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ABSTRACT. The paper is dedicated to the study of the problem of existence
of compact global attractors of discrete inclusions and to description of its
structure. We consider a family of continuous mappings of a metric space W
into itself, and (W, f;);er is the family of discrete dynamical systems. On the
metric space W we consider a discrete inclusion

(1 ury1 € F(ut)

associated to M = {f; :1i € I}, where F(u) = {f(u) : f € M} for all
u € W. We give sufficient conditions (the family of maps M is contracting
in the extended sense) of existence of compact global attractor of (1). If the
family M consists a finite number of maps, then the corresponding compact
global attractor is chaotic. We study this problem in the framework of non-
autonomous dynamical systems (cocyles).

1. INTRODUCTION

The aim of this paper is the study of the problem of existence of compact global
attractors of discrete inclusions and control systems (see, for example, Bobylev,
Emel’yanov and Korovin [6], Bobylev, Zalozhnev and Klykov [7], Emel’yanov, Ko-
rovin and Bobylev [20] and the references therein). Let W be a metric space,
M = {f; : i € I} be a family of continuous mappings of W into itself and
(W, fi)ics be the family of discrete dynamical systems, where (W, f) is a discrete
dynamical system generated by positive powers of a continuous map f: W — W.
On the space W we consider a discrete inclusion

U1 € F(Ut)
associated to M :={f; : i € I} (DI(M)), where F(u) = {f(u) : f € M} for all
ueWw.

A solution of the discrete inclusion DI(M) is (see, for example, [6, 20, 24]) a
sequence {{z;} | j > 0} C W such that
€j = fi; 51
for some f;, € M (trajectory of DI(M)), i.e.
T; = fi]-fi]-_ln-fill'o all fik € M.
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We can consider that it is a discrete control problem, where at each moment of
time j we can apply a control from the set M, and DI(M) is the set of possible
trajectories of the system.

The problem of existence of compact global attractors for a discrete inclusion arise in
a number of different areas of mathematics: control theory — Bobylev, Emel’yanov
and Korovin [6], Bobylev, Zalozhnev and Klykov [7], Emel’'yanov, Korovin and
Bobylev [20] , Molchanov [28]; linear algebra — Artzrouni [2], Beyn and Elsner
[5], Bru, Elsner and Neumann [11], Cheban and Mammana [15, 16], Daubechies
and Lagarias [17], Elsner and Friedland [18], Elsner, Koltracht and Neumann [19],
Gurvits [24], Kozyakin [27], Vladimirov, Elsner and Beyn [36], Wirth [38, 39];
Markov chains — Gurvits [21], Gurvits and Zaharin [22, 23]; iteration processes —
Bru, Elsner and Neumann [11], Opoitsev [29]; Bransley-Sloan’s method of fractal
image compression — Barnsley and Sloan [4], Bondarenko and Dolnikov [8] and see
also the bibliography therein.

In 1988 Barnsley and Sloan [4] put forward some ideas, based on concepts of the
theory of dynamical systems, for the compression and storage of graphic informa-
tion. Their method was called the method of fractal compression of information.
They consider a finite set of affine transformations

M=A{fi :i=1,2,...,m}

(fi : RY — RY), i.e. transformations f; of the form f;(u) := As;u + b;, where A;
are square matrices of order d, and u,b; € R?. These transformations possesses the
following properties:

(i) there exists a compact My C R? such that f;(M) C M, for all M € K (M),
where K (My) is the set of all compact subsets of My;
(ii) |fi(u1) — fi(ua)| < ki|us — usa|, where k; € [0,1) and | -| is the norm on R?.

This set M is called an affine collage.
The mapping F' : K(My) — K (M) defined by the equality

P = | £i00)

is called a collage mapping.

We consider an arbitrary collage M (M contains, generally speaking, an infinite
number of mappings f) on the complete metric space W (W is not obligatory
compact) and we give conditions which guarantee the existence of compact global
attractor for M. If M consists of a finite number of maps, then we prove that M
admits a compact global chaotic attractor. We study this problem in the framework
of non-autonomous dynamical systems (cocyles).

This paper is organized as follows.

In Section 2 we give some notions and facts from the theory of set-valued dynamical
systems which we use in our paper.

Section 3 is dedicated to the study of upper semi-continuous (generally speaking
set-valued) invariant sections of non-autonomous dynamical systems. They play a
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very important role in the study of non-autonomous dynamical systems. We give
sufficient conditions which guarantee the existence of a unique globally exponen-
tially stable invariant section (Theorem 3.2 - main result of paper). Analogous
statements for non-autonomous dynamical systems, when the base dynamical sys-
tem (Y, Ty, 0) is invertible, are known (see, for example, [14, Ch.2] and [35]). In the
case of semi-group dynamical system (Y, Ts,0) (i.e. the mapping o(t,") : Y — Y
is not invertible) Theorem 3.2 is formulated and proved for the first time in this
paper.

In Section 4 we give a new approach to the study of discrete inclusions (DI) which
is based on non-autonomous dynamical systems (cocycles). We show that every
DI in a natural way generates some non-autonomous dynamical system (cocycle),
which play an important role in its study (see Sections 5 and 6).

Section 5 is dedicated to the study of relation between compact global attractor of
cocycle and the skew-product dynamical system (respectively, set-valued dynamical
system) associated by the given cocycle (see Theorem 6.2).

In section 6 we prove that DI generated by a finite number of continuous mappings
fisfay- ooy fm (m > 2) admits a compact global chaotic attractor.

2. SET-VALUED DYNAMICAL SYSTEMS AND THEIR COMPACT GLOBAL
ATTRACTORS

Let (X, p) be a complete metric space, S be a group of real (R) or integer (Z)
numbers, T (S, C T) be a semi-group of additive group S. If A C X and z € X,
then we denote by p(z, A) the distance from the point z to the set A4, i.e. p(x, A) =
inf{p(z,a) : a € A}. We note note by B(A4,¢) an e-neighborhood of the set A, i.e.
B(A,e) ={z € X : p(z,A) < e}, by K(X) we denote the family of all non-empty
compact subsets of X. To every point z € X and number ¢ € T we associate a closed
compact subset w(t,z) € K(X). So, if 7(P,A) = J{n(t,z) : t € P,x € A}(P CT),
then

(i) 7(0,z) =z forallz € X ;
(i) 7(ta,m(t1,2)) = w(ty +t2, ) for all z € X;
(iii) lim  B(x(t,z),7(to,x0)) = 0 for all zgp € X and to € T, where

rz—xo,t—to

B(A,B) = sup{p(a,B) : a € A} is a semi-deviation of the set A C X
from the set B C X.

