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ABSTRACT. The paper is dedicated to the study of the problem of continuous
dependence of compact global attractors on parameters of non-autonomous
dynamical systems and infinite iterated function systems (IIFS). We prove that
if a family of non-autonomous dynamical systems ((X,Ti,7y),(Y,T2,0),h)
depending on parameter A € A is uniformly contracting (in the generalized
sense), then each system of this family admits a compact global attractor J>
and the mapping A — J* is continuous with respect to the Hausdorff metric.
As an application we give a generalization of well known Theorem of Barnsley
concerning the continuous dependence of fractals on parameter.

1. INTRODUCTION

The aim of this paper is the study of the problem of existence of compact global
attractors of non-autonomous dynamical systems and their continuous dependence
on parameter. The problem of the upper semi-continuous dependence on parameter
of global attractors of dynamical systems is well studied (both autonomous and
non-autonomous, see for example Caraballo, Langa and Robinson [3], Caraballo
and Langa [4], Cheban [6, 7], Hale and Raugel [15], Hale [16] and also see the
bibliography therein). The problem of the lower semi-coninuous dependence on
parameter of global attractors is less extensively studied. Note, for example, the
works of Dupaix, Hilhorst and Kostin [11], Elliott and Kostin [13], Hale [16], Hale
and Raugel [17], Kapitanskii and Kostin [20], Kostin [21], Li and Kloeden [22],
Stuart and Humphries [28] and the bibliography therein).

The paper is dedicated to the study of the problem of continuous dependence
of compact global attractors on parameter of non-autonomous dynamical systems
and infinite iterated function systems (IIFS). We prove that if a family of non-
autonomous dynamical systems {(X, Ty, ), (Y, Ts, o), h) depending on parameter
A € A is uniformly contracting (in the generalized sense), then each system of this
family admits a compact global attractor J* and the mapping A — J* is continuous
with respect to the Hausdorff metric. As an application we give a generalization of
well known Theorem of Barnsley concerning the continuous dependence of fractals
on parameters.
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This paper is organized as follows.

In Section 2 we give some notions and facts from the theory of set-valued dynamical
systems which we use in our paper.

Section 3 is dedicated to the study of upper semi-continuous (generally speaking set-
valued) invariant sections of non-autonomous dynamical systems ((X, Ty, ), (Y,
Ty, 0),h). They play a very important role in the study of non-autonomous dy-
namical systems. We give the sufficient conditions which guarantee the existence
of a unique globally exponentially stable invariant section. The main result of this
paper is Theorem 3.15. For the case of semi-group dynamical system (Y, Ty, 0) (i.e.
o(t,’) : Y — Y is not invertible) Theorem 3.15 is formulated and proved for the
first time in this paper.

We give in section 4 a new approach to the study of discrete inclusions (DI) which is
based on non-autonomous dynamical systems (See also our previous works [8, 9, 10]
, where we study the IFSs (both linear [8, 9] and nonlinear [10] cases) in the
framework of non-autonomous dynamical systems (cocycles)). We show that every
DI in a natural way generates some non-autonomous dynamical system (cocycle),
which play an important role in its study (see Sections 6 and 7).

In section 5 we study some properties of Lipschitz maps. We introduce the notion
of spectral radius for Lipschitz maps and we give the necessary and sufficient con-
ditions that a Lipschitz mapping is contracting in the generalized sense in the term
of its spectral radius (Lemma 5.6).

In Section 6 we study the relation between compact global attractor of cocycle and
the skew-product dynamical system (respectively, set-valued dynamical system)
associated by the given cocycle.

Section 7 is dedicated to the study of problem of continuous dependence of attrac-
tors of infinite iterated function systems. We give a generalization of well known
Theorem of Barnsley concerning the continuous dependence of fractals on param-
eters (Theorem 7.2).

2. SET-VALUED DYNAMICAL SYSTEMS AND THEIR COMPACT (GLOBAL
ATTRACTORS

Let (X, p) be a complete metric space, S be a group of real (R) or integer (Z)
numbers, T (S C T) be a subsemi-group of S. If A C X and z € X, then we denote
by p(z, A) the distance from the point x to the set A, i.e. p(z, A) = inf{p(z,a) :
a € A}. We denote by B(A,¢€) an e-neighborhood of the set A4, i.e. B(A,e) = {z €
X :p(z,A) < e}, by K(X) we denote the family of all non-empty compact subsets
of X. For every point £ € X and number ¢t € T we put in correspondence a closed
compact subset w(t,x) € K(X). So, if 7(P,A) = Y{n(t,z) : t € P,x € A}(P CT),
then

(i) 7(0,z) =z forallz € X ;
(ii) w(te,m(t1,z)) = w(ty + to, ) for all z € X and ty,t2 € T}
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(iii) lim  B(#(t,z),n(to,x0)) = 0 for all zp € X and t, € T, where
z—xg,t—1to

B(A,B) = sup{p(a,B) : a € A} is a semi-deviation of the set A C X
from the set B C X.

