamical systems. We givesu�cient conditions which guarantee the existence of a unique globally exponen-tially stable invariant section (Theorem 3.2 - main result of paper). Analogousstatements for non-autonomous dynamical systems, when the base dynamical sys-tem (Y;T2; �) is invertible, are known (see, for example, [14, Ch.2] and [35]). In thecase of semi-group dynamical system (Y;T2; �) (i.e. the mapping �(t; �) : Y 7! Yis not invertible) Theorem 3.2 is formulated and proved for the �rst time in thispaper.
In Section 4 we give a new approach to the study of discrete inclusions (DI) whichis based on non-autonomous dynamical systems (cocycles). We show that everyDI in a natural way generates some non-autonomous dynamical system (cocycle),which play an important role in its study (see Sections 5 and 6).
Section 5 is dedicated to the study of relation between compact global attractor ofcocycle and the skew-product dynamical system (respectively, set-valued dynamicalsystem) associated by the given cocycle (see Theorem 6.2).
In section 6 we prove that DI generated by a �nite number of continuous mappingsf1; f2; : : : ; fm (m � 2) admits a compact global chaotic attractor.

2. Set-Valued Dynamical Systems and Their Compact GlobalAttractors
Let (X; �) be a complete metric space, S be a group of real (R) or integer (Z)numbers, T (S+ � T) be a semi-group of additive group S. If A � X and x 2 X,then we denote by �(x;A) the distance from the point x to the set A, i.e. �(x;A) =inff�(x; a) : a 2 Ag. We note note by B(A; ") an "-neighborhood of the set A, i.e.B(A; ") = fx 2 X : �(x;A) < "g; by K(X) we denote the family of all non-emptycompact subsets ofX. To every point x 2 X and number t 2 T we associate a closedcompact subset �(t; x) 2 K(X). So, if �(P;A) = Sf�(t; x) : t 2 P; x 2 Ag(P � T),then

(i) �(0; x) = x for all x 2 X ;(ii) �(t2; �(t1; x)) = �(t1 + t2; x) for all x 2 X;(iii) limx!x0;t!t0 �(�(t; x); �(t0; x0)) = 0 for all x0 2 X and t0 2 T, where�(A;B) = supf�(a;B) : a 2 Ag is a semi-deviation of the set A � Xfrom the set B � X:
In this case it is said [33] that there is de�ned a set-valued semi-group dynamicalsystem.
Let T = S and be ful�lled the next condition:

(i) if p 2 �(t; x), then x 2 �(�t; p) for all x; p 2 X and t 2 T:
Then it is said that there is de�ned a set-valued group dynamical system (X;T; �)or a bilateral (two-sided) dynamical system.
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Let T0 � S (T � T0): A continuous mapping x : T ! X is called a motion of theset-valued dynamical system (X;T; �) issuing from the point x 2 X at the initialmoment t = 0 and de�ned on T0, if

a. x(0) = x;b. x(t2) 2 �(t2 � t1; x(t1)) for all t1; t2 2 T0 (t2 > t1).
The set of all motions of (X;T; �), passing through the point x at the initial momentt = 0 is denoted by Fx(�) and F(�) := SfFx(�) j x 2 Xg (or simply F).
The trajectory  2 F(�) de�ned on S is called a full (entire) trajectory of thedynamical system (X;T; �):
Denote by �(�) the set of all full trajectories of the dynamical system (X;T; �) and�x(�) := Fx(�)T�(�):
Theorem 2.1. [33] Let (X;T; �) be a semi-group dynamical system and X be a
compact and invariant set (i.e. �tX = X for all t 2 T; where �t := �(t; �)). Then

(i) F(�) = �(�), i.e. every motion  2 Fx(�) can be extended on S (this
means that there exists ~ 2 �x(�) such that ~(t) = (t) for all t 2 T);(ii) there exists a group (generally speaking set-valued) dynamical system (X;S; ~�)
such that ~�jT�X = �:

A system (X;T; �) is called [12, 14] compactly dissipative, if there exists a nonemptycompact K � X such that
limt!+1�(�tM;K) = 0;

for all M 2 K(X):
Let (X;T; �) be compactly dissipative and K be a compact set attracting everycompact subset of X. Let us set
(2) J := !(K) := \t�0

[
��t��K:

It can be shown [12, 14] that the set J de�ned by equality (2) doesn't depends onthe choice of the attractor K, but is characterized only by the properties of thedynamical system (X;T; �) itself. The set J is called a center of Levinson of thecompact dissipative system (X;T; �).
Theorem 2.2. [12, 14] If (X;T; �) is a compactly dissipative dynamical system
and J is its center of Levinson, then :

(i) J is invariant, i.e. �tJ = J for all t 2 T;(ii) J is orbitally stable, i.e. for any " > 0 there exists �(") > 0 such that�(x; J) < � implies �(xt; J) < " for all t � 0 ;(iii) J is an attractor of the family of all compact subsets of X;(iv) J is the maximal compact invariant set of (X;T; �).
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3. Continuous Invariant Sections of Non-Autonomous DynamicalSystems