In this case it is said [33] that there is defined a set-valued semi-group dynamical
system.

Let T =S and be fulfilled the next condition:
(i) if p € w(t,z), then = € n(—t¢,p) for all z,p € X and t € T.

Then it is said that there is defined a set-valued group dynamical system (X, T, )
or a bilateral (two-sided) dynamical system.
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Let T C S (T C T'). A continuous mapping 7, : T — X is called a motion of the
set-valued dynamical system (X, T, ) issuing from the point z € X at the initial
moment ¢ = 0 and defined on T', if

a. 72(0) = z;
b. ’)/I(tz) S 7T(t2 — tl;'Ym(tl)) for all t1,ts € T (t2 > tl).

The set of all motions of (X, T, x), passing through the point z at the initial moment
t = 0 is denoted by F,(7) and F(7) := J{F.(7) | z € X} (or simply F).

The trajectory v € F(mw) defined on S is called a full (entire) trajectory of the
dynamical system (X, T, ).

Denote by ®() the set of all full trajectories of the dynamical system (X, T, ) and
S, () := Fo(m) N ().

Theorem 2.1. [33] Let (X, T,n) be a semi-group dynamical system and X be a
compact and invariant set (i.e. 7' X = X for all t € T, where nt := w(t,-)). Then

(i) F(r) = ®(w), i.e. every motion v € F,(mw) can be extended on S (this
means that there exists ¥ € ®,(m) such that ¥(t) = y(t) for allt € T);

(ii) there exists a group (generally speaking set-valued) dynamical system (X, S, 7)
such that T|Txx = 7.

A system (X, T, 7) is called [12, 14] compactly dissipative, if there exists a nonempty
compact K C X such that
lim B(r'M,K) =0;

t——+o0
for all M € K(X).

Let (X, T, ) be compactly dissipative and K be a compact set attracting every
compact subset of X. Let us set

(2) J=w(K):= ﬂ U 7K.

t>072>t

It can be shown [12, 14] that the set .J defined by equality (2) doesn’t depends on
the choice of the attractor K, but is characterized only by the properties of the
dynamical system (X, T,n) itself. The set J is called a center of Levinson of the
compact dissipative system (X, T, 7).

Theorem 2.2. [12, 14] If (X, T,n) is a compactly dissipative dynamical system
and J is its center of Levinson, then :

(i) J is invariant, i.e. wtJ = J for all t € T;
(ii) J is orbitally stable, i.e. for any e > 0 there exists 6(¢) > 0 such that
p(z,J) < § implies B(xt, J) <€ for allt >0 ;
(iii) J is an attractor of the family of all compact subsets of X;
(iv) J is the mazimal compact invariant set of (X, T, ).
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3. CONTINUOUS INVARIANT SECTIONS OF NON-AUTONOMOUS DYNAMICAL
SYSTEMS

Let X be a metric space and Y be a topological space. The set-valued map-
ping v : Y — K(X) is said to be upper semi-continuous (or [-continuous), if

lim B(y(y),v(yo)) = 0 for all yo € Y.
Y—Yo

Let (X, h,Y) be a fibre bundle [10, 25]. The mapping v : ¥ — K(X) is called a
section (selector) of the fibre bundle (X, h,Y), if h(v(y)) =y for all y € Y.

Remark 3.1. Let X ;=W x Y. Then v:Y — X is a section of the fibre bundle
(X,h,Y) (h:=pro: X = Y), if and only if v = (¢, [dy) where v : W — K(W).

Let (X, Ty, 7) and (Y, T2,0) (Sp € Ty C Ty C S) be two dynamical systems.
The mapping h : X — Y is called a homomorphism (respectively isomorphism)
of the dynamical system (X, Ty,n) on (Y, Ty, o), if the mapping h is continuous
(respectively homeomorphic) and h(w(z,t)) = o(h(z),t) (t € Ty, z € X).

A triplet ((X,Ty,n), (Y,T2,0), h), where h is a homomorphism of (X,T;,n) on
(Y, Ty,0) and (X,h,Y) is a locally-trivial fibre bundle [10, 25], is called a non-
autonomous dynamical system.

A mapping v : Y — X is called an invariant section of the non-autonomous dynam-
ical system ((X,Ty,n), (Y, Ty, 0),h), if it is a section of the fibre bundle (X, h,Y)
and v(Y') is an invariant subset of the dynamical system (X, T, r) (or, equivalently,

Ui (@) = g€ (@) M o'y)} = v(a"y)
forallt € Tndye€Y).

Theorem 3.2. Let (X, Ty,n),(Y,Ts,0),h) be a non-autonomous dynamical sys-
tem and the following conditions be fulfilled:

(i) the space Y is compact;
(i) Y is invariant, i.e. c'Y =Y for all t € To;
(iii) the non-autonomous dynamical system ((X,Ti,7),(Y,Ta,0),h) is con-
tracting in the extended sense, i.e. there exist positive numbers N and
v such that

(3) p(ﬂ(taml)aﬂ(thZ)) < Neiutp(:rl:x?)
for all xy, 5 € X (h(z1) = h(z2)) and t € Ty;

(iv) (Y, X) ={y | v: Y = K(X) is a set-valued S—continuous mapping and
h(v(y)) =y for ally € Y} # 0.