In this case it is said (see, for example, [27] and [23] and the bibligraphy therein)
that there is defined a set-valued semi-group dynamical system.

Let T = S and be fulfilled the next condition:
(i) if p € w(t,x), then « € w(—t,p) for all z,p€e X and t € T.

Then it is said that there is defined a set-valued group dynamical system (X, T, )
or a bilateral (two-sided) dynamical system.

Definition 2.1. Let T' C S (T C T'). A continuous mapping v, : T — X is called
a motion of the set-valued dynamical system (X, T, w) issuing from the point x € X
at the initial moment t = 0 and defined on T', if

a. 7z(0) = z;
b. ’Yw(tg) S 7T(t2 — tl,’ym(tl)) fOT‘ all t1,t5 € T (tg > tl).

The set of all motions of (X, T, x), passing through the point z at the initial moment
t = 0 is denoted by F,(w) and we define F(w) := |J{Fy(7) | € X} (or simply F).

Definition 2.2. Any trajectory v € F(w) defined on S is called a full (entire)
trajectory of the dynamical system (X, T, ).

Denote by ®(7) the set of all full trajectories of the dynamical system (X, T, 7) and
@, (1) := Fp(m)( (7).

Theorem 2.3. [27] Let (X,T,n) be a semi-group dynamical system and X be a
compact and invariant set (i.e. w(t,X) =X for allt € T. Then

(i) F(m) = ®(nm), i.e. every motion v € Fy(m) can be extended on S (this
means that there exists 5 € ®,(w) such that ¥(t) = v(t) for allt € T);
(ii) there exists a group (generally speaking set-valued) dynamical system (X, S, )
such that Tt|lrxx = 7.
Definition 2.4. A system (X, T,n) is called [5, 7] compactly dissipative, if there
exists a nonempty compact K C X such that

tBTmB(W(taM)aK) = 0;

for all M € K(X).

Let (X, T,n) be compactly dissipative and K be a compact set attracting every
compact subset of X. Let us set

(1) J=w(K) =) | K).

t2>20 7>t

It can be shown [5, 7] that the set J defined by equality (1) does not depends on
the choice of the attractor K, but is characterized only by the properties of the
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dynamical system (X, T,n) itself. The set J is called a center of Levinson [29] (or
global attractor) of the compact dissipative system (X, T, 7).

Theorem 2.5. [5, 7] If (X, T,7) is a compactly dissipative dynamical system and
J is its global attractor, then :

(i) J is invariant, i.e. w(t,J) = J for all t € T,
(i) J is orbitally stable, i.e. for any e > 0 there exists 6(¢) > 0 such that
p(xz,J) < & implies B(w(t,x),J) <e forallt >0 ;
(iii) J is an attractor of the family of all compact subsets of X;
(iv) J is the mazimal compact invariant set of (X, T, ).

3. UPPER SEMI-CONTINUOUS INVARIANT SECTIONS OF NON-AUTONOMOUS
DYNAMICAL SYSTEMS AND THEIR CONTINUOUS DEPENDENCE ON
PARAMETERS

In this section we study the upper semi-continuous (generally speaking set-valued)
invariant sections of non-autonomous dynamical systems. They play a very impor-
tant role in the study of non-autonomous dynamical systems. We give the sufficient
conditions which guarantee the existence of a unique globally exponentially stable
invariant section and their continuous dependence on parameters.

Lemma 3.1. Let X and A be complete metric spaces. Let (X, T,my) (A € A) be a
family of dynamical systems with uniqueness satisfying the following conditions:

(i) the family of dynamical systems (X, T,my) (A € A) is uniformly contract-
ing, i.e. there exist two positive numbers N and v such that p(my(t,x1),
ma(t, 22))< Ne Vip(xy, z0) for all X € A,t € T and z1, 22 € X;

(ii) for each t € T the mapping (A, x) — wx(t,x) is continuous.