Let X be a metric space and Y be a topological space. The set-valued map-ping  : Y ! K(X) is said to be upper semi-continuous (or �-continuous), iflimy!y0 �((y); (y0)) = 0 for all y0 2 Y:
Let (X;h; Y ) be a �bre bundle [10, 25]. The mapping  : Y ! K(X) is called asection (selector) of the �bre bundle (X;h; Y ), if h((y)) = y for all y 2 Y:
Remark 3.1. Let X := W � Y . Then  : Y ! X is a section of the �bre bundle(X;h; Y ) (h := pr2 : X ! Y ), if and only if  = ( ; IdY ) where  :W ! K(W ):
Let (X;T1; �) and (Y;T2; �) (S+ � T1 � T2 � S) be two dynamical systems.The mapping h : X ! Y is called a homomorphism (respectively isomorphism)of the dynamical system (X;T1; �) on (Y;T2; �), if the mapping h is continuous(respectively homeomorphic) and h(�(x; t)) = �(h(x); t) ( t 2 T1; x 2 X).
A triplet h(X;T1; �); (Y;T2; �); hi, where h is a homomorphism of (X;T1; �) on(Y;T2; �) and (X;h; Y ) is a locally-trivial �bre bundle [10, 25], is called a non-autonomous dynamical system.
A mapping  : Y ! X is called an invariant section of the non-autonomous dynam-ical system h(X;T1; �); (Y;T2; �); hi, if it is a section of the �bre bundle (X;h; Y )and (Y ) is an invariant subset of the dynamical system (X;T; �) (or, equivalently,[f�t(q) : q 2 (�t)�1(�ty)g = (�ty)
for all t 2 T nd y 2 Y ).
Theorem 3.2. Let h(X;T1; �); (Y;T2; �); hi be a non-autonomous dynamical sys-
tem and the following conditions be ful�lled:

(i) the space Y is compact;(ii) Y is invariant, i.e. �tY = Y for all t 2 T2;(iii) the non-autonomous dynamical system h(X;T1; �); (Y;T2; �); hi is con-
tracting in the extended sense, i.e. there exist positive numbers N and� such that

(3) �(�(t; x1); �(t; x2)) � Ne��t�(x1; x2)
for all x1; x2 2 X (h(x1) = h(x2)) and t 2 T1;(iv) �(Y;X) = f j  : Y ! K(X) is a set-valued �{continuous mapping andh((y)) = y for all y 2 Y g 6= ;.

Then

(i) there exists a unique invariant section  2 �(Y;X) of the non-autonomous
dynamical system h(X;T1; �); (Y;T2; �); hi;(ii) the non-autonomous dynamical system h(X;T1; �); (Y;T2; �); hi is com-
pactly dissipative and its Levinson center J = (Y );(iii) Sf�tJq : q 2 (�t)�1(yt)g = J�(t;y) for all t 2 T1 and y 2 Y ;
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(iv) if (Y;T2; �) is a group-dynamical system (i.e. T2 = S), then the unique

invariant section  of the non-autonomous dynamical system h(X;T1; �);(Y;T2; �); hi is one-valued (i.e. (y) consists a single point for any y 2 Y )
and(4) �(�(t; x); �(t; (h(x)))) � Ne��t�(x; (h(x)))
for all x 2 X and t 2 T:

Proof. Since the space Y is compact and invariant, then according to Theorem 2.1the semi-group dynamical system (Y;T; �) can be prolonged to a group set-valueddynamical system (Y;S; ~�) (this means that ~�(s; y) = �(s; y) for all (s; y) 2 T�Y ).
Let us denote by � : C(X) � C(X) ! R+ the Hausdor� distance on K(X) andd : �(Y;X)� �(Y;X)! R+ is the function de�ned by the equality(5) d(1; 2) := supy2Y �((y); 2(y)):It is easy to verify that by equality (5) there is de�ned a distance on �(Y;X): Wewill show that the metric space (�(Y;X); d) is complete. Really, let fng � �(Y;X)be a sequence satisfying the condition(6) d(n; m)! 0as n;m ! +1 and y 2 Y: From (6) it follows that the sequence fn(y)g � K(X)is convergent in the space (K(X); �): We denote by  : Y ! K(X) the mappingde�ned by the equality(7) (y) := limn!+1 n(y)(for any y 2 Y ). Let " > 0 be an arbitrary real number, then according to (6) thereexists n(") 2 N such that
(8) �(n(y); m(y)) � "4for all n;m � n("): Passing to limit as m! +1 and taking into consideration (7),we obtain that(9) �(n(y); (y)) � "4for all n � n(") an y 2 Y:
Let now y 2 Y and fykg ! y; then�((yk); (y)) � �((yk); n(")(y)) + �(n(")(yk); n(")(y)) +�(n(")(y); (y)) � 2d(n("); ) + �(n(")(yk); n(")(y)):(10)From (9) and (10) it follows that
(11) �((yk); (y)) � "2 + �(n(")(yk); n(")(y))and, consequently,(12) lim supk!+1 �((yk); (y)) � "2 + lim supk!+1 �(n(")(yk); n(")(y)):
Since n(") 2 �(Y;X); then(13) lim supk!+1 �(n(")(yk); n(")(y)) = limk!+1�(n(")(yk); n(")(y)) = 0:
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From (12) and (13) we obtain
(14) lim supk!+1 �((yk); (y)) � "2 < ":
As " is an arbitrary positive number, then from (14) it follows thatlimk!+1�((yk); (y)) = 0;
i.e.  2 �(Y;X): Finally from (9) we obtain that d(n; )! 0 as n! +1:
Let t 2 T1, by St we denote the mapping of �(Y;X) in itself de�ned by the equality(St)(y) = �(t; ((�t)�1y)) for all t 2 T1, y 2 Y and  2 �(Y;X). It is easy tosee that St 2 �(Y;X), StS� = St+� for all t; � 2 T1 and  2 �(Y;X) and, hence,fStgt2T1 forms a commutative semi-group. Besides, from inequality (3) and thede�nition of the metric d, under the conditions of the theorem, the next inequalityfollows:
(15) d(St1; St2) � N e��td(1; 2)for all t 2 T1 and i 2 �(Y;X) (i = 1; 2). To prove the inequality (15) it is su�cientto show that(16) �(�t1(��ty); �t2(��ty) � N e��td(1; 2)for all y 2 Y; where ��ty := fq 2 Y j �(t; q) = yg:
Let v 2 �t2(��ty) be an arbitrary element, then there is q 2 ��ty and x2(y) 22(q) so that v = �tx2(y): We choose x1(y) 2 1(q) such that(17) �(x1(y); x2(y)) � �(1(q); 2(q)) � d(1; 2)(by compactness of i(q) (i = 1; 2) obviously an such x1(y) there exists and addi-tionally h(x1(y)) = h(x2(y)) = q). Then we have�(�tx1(y); �tx2(y)) � N e��t�(x1(y); x2(y)) � N e��td(1; 2);i.e. for all v 2 �t2(��ty) there exists u := �tx1(y) 2 �t1(��ty) so that �(u; v) �N e��td(1; 2). This means that �(�t1(��ty); �t2(��ty)) � N e��td(1; 2):Analogously, can be established the inequality �(�t2(��ty); �t1(��ty)) � N e��td(1; 2) and, consequently, �(�t1(��ty); �t�2(��ty)) � N e��td(1; 2) for ally 2 Y and t 2 T1: Thus, we have(18) d(St1; St2) � Ne��td(1; 2)for all t 2 T1 and 1; 2 2 �(Y;X). From inequality (18) it follows that for tlarge enough the mappings St of the space �(Y;X) are contractions, and sincefStgt2T1 is commutative there exists a unique common stationary point  which isan invariant section of non-autonomous dynamical system h(X;T1; �); (Y;T2; �); hi;i.e. (Y ) � X is an invariant set of the dynamical system (X;T; f).
Let us denote by K := (Y ); then K is a nonempty compact and invariant set ofthe dynamical system (X;T1; �): From inequality (3) it follows that(19) limt!+1 �(�tM;K) = 0
for all M 2 K(X) and, consequently, the dynamical system (X;T1; �) is compactlydissipative and its Levinson center J � K: On the other hand, K � J , because the
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set K = (Y ) is compact and invariant, but J is a maximal compact invariant setof (X;T1; �): Thus we have J = (Y ):
Let now T2 = S. Then we will show that the set (y) contains a single point for anyy 2 Y . If we suppose that it is not true, then there are y0 2 Y and x1; x2 2 (y0)(x1 6= x2). Let �i 2 �xi (i = 1; 2) be such that �i(S) � J . Then we have(20) �t(�i(�t)) = xi (i = 1; 2)for all t 2 T1: Note that from inequality (3) and equality (20) it follows that�(x1; x2) = �(�t(�1(�t)); �t(�2(�t))) �Ne��t�(�1(�t); �2(�t)) � Ne��tC(21)for all t 2 T; where C := supf�(�1(s); �2(s)) : s 2 Sg: Passing to the limit in (21)as t! +1 we obtain x1 = x2: The obtained contradiction proves our statement.
Thus, if T2 = S, the unique �x point  2 �(Y;X) of the semi-group of operatorsfStgt2T1 is a single-valued function and, consequently, it is continuous. Finally,inequality (4) follows from (3), because h((h(x))) = (h � )(h(x)) = h(x) for allx 2 X: The theorem is completely proved. �

Remark 3.3. 1. Under the conditions of Theorem 3.2, if (Y;T2; �) is a group-
dynamical system (i.e. T2 = S), then the unique invariant section  of the non-
autonomous dynamical system h(X;T1; �); (Y;T2; �); hi is one-valued (i.e. (y)
consists a single point for any y 2 Y ). Analogous statements for non-autonomous
dynamical systems are known (see, for example, [14, Ch.2] and [35]). In the case
of semi-group dynamical system (Y;T2; �) (i.e. the mapping �(t; �) : Y 7! Y is not
invertible) Theorem 3.2 is formulated and proved for the �rst time in this paper.

2. If (Y;T2; �) is a semi-group dynamical system (i.e. T2 = R+ or Z+), then the
unique invariant section  of the non-autonomous dynamical system h(X;T1; �);(Y;T2; �); hi is multi-valued (i.e. (y) contains, generally speaking, more than one
point). This fact is con�rmed by the example below, which is a slight modi�cation
of example from [34, Ch1,p.42-43].
Example 3.4. Let Y := [�1; 1] and (Y;Z+; �) be a cascade generated by positivepowers of the odd function g, de�ned on [0; 1] in the following way:

g(y) = ( �2y ; 0 � y � 122(y � 1) ; 12 < y � 1:It is easy to check that g(Y ) = Y . Let us put X := R�Y and denote by (X;Z+; �)a discrete dynamical system generated by the positive powers of the mapping P :X ! X
(22) P � uy

� = � f(u; y)g(y)
� ;

where f(u; y) := 110u + 12y. Finally, let h = pr2 : X ! Y . From (22), it fol-lows that h is a homomorphism of (X;Z+; �) onto (Y;Z+; �) and, consequently,h(X;Z+; �); (Y;Z+; �); hi is a non-autonomous dynamical system. Note that(23) j(u1; y)� (u2; y)j = ju1 � u2j = 10jP (u1; y)� P (u2; y)j:
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From (23), it follows that(24) jPn(u1; y)� Pn(u2; y)j � N e��njhu1; yi � hu2; yijfor all n 2 Z+, where N = 1 and � = ln 10. By Theorem 3.2 there exists a unique�-continuous invariant section  2 �(Y;X) of non-autonomous dynamical systemh(X;Z+; �); (Y;Z+; �); hi. According to [34, p.43] (y) is homeomorphic to theCantor set for all y 2 [�1; 1].
Remark 3.5. Let Y be a topological space, (W;�) be a metric space, (X;h; Y )
be a trivial bundle �ber (this means that X := W � Y and h := pr2 : X ! Y )
and (X;T; �) be a skew-product dynamical system, i.e. � := ('; �) (�(t; (u; y)) :=('(t; u; y); �(t; y)). Then Theorem 3.2 is also true, although the space X, in general
not metrizable.