Then

(i) there exists a unique invariant section v € I'(Y, X) of the non-autonomous
dynamical system ((X, Ty, w), (Y, Ts,0), h);
(ii) the non-autonomous dynamical system ((X,Ty,w),(Y,Ts,0),h) is com-
pactly dissipative and its Levinson center J = v(Y);
(iii) U{="J, : g€ (6") ' (Wt)} = T,y for allt € Ty andy € Y;
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(iv) if (Y, Ts,0) is a group-dynamical system (i.e. Ty = S), then the unique
invariant section vy of the non-autonomous dynamical system ((X,Tq,7),
(Y, Ty, 0), h) is one-valued (i.e. y(y) consists a single point for anyy € Y)
and
(4) p(m(t, ), m(t,v(h(x)))) < Ne™"p(z,y(h(z)))
forallz e X andt € T.

Proof. Since the space Y is compact and invariant, then according to Theorem 2.1
the semi-group dynamical system (Y, T, o) can be prolonged to a group set-valued
dynamical system (Y,S, &) (this means that &(s,y) = o(s,y) for all (s,y) € TxY).

Let us denote by « : C(X) x C(X) — Ry the Hausdorff distance on K(X) and
d:T(Y,X) xT'(Y,X) = Ry is the function defined by the equality

(5) d(71,72) = ;lelga(wy),w(y))-

It is easy to verify that by equality (5) there is defined a distance on I'(Y, X). We
will show that the metric space (I'(Y, X), d) is complete. Really, let {v,} C T'(Y, X)
be a sequence satisfying the condition

(6) d(Yn,Ym) = 0

as n,m — +oo and y € Y. From (6) it follows that the sequence {v,(y)} C K(X)
is convergent in the space (K(X),a). We denote by v : Y — K(X) the mapping
defined by the equality

(7) 1(y) = lim ya(y)

(for any y € Y'). Let £ > 0 be an arbitrary real number, then according to (6) there
exists n(e) € N such that

(8) a(yn(y); Ym(y)) <

for all n,m > n(e). Passing to limit as m — +oo and taking into consideration (7),
we obtain that

(9) (), 7) < S

foralln >n(e) any € Y.

=] m

Let now y € Y and {yx} — v, then

B(y(wr)s (W) < BOYWR) s Ynie)¥) + B W) Ynie) (W) +
(10) B(Yn(e) ), YW)) < 2d(Yn(eys V) + B(Yn(e) Wr), Yn(e) (¥)).-
From (9) and (10) it follows that

(1) BOGDYW)) £ 5+ B W) Yt )

and, consequently,

(12) lim sup B(y(yx), 7(y)) < % + lim sup B(Yn(e) (W) Yn(e) (¥))-

k—+oo k—+oo

Since vy(e) € ['(Y, X), then
(13) llichSrup B('Yn(s) (yk)7 Tn(e) (y)) = lim B(’Yn(e) (yk)a Tn(e) (y)) =0.
—+00

k—+oo
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From (12) and (13) we obtain
. €

(14) limsup 5(v(ys),7(y)) < 5 <e.
k—4o00

As ¢ is an arbitrary positive number, then from (14) it follows that
Jim 5(v(yx),1(y) =0,
—+00
ie. vy € I'(Y, X). Finally from (9) we obtain that d(v,,7) = 0 as n = +oc.

Let t € Ty, by St we denote the mapping of T'(Y, X) in itself defined by the equality
(S')(y) = m(t,y((c!)71y)) for all t € Ty, y € Y and v € T'(Y, X). It is easy to
see that Sty € T'(Y, X), S!S™ = S'*7 for all t,7 € Ty and v € I'(Y, X) and, hence,
{St}set, forms a commutative semi-group. Besides, from inequality (3) and the
definition of the metric d, under the conditions of the theorem, the next inequality
follows:

(15) d(S*y1,5"2) < Ne "d(v, )

forallt € Ty and v; € I'(Y, X) (i = 1,2). To prove the inequality (15) it is sufficient
to show that

(16) a(myn(e™y), ' y2(0""y) < Ne "'d(y1,72)
for all y € Y, where o7ty :={q €Y | o(t,q) = y}.

Let v € wtyy (07 ty) be an arbitrary element, then there is ¢ € o=ty and z»(y) €
v2(q) so that v = wtxs(y). We choose z1(y) € 71(q) such that

(17) p(z1(y), z2(y)) < a(11(9),72(9) < d(y1,72)

(by compactness of v;(q) (i = 1,2) obviously an such z;(y) there exists and addi-
tionally h(z1(y)) = h(z2(y)) = ¢). Then we have

p(r'wi(y), m'w2(y) < Ne " p(@1(y), w2(y)) < Ne d(v1,72),

i.e. for all v € wlyz (0~ ty) there exists u := wtx1(y) € wfy1 (0 ty) so that p(u,v) <

Ne"td(vy1,72). This means that SB(aty(c7ty), 7ty (0 ty)) < Ne vd(v,72)-
Analogously, can be established the inequality B(m!vs (o ty), 7ty1 (0 ty)) < Ne V!
d(v1,72) and, consequently, a(w'y (o ty), miv2(0"ty)) < Ne d(y1,72) for all
y €Y and t € T;. Thus, we have

(18) d(S*y1,8"2) < Ne *'d(v1,72)

for all t € T; and 71,7 € T'(Y,X). From inequality (18) it follows that for ¢
large enough the mappings St of the space I'(Y, X) are contractions, and since
{S'}ier, is commutative there exists a unique common stationary point v which is
an invariant section of non-autonomous dynamical system {((X, Ty, 7), (Y, T2, 0), h),
ie. v(Y) C X is an invariant set of the dynamical system (X, T, f).

Let us denote by K := (Y, then K is a nonempty compact and invariant set of
the dynamical system (X, Ty, 7). From inequality (3) it follows that

. t _
(19) Jlimp(rt M, K) =0

for all M € K(X) and, consequently, the dynamical system (X, Ty, ) is compactly
dissipative and its Levinson center J C K. On the other hand, K C J, because the
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set K = ~(Y) is compact and invariant, but J is a maximal compact invariant set
of (X, Ty, n). Thus we have J = (Y.