Then for each A € A the dynamical system (X, T, 7)) admits a unique stationary
point py and the mapping A — py 1S continuous.

Proof. Let A" be a compact subset of A. Denote by C(A’,X) the space of all
continuous functions ¢ : A" — X with distance (1, 2) := max{p(¢1(A), p2(N)) :
Ae A} (C(A,X),r) is a complete metric space. Note that under the conditions
of the lemma if ¢ € C'(A’, X) then also ¢, € C(A", X), where ¢, ()) := 7 (t, ()
for all A € A', where ¢ € T. Denote by S[t\, the mapping from C(A’,X) into itself
defined by equality (S%,¢)(A) := ma(t,p(N)) for all t € T and X € A Tt is easy
to check that {SZ, }er is a commutative semi-group (with respect to composition)
and r(S%, 1, 8%, p2) < Ne "'r(p1,p2) for all t € T and @1, 05 € C(A', X). Hence
there exists a unique common fix point ¢,/ € C(AI,X) of semi-group {SZ, er. In
particularly 7y (t, 0, (X)) = @ (A) for all X € A’ ie. py := @, () is a unique
stationary point of dynamical system (X, T, 7,) and the mapping A — py from A
into X is continuous.

Thus we have a family of commutative semi-groups {S’f\, }ier depending on param-

eter A € K(A). It is easy to check that the following statements are true:
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a. for each A" € K (A) the commutative semi-group {S% }ter admits a unique
stationary point ¢, € C(A, X);

b. if A" C A" then ¢, = p,:, where ¢, is the restriction on A" of function
PA"S ) B .,

c. par(A) =N forall e A NA and A ,A € K(A).

Denote by C(A, X) the space of all continuous functions ¢ : A — X equipped with
compact-open topology (the topology of convergence uniform on every compact
subset A" C A). Let St be the mapping from C(A, X) into itself defined by equality
(St)(N) := ma(t,o(N\)) for all t € T and X\ € A. It is easy to check that {St},cr
is a commutative semi-group (with respect to composition). We define now the
mapping ¢ : A = X as follow:

(2) P(A) == @pr (V)

where A" € K(A) is an arbitrary compact subset of A containing A. According to
properties a.-c. by equality (2) a function ¢ € C(A, X) is correctly defined and it
is a unique stationary point of the semi-group {S!};cr. This means that Sty = ¢
for all t € T or equivalently mx(t,(N\)) = ¢(\) for all A € A and ¢t € T, i.e. the
point py := ¢(\) is a unique stationary point of dynamical system (X, T, ) and
the mapping A — p, is continuous. O

Remark 3.2. Lemma 3.1 is also true if we consider in place of family of dynamical
systems (X, T, mx)rea an arbitrary family of commutative semi-groups {mx(t, ) }rer
(A € A) with conditions:

(i) for each t € T the mapping (A, x) v~ wx(t, ) is continuous;
(i) there are two positive numbers N and v such that p(my(t, 1), mA(t, T2))<
Ne Vip(zi,x2) for all x € A,t € T and z1,72 € X.

Remark 3.3. Lemma 3.1 and Remark 3.2 are also true if we replace the condition
of uniform contraction by the following weaker condition: for each compact subset
A’ C A there are two positive numbers N+ and vy such that p(my (t, z1), ma (t, 23)) <
Nye “stp(zy,x9) for all X € A, t €T and z1,25 € X.

Definition 3.4. Let X be a metric space and Y be a topological space. The
set-valued mapping v : Y — K(X) is said to be upper semi-continuous (or (-

continuous), if ILm B(v(y),v(yo)) =0 for all yo € Y.
Y—yo

Definition 3.5. Let (X,h,Y) be a fiber space, i.e. h : X — Y is a continuous
mapping from X onto Y. The mapping v :Y — K(X) is called a section (selector)
of the fiber space (X, h,Y), if h(v(y)) =y for ally €Y.