4. Discrete Inclusions, Ensemble of Dynamical Systems (Collages)and Cocycles
LetW be a topological space. Denote by C(W ) the space of all continuous operatorsf :W !W equipped with the compact-open topology. Consider a set of operatorsM� C(W ) and, respectively, an ensemble (collage) of discrete dynamical systems(W; f)f2M.
A discrete inclusion DI(M) is called (see, for example, [24, 6, 20]) a set of allsequences ffxjg j j � 0g �W such thatxj = fijxj�1for some fij 2M (trajectory of DI(M)), i.e.xj = fijfij�1 :::fi1x0 all fik 2M:
A bilateral sequence ffxjg j j 2 Zg �W is called a full trajectory of DI(M) (entiretrajectory or trajectory on Z), if xn+j = fijxn+j�1 for all n 2 Z.Let us consider the set-valued function F : W ! K(W ) de�ned by the equalityF (x) := ff(x) jf 2 Mg. Then the discrete inclusion DI(M) is equivalent to thedi�erence inclusion(25) xj 2 F (xj�1):
Denote by Fx0 the set of all trajectories of discrete inclusion (25) (or DI(M))issuing from the point x0 2W and F := SfFx0 j x0 2Wg.
Below we will give a new approach concerning the study of discrete inclusionsDI(M) (or di�erence inclusion (25)). Denote by C(Z+;W ) the space of all contin-uous mappings f : Z+ !W equipped with the compact-open topology. Denote by(C(Z+; X);Z+; �) a dynamical system of translations (shifts dynamical system ordynamical system of Bebutov [31, 32]) on C(Z+;W ), i.e. �(k; f) := fk and fk is ak 2 Z+ shift of f (i.e. fk(n) := f(n+ k) for all n 2 Z+).We may now rewrite equation (25) in the following way:(26) xj+1 = !(j)xj ; (! 2 
 := C(Z+;M))



10 DAVID CHEBAN AND CRISTIANA MAMMANA
where ! 2 
 is the operator-function de�ned by the equality !(j) := fij+1 for allj 2 Z+. We denote by '(n; x0; !) the solution of equation (26) issuing from thepoint x0 2 E at the initial moment n = 0. Note that Fx0 = f'(�; x0; !) j ! 2 
gand F = f'(�; x0; !) j x0 2W;! 2 
g, i.e. DI(M) (or inclusion (25)) is equivalentto the family of non-autonomous equations (26) (! 2 
).
From the general properties of di�erence equations it follows that the mapping' : Z+ �W � 
!W satis�es the following conditions:

(i) '(0; x0; !) = x0 for all (x0; !) 2W � 
;(ii) '(n + �; x0; !) = '(n; '(�; x0; !); �(�; !)) for all n; � 2 Z+ and (x0; !) 2W � 
;(iii) the mapping ' is continuous;(iv) for any n; � 2 Z+ and !1; !2 2 
 there exists !3 2 
 such that
(27) U(n; !2)U(�; !1) = U(n+ �; !3);

where ! 2 
; U(n; !) := '(n; �; !) = Qnk=0 !(k); !(k) := fik (k =0; 1; : : : ; n) and fi0 := IdW :
LetW;
 be two topological spaces and (
;T; �) be a semi-group dynamical systemon 
.
Recall [31] that a triplet hW;'; (
;T; �)i (or briey ') is called a cocycle over(
;T; �) with the �ber W , if ' is a mapping from T�W � 
 to W satisfying thefollowing conditions:

1. '(0; x; !) = x for all (x; !) 2W � 
;2. '(n+�; x; !) = '(n; '(�; x; !); �(�; !)) for all n; � 2 T and (x; !) 2W�
;3. the mapping ' is continuous.
Let X := W � 
, and de�ne the mapping � : X � T ! X by the equality:�((u; !); t) := ('(t; u; !); �(t; !)) (i.e. � = ('; �)). Then it is easy to check that(X;T; �) is a dynamical system on X, which is called a skew-product dynamicalsystem [1, 31]; but h = pr2 : X ! 
 is a homomorphism of (X;T; �) onto (
;T; �)and hence h(X;T; �); (
;T; �); hi is a non-autonomous dynamical system.
Thus, if we have a cocycle hW;'; (
;T; �)i over the dynamical system (
;T; �) withthe �ber W , then there can be constructed a non-autonomous dynamical systemh(X;T1; �); (
;T; �); hi (X := W � 
), which we will call a non-autonomous dy-namical system generated (associated) by the cocycle hW;'; (
;T; �)i over (
;T; �).
From the above it follows that every DI(M) (respectively, inclusion (25)) in anatural way generates a cocycle hW;'; (
;Z+; �)i, where 
 = C(Z+;M), (
;Z+; �)is a dynamical system of shifts on 
 and '(n; x; !) is the solution of equation (26)issuing from the point x 2 W at the initial moment n = 0. Thus, we can studyinclusion (25) (respectively, DI(M)) in the framework of the theory of cocycleswith discrete time.
Theorem 4.1. Let M be a compact subset of C(W ) and hW;�; (
;Z+; �)i be a
cocycle generated by DI(M): Then
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(i) 
 = Per(�); where Per(�) is the set of all periodic points of (
;Z+; �)

(i.e. ! 2 Per(�), if there exists � 2 N such that �(�; !) = !);(ii) the set 
 is compact;(iii) 
 is invariant, i.e. �t
 = 
 for all t 2 Z+;(iv) ' satis�es the condition (27).