Let now Ty = S. Then we will show that the set v(y) contains a single point for any
y € Y. If we suppose that it is not true, then there are yo € Y and 1,72 € v(y0)
(x1 # x3). Let ¢; € ®,, (i = 1,2) be such that ¢;(S) C J. Then we have

(20) ' (di(=1) = ; (1 =1,2)
for all t € T;. Note that from inequality (3) and equality (20) it follows that

p(r1,z2) = p(r(p1(—t)), (P2 (—1))) <
(21) Ne "' p(¢1(—t), p2(—t)) < Ne "'C

for all t € T, where C := sup{p(¢1(s), #2(s)) : s € S}. Passing to the limit in (21)
as t - 400 we obtain x1 = 2. The obtained contradiction proves our statement.

Thus, if Ty = S, the unique fix point v € T'(Y, X) of the semi-group of operators
{St}set, is a single-valued function and, consequently, it is continuous. Finally,
inequality (4) follows from (3), because h(y(h(x))) = (hov)(h(z)) = h(z) for all
z € X. The theorem is completely proved. O

Remark 3.3. 1. Under the conditions of Theorem 3.2, if (Y,Ta,0) is a group-
dynamical system (i.e. Ty = S), then the unique invariant section v of the non-
autonomous dynamical system ((X,Ty,7), (Y, Ts, o), h) is one-valued (i.e. ~(y)
consists a single point for any y € Y ). Analogous statements for non-autonomous
dynamical systems are known (see, for example, [14, Ch.2] and [35]). In the case
of semi-group dynamical system (Y, Ts,0) (i.e. the mapping o(t,-) : Y — Y is not
invertible) Theorem 3.2 is formulated and proved for the first time in this paper.

2. If (Y, Ts,0) is a semi-group dynamical system (i.e. To = Ry or Z, ), then the
unique invariant section vy of the nmon-autonomous dynamical system ((X,Ty,7),
(Y, Ta, 0),h) is multi-valued (i.e. y(y) contains, generally speaking, more than one
point). This fact is confirmed by the example below, which is a slight modification
of example from [34, Chl,p.42-43].

Example 3.4. Let Y :=[—1,1] and (Y,Z4,0) be a cascade generated by positive
powers of the odd function g, defined on [0, 1] in the following way:

-2y , 0<y<i
2(

y—1) , <y<L

g(y) =

It is easy to check that g(Y) =Y. Let us put X := RxY and denote by (X, Zy, )
a discrete dynamical system generated by the positive powers of the mapping P :
X=X

(3)- ()

where f(u,y) := Zu + 1y. Finally, let h = pry : X — Y. From (22), it fol-
lows that h is a homomorphism of (X,Zy,7) onto (Y,Z,,0) and, consequently,
((X,Z4,7),(Y,Z4,0),h) is a non-autonomous dynamical system. Note that

(23) |(U1,y) - (u27y)| = |u1 - U2| = 10|P(u17y) - P(UQay)|
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From (23), it follows that
(24) [P (u1,y) = P (u2,y)] < Nem”"[(u1,y) — (us,y)|

for all n € Zy, where N =1 and v = In10. By Theorem 3.2 there exists a unique
B-continuous invariant section v € I'(Y, X) of non-autonomous dynamical system
(X,Z4,7),(Y,Z4,0),h). According to [34, p.43] v(y) is homeomorphic to the
Cantor set for all y € [-1,1].

Remark 3.5. Let Y be a topological space, (W, p) be a metric space, (X,h,Y)
be a trivial bundle fiber (this means that X := W XY and h := pro : X = Y)
and (X, T,n) be a skew-product dynamical system, i.e. ™ := (p,0) (7(t,(u,y)) :=
(p(t,u,y),0(t,y)). Then Theorem 3.2 is also true, although the space X, in general
not metrizable.

4. DISCRETE INCLUSIONS, ENSEMBLE OF DYNAMICAL SYSTEMS (COLLAGES)
AND COCYCLES

Let W be a topological space. Denote by C' (W) the space of all continuous operators
f: W — W equipped with the compact-open topology. Consider a set of operators
M C C(W) and, respectively, an ensemble (collage) of discrete dynamical systems

(W, f)feM-
A discrete inclusion DI(M) is called (see, for example, [24, 6, 20]) a set of all
sequences {{z;} | j > 0} C W such that
T = fi;xj 1
for some f;, € M (trajectory of DI(M)), i.e.
zj = fi, fi,_, - fi,zo all fi, € M.

A bilateral sequence {{z;} | j € Z} C W is called a full trajectory of DI(M) (entire
trajectory or trajectory on Z), if xpy; = fi,4nq -1 for all n € Z.

Let us consider the set-valued function F' : W — K(W) defined by the equality
F(z) := {f(z) |f € M}. Then the discrete inclusion DI(M) is equivalent to the
difference inclusion

(25) T; € F(xj_l).

Denote by Fg, the set of all trajectories of discrete inclusion (25) (or DI(M))
issuing from the point zo € W and F = [J{Fy, | zo € W}.

Below we will give a new approach concerning the study of discrete inclusions
DI(M) (or difference inclusion (25)). Denote by C(Z,, W) the space of all contin-
uous mappings f : Zy — W equipped with the compact-open topology. Denote by
(C(Z+,X),Z+,0) a dynamical system of translations (shifts dynamical system or
dynamical system of Bebutov [31, 32]) on C(Z4, W), i.e. o(k, f) := fi and fi is a
k € Z, shift of f (i.e. fr(n):= f(n+k)forallneZy).

We may now rewrite equation (25) in the following way:
(26) 2i1 = w(j)j, (@€ Q= C(Zy, M)
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where w € 2 is the operator-function defined by the equality w(j) := f;;,, for all
Jj € Z4. We denote by ¢(n,zg,w) the solution of equation (26) issuing from the
point zo € E at the initial moment n = 0. Note that F,, = {¢(-, zo,w) | w € O}
and F = {¢(-,z0,w) | g € W,w € Q}, i.e. DI(M) (or inclusion (25)) is equivalent
to the family of non-autonomous equations (26) (w € Q).

From the general properties of difference equations it follows that the mapping
@ :Zy x W x Q — W satisfies the following conditions:

(i) ¢(0,29,w) = g for all (zg,w) € W x
(i) p(n + 7,20,w) = @(n, (7, x0,w),0(7,w)) for all n,7 € Z; and (zg,w) €
W x Q;
(iii) the mapping ¢ is continuous;
(iv) for any n,7 € Z4 and wy,ws € 2 there exists ws € 2 such that

(27) U(n,w2)U(r,w1) =U(n+ 7,ws3),

where w € Q, U(n,w) = p(n,w) = [[j_,w(k), wk) = fi, (k =
0,1,...,n) and f;, := Idw.