Proof. Let Y = 
 := C(Z+; Q) and (Y;Z+; �) be a semi-group dynamical systemof shifts on Y: According to the theorem of Tikhono� (see, for example, [26]) 
is compact. We denote by Per(�) the set of all periodic points of the dynamicalsystem (
;Z+; �); i.e. Per(�) := f! 2 
 : 9 � 2 N such that �(�; !) = !g.We will prove that Per(�) = 
; i.e. the set of all periodic points of 
 is densein 
. In fact, if ! 2 
; then denote by !k the periodic point from Per(�) suchthat !k(t) := !(t) for all t = 0; 1; : : : ; k � 1. It is easy to see that f!kg ! !in 
 (the convergence in 
 is the convergence on compacts from Z+). From thefact established above it follows that 
 is invariant, i.e. �t
 = 
: Really, let! 2 
; t 2 Z+ and f!kg � Per(�) be such that f!kg ! !: Let �k 2 N be suchthat �(�k; !k) = !k and �k ! +1. Then there exists k0 = k0(t) such that �k � tfor all k � k0 and, consequently, we have(28) !k = �(�k; !k) = �(t; �(�k � t; !k))for all k � k0: Since the space 
 is compact we may suppose that the sequencef�(�k � t; !k)g is convergent. Let ! := limk!+1�(�k � t; !k), then from equality (28)we obtain ! = �(t; !), i.e. �t
 = 
. �

Remark 4.2. The �rst statement of Theorem 4.1 is a slight generalization of well-
known result (see, for example, [37, Ch.III]).
Let (W;�) be a metric space.
A mapping f :W !W satis�es the condition of Lipschitz, if there exists a constantL > 0 such that �(f(x1); f(x2)) � L�(x1; x2) for all x1; x2 2 W: The smallestconstant with above mentioned property is called the constant of Lipschitz L(f) ofthe mapping f:
A subset of operators M � C(W ) is said to be generally contracting (contractingin the extended sense), if there are positive numbers N and � < 1 such thatL(fin � fin�1 � : : : � fi1) � N�nfor all fi1 ; fi2 ; : : : ; fin 2M and n 2 N.
Example 4.3. Let W := C[0; 1], and f 2 C(W ) be de�ned by the equality

(f')(t) := 32
Z t
0 '(s)ds

(t 2 [0; 1] and ' 2 C[0; 1]). It is easy to see that L(fn) = ( 32 )n 1n! , where fn :=fn�1 � f (n = 2; 3; : : :). In particular, L(f) = 32 ; L(f2) = 98 and L(f3) = 2732 < 1.
Additionally, L(fn) � 2( 34 )n for all n 2 N. Thus, the set M = ffg is generally
contracting.

Theorem 4.4. Suppose that the following conditions are ful�lled:
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(i) M is a compact subset of C(W );(ii) M is contracting in the extended sense.

Then

(i) I! := fu 2W : a solution '(n; u; !) of equation (26) is de�ned on Z and'(Z; u; !) is relatively compactg 6= ; for all ! 2 
; i.e. every equation (26)
admits at least one solution de�ned on Z with relatively compact range of
values;(ii) the sets I! (! 2 
) and I := SfI! : ! 2 
g are compact;(iii) the set-valued map ! ! I! is upper semi-continuous;(iv) the family of compacts fI! : ! 2 
g is invariant with respect to the
cocycle '; i.e.[f'(n; Iq; q) : q 2 (�n)�1(�n!)g = I�n!
for all n 2 Z+ and ! 2 
;(v) �('(n; u1; !); '(n; u2; !)) � N e��n�(u1; u2) for all n 2 Z+ and ! 2 
 andu1; u2 2W; where N and � are positive numbers from the de�nition of the
contractivity of M in the extended sense;(vi) if every map f 2M is invertible, then(a) I! consists of a single point u!;(b) the map ! ! u! is continuous;(c) '(t; u!; !) = u�(n;!) for all n 2 Z+ and ! 2 
;(d) �('(n; u; !); '(n; u!; !)) � N e��n�(u; u!) for all n 2 Z+ and ! 2 
:

Proof. Let Y = 
 := C(Z+; Q) and (Y;Z+; �) be a semi-group dynamical systemof shifts on Y . Then Y is compact. By Theorem 4.4, Per(�) = 
 and 
 is compactand invariant.
Let hW;'; (
;Z+; �)i be a cocycle generated by DI(M) (i.e. '(n; u; !) := U(n;!)u; where U(n; !) = Qnk=0 !(k) (! 2 
)), (X;Z+; �) be a skew-product systemassociated by the cocycle ' (i.e. X := W � 
 and � := ('; �)) and h(X;Z+; �);(Y;Z+; �); hi (h := pr2 : X ! Y ) be a non-autonomous dynamical system gener-ated by the cocycle ': Under the conditions of Theorem 4.4 we have�('(n; u1; !); '(n; u2; !)) � N e��n�(u1; u2)for all n 2 Z+; u1; u2 2 W and ! 2 
; where � := � ln� (N and � are positivenumbers from the de�nition of the contraction of M in the extended sense). Nowto �nish the proof of the theorem it is su�cient to apply Theorem 3.2 (see alsoRemark 3.5) to the non-autonomous dynamical system h(X;Z+; �); (
;Z+; �); hiand denote by I! := pr1(J!); where J is the Levinson's center of the dynamicalsystem (X;Z+; �); J! := J Th�1(!) and h := pr2: �

5. Relation Between Compact Global Attractors of Skew-ProductSystems, Collages and Cocycles
Let (W;�) be a complete metric space and M � C(W ) be a compact. Denote byF the set-valued mapping de�ned by the equalityF (u) := ff(u) : f 2M; u 2Wg :
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Lemma 5.1. The following statements hold:

(i) the set F (u) is a compact subset of W ;(ii) the set-valued mapping F :W ! K(W ) is upper semi-continuous.