Let W, 2 be two topological spaces and (2, T, o) be a semi-group dynamical system
on 2.

Recall [31] that a triplet (W, ¢, (Q,T,0)) (or briefly ¢) is called a cocycle over
(Q, T, o) with the fiber W, if ¢ is a mapping from T x W x Q to W satisfying the
following conditions:

1. ¢(0,z,w) = x for all (z,w) € W x
2. p(n+1,z,w) = p(n, p(r,z,w),o(r,w)) foralln,7 € T and (z,w) € W x
3. the mapping ¢ is continuous.

Let X := W x , and define the mapping 7 : X x T — X by the equality:
m((u,w),t) = (p(t,u,w),o(t,w)) (i-e. @ = (p,0)). Then it is easy to check that
(X, T,n) is a dynamical system on X, which is called a skew-product dynamical
system [1, 31]; but A = pra : X — Q is a homomorphism of (X, T, ) onto (2, T,0)
and hence (X, T, x), (2, T,0),h) is a non-autonomous dynamical system.

Thus, if we have a cocycle (W, p, (2, T, o)) over the dynamical system (2, T, o) with
the fiber W, then there can be constructed a non-autonomous dynamical system
(X, Ty,7), (Q,T,0),h) (X := W x ), which we will call a non-autonomous dy-
namical system generated (associated) by the cocycle (W, ¢, (2, T, o)) over (22, T, o).

From the above it follows that every DI(M) (respectively, inclusion (25)) in a
natural way generates a cocycle (W, ¢, (Q,Z4,0)), where Q = C(Zy, M), (Q,Z4,0)
is a dynamical system of shifts on Q and ¢(n,z,w) is the solution of equation (26)
issuing from the point z € W at the initial moment n = 0. Thus, we can study
inclusion (25) (respectively, DI(M)) in the framework of the theory of cocycles
with discrete time.

Theorem 4.1. Let M be a compact subset of C(W) and (W, ¢, (Q,Z4,0)) be a
cocycle generated by DI(M). Then
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(i) Q@ = Per(o), where Per(c) is the set of all periodic points of (Q,Zy,0)
(i.e. w € Per(c), if there exists T € N such that o(T,w) = w);
(i) the set Q is compact;
(iii) Q 4s invariant, i.e. o'Q = Q for allt € 7.;
(iv) ¢ satisfies the condition (27).

Proof. Let Y = Q := C(Z,,Q) and (Y,Z,,0) be a semi-group dynamical system
of shifts on Y. According to the theorem of Tikhonoff (see, for example, [26]) Q
is compact. We denote by Per (o) the set of all periodic points of the dynamical
system (Q,Z,0), i.e. Per(o) := {w € @ : 3 7 € N such that o(r,w) = w}.
We will prove that Per(c) = Q, i.e. the set of all periodic points of 2 is dense
in Q. In fact, if w € , then denote by wy the periodic point from Per(c) such
that wg(t) := w(t) for all t = 0,1,...,k — 1. It is easy to see that {wp} — w
in © (the convergence in ) is the convergence on compacts from Z,). From the
fact established above it follows that  is invariant, i.e. ¢'Q = Q. Really, let
we N teZy and {w;} C Per(o) be such that {w;} — w. Let 7, € N be such
that o (g, wy) = wg and 7, — 400. Then there exists ko = ko(t) such that 7, > ¢
for all k > kg and, consequently, we have

(28) wi = o(Tg,wg) =0 (t,o(mk — t,wg))

for all k& > ky. Since the space 2 is compact we may suppose that the sequence
{o(mx —t,wi)} is convergent. Let & := ) liT o (1 — t,wy), then from equality (28)
fe— 00

we obtain w = o(t,w), i.e. o' = Q. O

Remark 4.2. The first statement of Theorem 4.1 is a slight generalization of well-
known result (see, for example, [37, Ch.III]).

Let (W, p) be a metric space.

A mapping f : W — W satisfies the condition of Lipschitz, if there exists a constant
L > 0 such that p(f(z1), f(x2)) < Lp(xy,x2) for all z;,z5 € W. The smallest
constant with above mentioned property is called the constant of Lipschitz L(f) of
the mapping f.

A subset of operators M C C(W) is said to be generally contracting (contracting
in the extended sense), if there are positive numbers A" and a < 1 such that

L(fln ofin71 ... ofh) SNO/L
for all f;,, fi,,..., fi, € M and n € N.
Example 4.3. Let W := C[0,1], and f € C(W) be defined by the equality

(Fo)t) =35 [ eloyis

(t € [0,1] and ¢ € C[0,1]). It is easy to see that L(f")
fr Yo f (m=2.3,...). In particular, L(f) = 3,L(f?) =
Additionally, L(f") < 2(2)™ for all n € N. Thus, the set M =
contracting.

YL where f7 =
(/=22 <1
1} is generally

ol ||

Theorem 4.4. Suppose that the following conditions are fulfilled:
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(i) M is a compact subset of C(W);
(il) M is contracting in the extended sense.

Then

(i) I, :={ue W : a solution p(n,u,w) of equation (26) is defined on Z and
o(Z, u,w) is relatively compact} # O for allw € Q, i.e. every equation (26)
admits at least one solution defined on Z with relatively compact range of
values;

) the sets I, (w € Q) and I :={I, : w € N} are compact;

ii) the set-valued map w — I, is upper semi-continuous;

) the family of compacts {I, : w € Q} is invariant with respect to the

cocycle ¢, i.e.

e, Ip,9) = g€ (0™ (0"w)} = Lo

foralln € Zy and w € Q;

(v) plo(n,ur,w), p(n,uz,w)) < Ne ""p(uy,us) for alln € Z, andw € Q) and
ur,us € W, where N and v are positive numbers from the definition of the
contractivity of M in the extended sense;

(vi) if every map f € M is invertible, then

(a) I, consists of a single point u,;

(b) the map w — uy, is continuous;

(¢) o(t, uy,w) = Ug(nwy for alln € Zy and w € Q;

(d) p(p(n,u,w), p(n,u,,w)) < Ne ""p(u,u,) for alln € Z; and w € Q.

Proof. Let Y = Q := C(Z4,Q) and (Y,Zy,0) be a semi-group dynamical system
of shifts on Y. Then Y is compact. By Theorem 4.4, Per(o) = Q and 2 is compact
and invariant.

Let (W, p,(Q,Z1,0)) be a cocycle generated by DI(M) (i.e. p(n,u,w) := U(n,
w)u, where U(n,w) = [[;_,w(k) (w € Q)), (X,Z;,7) be a skew-product system
associated by the cocycle ¢ (i.e. X := W x Q and 7 := (p,0)) and ((X,Z,,7),
(Y,Zy,0), h) (h:=pry: X = Y) be a non-autonomous dynamical system gener-
ated by the cocycle p. Under the conditions of Theorem 4.4 we have
p((p(n,ul,w),go(n,ug,w)) S Ne_ynp(U/l?uQ)

foralln € Zy, ui,uzs € W and w € Q, where v := —Ina (N and a are positive
numbers from the definition of the contraction of M in the extended sense). Now
to finish the proof of the theorem it is sufficient to apply Theorem 3.2 (see also
Remark 3.5) to the non-autonomous dynamical system ((X,Z,,7),(Q,Z+,0),h)

and denote by I, := pri(J,), where J is the Levinson’s center of the dynamical
system (X,Z,,7), J, == J(h~ (w) and h := pr. O

5. RELATION BETWEEN COMPACT GLOBAL ATTRACTORS OF SKEW-PRODUCT
SysTEMS, COLLAGES AND COCYCLES

Let (W, p) be a complete metric space and M C C(W) be a compact. Denote by
F' the set-valued mapping defined by the equality

Flu):={f(u) : feM, ueW}.
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Lemma 5.1. The following statements hold:

(i) the set F(u) is a compact subset of W
(ii) the set-valued mapping F : W — K(W) is upper semi-continuous.

Proof. Consider the mapping G : W xC(W) — W defined by the equality G(u, f) :=
f(w). Since G is continuous (see, for example, [26, Ch.7]) and M is a compact subset
of C(W), then F(u) = G(u, M) is compact too.

Let now {un} = u (up,u € W), v, € F(uy,) and {v,} — v. We will show that v €
F(u). In fact, since v, € F(uy), then there exists f,, € M such that v, = f,(uy,)-
We can suppose that the sequence {f,} is convergent in C'(W), because the set M
is compact. Let {f,} — f. Then

v:i= lim v, = HEIEOO fnlvg) = ngr}rlooG(un,fn) =G(u, f) = f(u) € F(u).

n—-+oo

]
Corollary 5.2. Let M € K(W). Then F(M) € K(W) (F(M) := {F(u) :u€

Theorem 5.3. [12] Let (X, T,n) be a set-valued dynamical system and let exist
positive numbers N and v such that

(29) a(m(t,z1),m(t, x2)) < Ne " p(xy, x2)
for all x1,22 € X and t € T. Then (X, T, ) is compactly dissipative.

Theorem 5.4. Suppose the following conditions are fulfilled:

(i) M:={f; :i €1} is a compact subset from C(W);
(i) the set M of operators is contracting in the extended sense.

Then the set-valued discrete dynamical system (W, F) is compactly dissipative.

Proof. 1t is easy to verify that

Fr={fi ofi ,o..0ofy tigel (k=1,2... n)}={Umw) : weQ},
where Q := C(Z4, M), U(n,w) :=[Ty_o fi = fin©fin_10...0fiy0fi,, w(k) := fi,
(k=1,2,...,n) and f;, := Idw.

Let N' > 0 and v > 0 be constants from the definition of the extended contraction
of the family of operators M. We will prove that
(30) a(F"(A), F"(B)) < Ne™""a(4, B)
for all A,B € K(W). Indeed, let v € F"(B). Since F*(B) = U(n,Q)(B), then
there exist x5 € B and w € Q such that v = U(n,w)xs. We choose a point z; € A
such that p(x1,x2) < a(A, B). Then we have
p(U(n: w)xla U) = p(U(n, W).’L‘l, U(n: (.U)QTQ) <

Ne v"p(ze,21) < Ne ""a(A, B).
Thus, for an arbitrary point v € F™(B) there is a point u := U(n,w)z; € F™(A)
such that

plu,v) < Ne™"a(A, B)
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and, hence,

(31) B(F"(A), F"(B)) < Ne™""a(A, B).
Similarly we have the inequality

(32) B(F"(B),F"(A)) < Nem""a(A, B).

Inequality (30) follows from inequalities (31) and (32). Now to finish the proof it
is enough to cite Theorem 5.3. O

Theorem 5.5. Let (W, $,(Q,T, o)) be a cocycle, 2 be compact and f: T x W :—
K (W) be a mapping defined by the equality

(33) f(t,u) = é(t, u, Q)

forallue W andt e T.

Then the mapping f possesses the following properties:

. f(0,u) = u for allu € W;
. f(t f(ru) C ft+7,u) for allt,7 € T and u € W;
[T x W — K(W) is upper semi-continuous, i.e.

lim  B(f(t,u), f(to,uo)) =0 V(to,uo) € T x W;

t—to, u—uo
. if the cocycle (W, ¢, (2, T,0)) satisfies the following condition:
(34) Vt,7 € T,u1,us € W Jug such that ¢(t,p(r,z,u1),us) = ¢(t + 7,2, u3),
then

o T

o,

[ f(ru) = f(t+7,u)
forallt, 7 €T and u € W.

Proof. This statement follows directly from the corresponding definitions. O

Corollary 5.6. Every cocycle (W, ¢,(Q,T,0)) with the compact Q and satisfying
the condition (34) generates a set-valued dynamical system (W, T, f), where f :
T x W — K(W) is defined by equality (33).