Proof. Consider the mappingG :W�C(W )!W de�ned by the equalityG(u; f) :=f(u): Since G is continuous (see, for example, [26, Ch.7]) andM is a compact subsetof C(W ); then F (u) = G(u;M) is compact too.
Let now fung ! u (un; u 2W ); vn 2 F (un) and fvng ! v: We will show that v 2F (u): In fact, since vn 2 F (un), then there exists fn 2 M such that vn = fn(un):We can suppose that the sequence ffng is convergent in C(W ), because the set Mis compact. Let ffng ! f . Thenv := limn!+1 vn = limn!+1 fn(vn) = limn!+1G(un; fn) = G(u; f) = f(u) 2 F (u):

�Corollary 5.2. Let M 2 K(W ). Then F (M) 2 K(W ) (F (M) := fF (u) : u 2Mg).Theorem 5.3. [12] Let (X;T; �) be a set-valued dynamical system and let exist
positive numbers N and � such that(29) �(�(t; x1); �(t; x2)) � N e��t�(x1; x2)
for all x1; x2 2 X and t 2 T: Then (X;T; �) is compactly dissipative.Theorem 5.4. Suppose the following conditions are ful�lled:

(i) M := ffi : i 2 Ig is a compact subset from C(W );(ii) the set M of operators is contracting in the extended sense.

Then the set-valued discrete dynamical system (W;F ) is compactly dissipative.

Proof. It is easy to verify thatFn = ffin � fin�1 � : : : � fi1 : ik 2 I (k = 1; 2; : : : ; n)g = fU(n; !) : ! 2 
g;where 
 := C(Z+;M); U(n; !) :=Qnk=0 fik = fin �fin�1 � : : :�fi1 �fio ; !(k) := fik(k = 1; 2; : : : ; n) and fi0 := IdW :Let N > 0 and � > 0 be constants from the de�nition of the extended contractionof the family of operators M: We will prove that(30) �(Fn(A); Fn(B)) � N e��n�(A;B)for all A;B 2 K(W ): Indeed, let v 2 Fn(B). Since Fn(B) = U(n;
)(B), thenthere exist x2 2 B and ! 2 
 such that v = U(n; !)x2: We choose a point x1 2 Asuch that �(x1; x2) � �(A;B): Then we have�(U(n; !)x1; v) = �(U(n; !)x1; U(n; !)x2) �N e��n�(x2; x1) � N e��n�(A;B):Thus, for an arbitrary point v 2 Fn(B) there is a point u := U(n; !)x1 2 Fn(A)such that �(u; v) � N e��n�(A;B)
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and, hence,(31) �(Fn(A); Fn(B)) � N e��n�(A;B):Similarly we have the inequality(32) �(Fn(B); Fn(A)) � N e��n�(A;B):Inequality (30) follows from inequalities (31) and (32). Now to �nish the proof itis enough to cite Theorem 5.3. �

Theorem 5.5. Let hW;�; (
;T; �)i be a cocycle, 
 be compact and f : T�W :!K(W ) be a mapping de�ned by the equality(33) f(t; u) = �(t; u;
)
for all u 2W and t 2 T:
Then the mapping f possesses the following properties:

a. f(0; u) = u for all u 2W ;b. f(t; f(�; u)) � f(t+ �; u) for all t; � 2 T and u 2W ;c. f : T�W ! K(W ) is upper semi-continuous, i.e.limt!t0;u!u0 �(f(t; u); f(t0; u0)) = 0 8(t0; u0) 2 T�W ;
d. if the cocycle hW;�; (
;T; �)i satis�es the following condition:(34) 8t; � 2 T; u1; u2 2W 9u3 such that �(t; �(�; x; u1); u2) = �(t+ �; x; u3);

then f(t; f(�; u)) = f(t+ �; u)
for all t; � 2 T and u 2W .

Proof. This statement follows directly from the corresponding de�nitions. �

Corollary 5.6. Every cocycle hW;�; (
;T; �)i with the compact 
 and satisfying
the condition (34) generates a set-valued dynamical system (W;T; f); where f :T�W ! K(W ) is de�ned by equality (33).

A cocycle ' over (
;T; �) with the �ber W is said to be a compactly dissipativeone, if there is a nonempty compact K �W such that(35) limt!+1 supf�(U(t; !)M;K) j ! 2 
g = 0
for any M 2 K(W ); where U(t; !) := '(t; �; !):
The smallest compact set I �W with property (35) is said to be a Levinson centerof the cocycle ':Theorem 5.7. The following a�rmations hold:

(i) Let hW;�; (
;T; �)i be a cocycle with the compact 
 and satisfying the
condition (34). Then the following statements are equivalent:(a) the cocycle ' is compactly dissipative;(b) the skew-product dynamical system (X;T; �) generated by the cocycle' is compactly dissipative;
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(c) the set-valued dynamical system (W;T; f) generated by the cocycle '

is compactly dissipative.(ii) Let hW;�; (
;T; �)i be a compact dissipative cocycle and the following con-
ditions be ful�lled:(a) 
 is compact and invariant (�t
 = 
 for all t 2 T);(b) the cocycle ' satis�es condition (34).

Then I = pr1(J); where J is the Levinson center of the skew-product
dynamical system (X;T; �) (generated by the cocycle ') and I is the Levin-
son center of the set-valued dynamical system (W;T; f) (generated by the
cocycle ').

Proof. Let hW;�; (
;T; �)i be a cocycle with the compact 
 and (X;T; �) (respec-tively, (W;T; f)) be the skew-product dynamical system (respectively, set-valueddynamical system) generated by the cocycle ': If the cocycle ' is compactly dissipa-tive, then the skew-product dynamical system (X;T; �) (respectively, the set-valueddynamical system (W;T; f) ) will also be. In fact, if K 2 K(W ) with property (35),then we have
(36) limt!+1�(�t ~M; ~K) = 0
for any ~M 2 K(X); where ~K := K � 
. If we suppose that (36) is not true, thenthere exist " > 0; ~M0 2 K(X); fxng � ~M0 and ftng ! +1 (tn 2 T) such that
(37) �(�tnxn; ~K) � "0:Let xn = (un; !n). Since the set ~M0, then the set M0 := pr1( ~M0) (pr1 : X ! W )is compact too. According to the compact dissipativity of the cocycle ' we cansuppose that the sequence (f'(tn; un; !n)g is convergent. By the compactness of
 we can suppose that the sequence f!ng � 
 is convergent too. Denote by�u := limn!+1'(tn; un; !n) and �! := limn!+1!n. Then from (37) we obtain
(38) �(�x; ~K) � "0;where �x := (�u; �!): On the other hand, from equality (35) we have
(39) �(�u;K) = 0
and, hence, �x = (�u; �!) 2 K�
 = ~K. The last inclusion and (38) are contradictory.The obtained contradiction proves our statement.
Now we will prove that from the compact dissipativity of the skew-product dynami-cal system (X;T; �) it follows the compact dissipativity of the cocycle '; which gen-erates (X;T; �): Really, let (X;T; �) be compactly dissipative and J be its Levinsoncenter. Denote by I := pr1(J): It is clear that the set I is nonempty and compact.We will show that
(40) limt!+1 supf�(U(t; !)M; I) j ! 2 
g = 0
for any M 2 K(W ): If we suppose that (40) is not true, then there exist "0 >0; ftng ! + 2 1 (tn 2 T); M0 2 K(W ); fung �M0 and f!ng � 
 such that
(41) �('(tn; un; !n); I) � "0:
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Let us denote by ~M0 =M0�
 2 K(X): Since the skew-product dynamical system(X;T; �) is compactly dissipative and J is its Levinson center, then we have

limt!+1�(�t ~M0; J) = 0
and, consequently,
(42) limt!+1 �(�txn; J) = 0;
where xn := (un; !n) and �tnxn = ('(tn; un; !n); �(tn; !n)): By (42) we can sup-pose that the sequence f�tnxng = f('(tn; un; !n); �(tn; !n))g is convergent andthat its limit belongs to J . Let �x := limn!+1xn = ( limn!+1'(tn; un; !n); limn!+1�(tn;!n)) := (�u; �!). Then (�u; �!) 2 J and �u 2 I�! � I, where I�! := pr1(J�!) andJ�! := J T(pr2)�1(�!): Passing to the limit in inequality (41) as n! +1 we obtainthat �u =2 I: The obtained contradiction proves our a�rmation. Note that the setI = pr1(J) is the least compact subset of W satisfying the condition (40). Really,suppose that I 0 is a compact subset of W possessing the property (40). We have
(43) [f'(t; Iq; !) : q 2 (�t)�1(�(t; !)g = I�(t;!);
since the sets J and 
 are invariant. From equality (43) it follows that

I = SfI�(t;!) : ! 2 
g �Sf'(t; Iq; !) : q 2 (�t)�1(�(t; !); ! 2 
g �'(t; I;
) = f(t; I)
for any t 2 T and, hence, I � I 0: Finally we note that under the condition of the�rst part of the theorem the equivalence of the conditions b. and c. follows fromthe equality f(t; u) = '(t; u;
):
Let now (X;T; �) (respectively, (W;T; f)) be the skew-product (respectively, set-valued) dynamical system generated by the cocycle ' and J (respectively, I) beits Levinson's center. We denote by I 0 := pr1(J) and note that from the reasoningabove we have
(44) sup!2
�(U(t; !)M; I 0) = �(U(t;
)M; I 0) = �(f(t;M); I 0) = 0
for allM 2 K(W ) and, consequently, I � I 0, as the set I is the least compact subsetof W with property (44). On the other hand, from (44) we have I � '(t; I;
) =f(t; I) for any t 2 T and hence I � !f (I) � I 0, where !(I) := Tt�0S��t f(�; I).Thus, we obtain I 0 = I: The theorem is completely proved. �

Denote by �(') the set of all full trajectories of the cocycle ':
Corollary 5.8. Let hW;�; (
;T; �)i be a compactly dissipative cocycle and the fol-
lowing conditions be ful�lled:

(i) 
 is compact and invariant;(ii) the cocycle ' satis�es condition (34).

Then I = fu 2W : 9� 2 �('); �(0) = u and �(S) is relatively compactg:
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Proof. This statement follows from the equality I = pr1(J) and the invariance ofthe set J , because � := pr1() 2 �('); if  2 �(�): �

6. Chaotic Attractors of Discrete Control Systems
Theorem 6.1. Let M be a compact subset of C(W ). Suppose that the next condi-
tions are ful�lled:

(i) M is a compact subset of C(W );(ii) M is contracting in the extended sense.