A cocycle ¢ over (2, T, o) with the fiber W is said to be a compactly dissipative
one, if there is a nonempty compact K C W such that

(33) Jim sup{B(U(E )M K) | w € Q) =0
for any M € K(W), where U(t,w) := ¢(t,-,w).

The smallest compact set I C W with property (35) is said to be a Levinson center
of the cocycle .

Theorem 5.7. The following affirmations hold:

(i) Let (W,9,(Q,T,0)) be a cocycle with the compact Q and satisfying the
condition (34). Then the following statements are equivalent:
(a) the cocycle ¢ is compactly dissipative;
(b) the skew-product dynamical system (X,T,n) generated by the cocycle
s compactly dissipative;
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(c) the set-valued dynamical system (W,T, f) generated by the cocycle ¢
is compactly dissipative.

(il) Let (W,¢,(Q, T, o)) be a compact dissipative cocycle and the following con-
ditions be fulfilled:
(a) € is compact and invariant (0tQ = Q for allt € T);
(b) the cocycle ¢ satisfies condition (34).

Then I = pri(J), where J is the Levinson center of the skew-product

dynamical system (X, T, ) (generated by the cocycle p) and I is the Levin-
son center of the set-valued dynamical system (W, T, f) (generated by the

cocycle p).

Proof. Let (W, ¢,(Q2,T,o0)) be a cocycle with the compact  and (X, T, ) (respec-
tively, (W, T, f)) be the skew-product dynamical system (respectively, set-valued
dynamical system) generated by the cocycle . If the cocycle ¢ is compactly dissipa-
tive, then the skew-product dynamical system (X, T, 7) (respectively, the set-valued
dynamical system (W, T, f) ) will also be. In fact, if K € K(W) with property (35),
then we have

. t " r _
(36) JlimB(x 0L, K) =0
for any M € K(X), where K =K x . If we suppose that (36) is not true, then
there exist € > 0, My € K(X), {zn} C Mp and {t,} = +oo (t, € T) such that

(37) p(rlr,, K) > ep.
Let 2, = (tn,w,). Since the set My, then the set My := pri(My) (pr1 : X — W)
is compact too. According to the compact dissipativity of the cocycle ¢ we can

suppose that the sequence ({¢(ty,un,ws)} is convergent. By the compactness of
) we can suppose that the sequence {w,} C € is convergent too. Denote by

a:= lim @(ty,upn,w,) and @ := lim w,. Then from (37) we obtain
n——+00 n—-+o0o
(38) p(i7k) 2505

where Z := (@,©). On the other hand, from equality (35) we have
(39) p(@, K) = 0

and, hence, 7 = (G,@) € K xQ = K. The last inclusion and (38) are contradictory.
The obtained contradiction proves our statement.

Now we will prove that from the compact dissipativity of the skew-product dynami-
cal system (X, T, ) it follows the compact dissipativity of the cocycle ¢, which gen-
erates (X, T, 7). Really, let (X, T, n) be compactly dissipative and J be its Levinson
center. Denote by I := pry(J). It is clear that the set I is nonempty and compact.
We will show that

(40) Jim sup{8(U(1,w)M, 1) | w € 9} =0

for any M € K(W). If we suppose that (40) is not true, then there exist g >
0, {tn} >+ €00 (tn, €T), Mg € K(W), {un} C My and {w,} C € such that

(41) p(‘p(tnaunvwn)al—) Z €o-
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Let us denote by My = My x Q € K(X). Since the skew-product dynamical system
(X, T,n) is compactly dissipative and J is its Levinson center, then we have

hm B(rt MO,J) =0

t—+

and, consequently,

(42) tl}?w p(r'z,, J) =0,

where z, 1= (un,wn) and wtrx, = (©(tn, Un,wn),0(tn, wyn)). By (42) we can sup-

pose that the sequence {7'z,} = {(p(tn,tn,wn),0(ty,wy))} is convergent and

that its limit belongs to J. Let Z := lim =z, = ( liIJIrl O(tn, Un,wn), lirf o (tn,
n——+o0 n—r-+00

n——+00
wy)) = (@,). Then (4,0) € J and @ € I; C I, where Iz := pri(Jy) and
Jo = JN(pry)~1(w). Passing to the limit in inequality (41) as n — +o0o we obtain
that @ ¢ I. The obtained contradiction proves our affirmation. Note that the set
I = pry(J) is the least compact subset of W satisfying the condition (40). Really,
suppose that I' is a compact subset of W possessing the property (40). We have

(43) Ulet. I,w0) = a € (0") ot w)} = L,
since the sets J and Q are invariant. From equality (43) it follows that
I= U{Ig(tw) twe}C

Ule(t, Ip,w) = g€ (o) o(tw),we 0} C
e(t,1,9) = f(t,1)

for any ¢t € T and, hence, I C I'. Finally we note that under the condition of the
first part of the theorem the equivalence of the conditions b. and c. follows from
the equality f(t,u) = p(t,u, Q).

Let now (X, T,n) (respectively, (W, T, f)) be the skew-product (respectively, set-
valued) dynamical system generated by the cocycle ¢ and J (respectively, I) be
its Levinson’s center. We denote by I' := pry(J) and note that from the reasoning
above we have

(44) sggB(U(t,w)M, I'y = UM, I') = B(f(t, M),I') =0

for all M € K(W) and, consequently, I C I’ as the set I is the least compact subset
of W with property (44). On the other hand, from (44) we have I C ¢(t,1,) =
f(t,I) for any ¢t € T and hence I C wy(I) C I', where w(I) := ;5 UT>tf( I.
Thus, we obtain I' = I. The theorem is completely proved. O

Denote by ®(p) the set of all full trajectories of the cocycle .

Corollary 5.8. Let (W, ¢, (Q,T,0)) be a compactly dissipative cocycle and the fol-
lowing conditions be fulfilled:

(i) Q is compact and invariant;
(ii) the cocycle ¢ satisfies condition (34).