Then the following statements hold:

(i) the cocycle hW;'; (
;Z+; �)i (
 := C(Z+;M)) is compactly dissipative;(ii) if every map f 2M is invertible, then I = Per('); where Per(') := fu 2W : 9� 2 N and ! 2 
 such that �(�; !) = ! and '(�; u; !) = ug; whereI is the Levinson center of the cocycle ':
Proof. Let Y = 
 := C(Z+; Q) and (Y;Z+; �) be a semi-group dynamical systemof shifts on Y: According to the theorem of Tikhono� (see, for example [26]), Y iscompact. Let us denote by Per(�) := f! 2 
 : 9 � 2 N such that �(�; !) = !gthe set of all periodic points of the dynamical system (
;Z+; �). Then Per(�) = 
;i.e. the set of all periodic points of 
 is dense in 
 and 
 is invariant (see the proofof Theorem 4.4).
Let hW;'; (
;Z+; �)i be a cocycle generated by DI(M) (i.e. '(n; u; !) := U(n;!)u; where U(n; !) = Qnk=o !(k) (! 2 
)), (X;Z+; �) be a skew-product systemassociated by the cocycle ' and h(X;Z+; �); (Y;Z+; �); hi (h := pr2 : X ! Y )be a non-autonomous dynamical system generated by the cocycle '. By Theorem4.4, (X;Z+; �) is compactly dissipative and its Levison's center J is topologicallyand dynamically isomorphic to (
;Z+; �). According to Theorem 5.7, I = pr1(J):Since Per(�) = 
; then Per(�) = J and, consequently, Per(') = I: �

The set S �W is
(i) nowhere dense, provided the interior of the closure of S is empty set,int(cl(S)) = ;;(ii) totally disconnected, provided the connected components are single points;(iii) perfect, provided it is closed and every point p 2 S is the limit of pointsqn 2 S with qn 6= p:

The set S � W is called a Cantor set, provided it is totally disconnected, perfectand compact.
The subset M of (X;T; �) is called (see, for example, [30]) chaotic, if the followingconditions hold:

(i) the set M is transitive, i.e. there exists a point x0 2 X such that M =H(x0) := f�(t; x0) : t 2 Tg;(ii) M = Per(�); where Per(�) is the set of all periodic points of (X;T; �):
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Recall that a point x 2 X of the dynamical system (X;T; �) is called Poisson stablein the positive direction, if x belongs to its !-limit set !x := Tt�0S��t �(�; x):Theorem 6.2. Suppose that the following conditions are ful�lled:

(i) M is a �nite subset of C(W ); i.e. M := ff1; f2; : : : ; fmg (m � 2);(ii) M is contracting in the extended sense.

Then the following statement hold:

(i) the skew-product dynamical system (X;T; �) generated by DI(M) is com-
pactly dissipative;(ii) if every map f 2M is invertible, then(a) Levinson center J of the skew-product dynamical system (X;T; �) is

a chaotic Cantor set;(b) there exists a residual subset J0 � J (large in the sense of Baire cate-
gory), consisting from Poisson stable in the positive direction points,
such that the positive semi-trajectory of every point x0 2 J0 is dense
on J (i.e. H(x0) = J for all x0 2 J0):(iii) the cocycle hW;'; (
;Z+; �)i (
 := C(Z+;M)) generated by DI(M) is

compactly dissipative;(iv) the Levinson center I of ' possesses the following properties:(a) I = Per('); where Per(') := fu 2W : 9� 2 N and ! 2 
 such that�(�; !) = ! and '(�; u; !) = ug;(b) I = pr1(J); i.e. I is a continuous image of the Cantor set J .
Proof. By Theorem 6.1, the cocycle ' generated byDI(M) is compactly dissipativeand, hence, the skew-product dynamical system (X;T; �) (X :=W�
; � := ('; �))is compactly dissipative too.
Now we will prove that the Levinson center J of the skew-product dynamical system(X; ;�) possesses the properties listed in the theorem. For this aim, we note that
 := C(Z+;M) (M := ff1; f2; : : : ; fmg) is topologically isomorphic to �m :=f0; 1; : : : ;m� 1gZ+ and, consequently (see, for example, [30, 37]), we have:

(i) 
 is a Cantor set;(ii) Per(�) = 
;(iii) there exists a residual subset 
0 � 
, consisting from Poisson stable inthe positive direction points, such that H+(!0) = 
 for all !0 2 
0:
By Theorem 4.4 the Levinson center J of the skew-product dynamical system(X;Z+; �) is dynamically isomorphic to (
;T; �) and, consequently, it possessesthe following properties:

(i) J is a Cantor set;(ii) Per(�) = J ;(iii) there exists a residual subset J0 � J , consisting of Poisson stable in thepositive direction points, such that the positive semi-trajectory of everypoint x0 2 J0 is dense on J .
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Let now I be the Levinson center of the cocycle '. According to Theorem 6.1,I = Per(') and by Theorem 5.7 I = pr1(J): �Remark 6.3. The problem of the existence of compact global attractors for DI(M)
with �niteM (collage or iterated function system (IFS)) was studied before in works[3, 6, 7, 8, 20] (see also the bibliography therein). In [3, 6, 7, 8, 20] the statement
close to Theorem 6.2 was proved. Namely:

(i) in [3] it was announced the �rst and proved the second statement of The-
orem 6.2;(ii) in [6, 7, 8, 20] they considered the case when W is a compact metric space
and every map f 2M = ff1; f2; : : : ; fmg (i = 1; : : : ;m) is contracting (not
obligatory invertible). For this type of DI(M) it was proved the existence
of a compact global attractor A such that for all u 2 A and almost all! 2 
 (with respect to a certain measure on 
) the trajectory '(n; u; !) =U(n; !)u (U(n; !) := Qnk=0 fik ; (ik 2 f1; : : : ;mg) and fi0 := IdW ) was
dense in A:
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