Then I ={ue W : 3n € ®(p), n(0) =u and n(S) is relatively compact}.
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Proof. This statement follows from the equality I = prq(J) and the invariance of
the set J, because n := pri(y) € ®(p), if v € (n). O

6. CHAOTIC ATTRACTORS OF DISCRETE CONTROL SYSTEMS

Theorem 6.1. Let M be a compact subset of C(W). Suppose that the next condi-
tions are fulfilled:

(i) M is a compact subset of C(W);
(il) M is contracting in the extended sense.

Then the following statements hold:

(i) the cocycle (W, p,(Q,Z4,0)) (Q = C(Zs, M)) is compactly dissipative;

(i) if every map f € M is invertible, then I = Per(p), where Per(yp) = {u €
W :3r € N and w € Q such that o(1, w) = w and (T, u,w) = u}, where
I is the Levinson center of the cocycle .

Proof. Let Y = Q := C(Z+,Q) and (Y,Z4,0) be a semi-group dynamical system
of shifts on Y. According to the theorem of Tikhonoff (see, for example [26]), V" is
compact. Let us denote by Per(c) := {w € Q :3 7 € N such that o(r,w) = w}
the set of all periodic points of the dynamical system (2, Z,, ). Then Per(o) = ,
i.e. the set of all periodic points of €2 is dense in £ and €2 is invariant (see the proof
of Theorem 4.4).

Let (W, p,(Q,Z,,0)) be a cocycle generated by DI(M) (i.e. p(n,u,w) := U(n,
w)u, where U(n,w) = [[,_, w(k) (w € Q)), (X,Z;,7) be a skew-product system
associated by the cocycle ¢ and ((X,Z,,x), (Y,Zy,0), h) (h:=prs : X = Y)
be a non-autonomous dynamical system generated by the cocycle ¢. By Theorem
44, (X,Z4,7) is compactly dissipative and its Levison’s center J is topologically
and dynamically isomorphic to (2,Zy,0). According to Theorem 5.7, I = pry(J).
Since Per(o) =, then Per(w) = J and, consequently, Per(yp) = I. O

The set S C W is

(i) nowhere dense, provided the interior of the closure of S is empty set,
int(cl(S)) = 0;
(ii) totally disconnected, provided the connected components are single points;
(iii) perfect, provided it is closed and every point p € S is the limit of points
qn € S with ¢, # p.

The set S C W is called a Cantor set, provided it is totally disconnected, perfect
and compact.

The subset M of (X, T,n) is called (see, for example, [30]) chaotic, if the following
conditions hold:

(i) the set M is transitive, i.e. there exists a point zo € X such that M =
H(zg) :={n(t,z9) :t €T}
(i) M = Per(r), where Per(m) is the set of all periodic points of (X, T, ).




18 DAVID CHEBAN AND CRISTIANA MAMMANA

Recall that a point € X of the dynamical system (X, T, ) is called Poisson stable
in the positive direction, if « belongs to its w-limit set w, := (V;50 U, >, 7(7, ).

Theorem 6.2. Suppose that the following conditions are fulfilled:

(i) M is a finite subset of C(W), i.e. M :={f1, fay.-., fm} (Mm > 2);

(il) M is contracting in the extended sense.
Then the following statement hold:

(i) the skew-product dynamical system (X, T,n) generated by DI(M) is com-
pactly dissipative;
(i) if every map f € M is invertible, then

(a) Levinson center J of the skew-product dynamical system (X, T, x) is
a chaotic Cantor set;

(b) there ezists a residual subset Jy C J (large in the sense of Baire cate-
gory), consisting from Poisson stable in the positive direction points,
such that the positive semi-trajectory of every point x¢ € Jy is dense
on J (i.e. H(xo) = J for all xg € Jp).

(iii) the cocycle (W, @, (2, Zs,0)) (Q := C(Zy, M)) generated by DI(M) is
compactly dissipative;
(iv) the Levinson center I of ¢ possesses the following properties:

(a) I = Per(y), where Per(yp) :={ueW :3r €N andw € Q such that
o(t,w) =w and ¢(1,u,w) = u};

(b) I =pri(J), i.e. I is a continuous image of the Cantor set J.

Proof. By Theorem 6.1, the cocycle ¢ generated by DI(M) is compactly dissipative
and, hence, the skew-product dynamical system (X, T, n) (X := W xQ, 7 := (p,0))
is compactly dissipative too.

Now we will prove that the Levinson center J of the skew-product dynamical system
(X, ,m) possesses the properties listed in the theorem. For this aim, we note that
0= C(Zy, M) (M = {f1, f2,---, fm}) is topologically isomorphic to ¥, :=
{0,1,...,m — 1}%+ and, consequently (see, for example, [30, 37]), we have:

(i) Q2 is a Cantor set;
(if) Per(o) = Q;
(iii) there exists a residual subset 0y C , consisting from Poisson stable in
the positive direction points, such that H" (wg) = Q for all wy € €.

By Theorem 4.4 the Levinson center J of the skew-product dynamical system
(X,Zy,m) is dynamically isomorphic to (2, T,o) and, consequently, it possesses
the following properties:

(i) J is a Cantor set;
(ii) Per(m)=J;
(iii) there exists a residual subset Jy C J, consisting of Poisson stable in the
positive direction points, such that the positive semi-trajectory of every

point zg € Jp is dense on J.
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Let now I be the Levinson center of the cocycle ¢. According to Theorem 6.1,

I = Per(yp) and by Theorem 5.7 I = pri(J). O

Remark 6.3. The problem of the existence of compact global attractors for DI(M)
with finite M (collage or iterated function system (IFS)) was studied before in works
[3, 6, 7, 8, 20] (see also the bibliography therein). In [3, 6, 7, 8, 20] the statement
close to Theorem 6.2 was proved. Namely:

(1) in [3] it was announced the first and proved the second statement of The-
orem 6.2;

(i) in [6, 7, 8, 20] they considered the case when W is a compact metric space
and every map f € M ={f1, fo,..., fm} (i =1,...,m) is contracting (not
obligatory invertible). For this type of DI(M) it was proved the ezistence
of a compact global attractor A such that for all w € A and almost all
w € Q (with respect to a certain measure on Q) the trajectory p(n,u,w) =
Un,w)u (U(n,w) := T1ie firs (ix € {1,...,m}) and fi, := Idw) was
dense in A.
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