Remark 3.6. Let X :=W x Y. Then v :Y — X is a section of the fiber space
(X,h,Y) (h:=prs: X = Y), if and only if v = (¢, [dy) where ) : W — K(W).
Definition 3.7. Let (X, Ty, 7) and (Y, T2,0) (Sy CT; C Ty CS) be two dynam-
ical systems. The mapping h : X =Y is called a homomorphism (respectively iso-
morphism) of the dynamical system (X, Ty, 7) on (Y, Ta, o), if the mapping h is con-
tinuous (respectively homeomorphic) and h(w(z,t)) = o(h(z),t) (t €Ty, z € X).
Definition 3.8. A triplet {(X,Ty,n), (Y,Ts,0), h), where h is a homomorphism
of (X, Ty,7n) on (Y, Ts,0) and (X, h,Y) is a fiber space, is called a non-autonomous
dynamical system.
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Definition 3.9. The triplet (W, p, (Y, To,0)) (or shortly ¢), where (Y, To,0) is
a dynamical system on Y, W is a complete metric space and ¢ is a continuous
mapping from Ty x W xY in W, possessing the following conditions:

a. p(0,u,y) =u (ue W,y €Y);
b. ot +7,u,y) = o(r,0(t,u,y),0(t,y) (t,7 € T, u € W,y €Y),

is called [7, 24] a cocycle on (Y, Ty, o) with fiber W.

Definition 3.10. Let X := W x Y and we define a mapping 7 : X x T; - X
as following: = (t,(u,y)) = (e(t,u,y),0(t,y)) (i.e. @ = (p,0)). Then it easy to
see that (X, Tq,m) is a dynamical system on X which is called a skew-product dy-
namical system [1, 24] and h = pry : X = Y is a homomorphism from (X, Ty, )
on (Y, Ts,0) and, consequently, (X, T1,7), (Y, Ta,0),h) is a non-autonomous dy-
namical system.

Thus, if we have a cocycle (W, p, (Y, T2,0)) on dynamical system (Y, T, o) with
the fiber W, then it generates a non-autonomous dynamical system ((X, Ty, ),
(Y, Ty,0),h) (X := W xY), which is called a non-autonomous dynamical system,
generated by cocycle (W, p, (Y, Tz, 0)) on (Y, Ts, o).

Non-autonomous dynamical systems (cocycles) play a very important role in the
study of non-autonomous evolutionary differential equations. Under appropriate
assumptions every non-autonomous differential equation generates some cocycle
(non-autonomous dynamical system). Below we give some examples of this type.

Example 3.11. Let E be a real or complex Banach space and ) be a metric
space. Denote by C(Q x E, E) the space of all continuous mappings f: Qx E — E
endowed by compact-open topology. Consider the system of differential equations
= F(w,u)

3) { Wy

where Q C E,G € C(Q,E) and F € C(Q2 x E, E). Suppose that for the system (3)
the conditions of the existence, uniqueness, continuous dependence of initial data
and extendability on R, are fulfilled. Denote by (£2,R;,0) a dynamical system
on 2 generated by the second equation of the system (3) and by ¢(t,u,w) — the
solution of the equation

(4) u' = F(wt,u) (wt := o(t,w))

passing through the point v € E for t = 0. Then the mapping ¢ : Ry x ExQ — E
is continuous and satisfies the conditions: ¢(0,u,w) = u and p(t + 7,u,w) =
p(t,o(r,u,w),wt) for all t,7 € Ry, u € E and w € Q and, consequently, the sys-

tem (3) generates a non-autonomous dynamical system ((X,Ry,7),(Y,R.,0),h)
(where X .= Ex Q, w:= (p,0) and h:=pry : X = Q).

We will give some generalization of the system (3). Namely, let (Q,R,,0) be a
dynamical system on the metric space 2. Consider the system

(5) { vl

where F' € C(2x E, E). Suppose that for the equation (4) the conditions of the exis-
tence, uniqueness and extendability on R are fulfilled. The system (X, R4, 7), (€,
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Ry,0),h), where X := E X Q, 7 := (¢,0), ¢(-,u,w) is the solution of (4) and
h :=pry : X — ) is a non-autonomous dynamical system generated by the equa-
tion (5).

Example 3.12. Let us consider a differential equation
(6) u' = f(ta U),

where f € C(R x E, E). Along with equation (6) we consider its H-class [24], i.e.
the family of equations

(7) v' = g(t,v),

where g € H(f) := {f; : 7 € R}, fr(t,u) := f(t+7,u) for all ({,u) € R x E and by
bar we denote the closure in C'(R x E, E). We will suppose also that the function
f is regular, i.e. for every equation (7) the conditions of the existence, uniqueness
and extendability on R, are fulfilled. Denote by ¢(-,v, g) the solution of equation
(7) passing through the point v € E at the initial moment ¢ = 0. Then there
is a correctly defined mapping ¢ : Ry x E x H(f) — E satisfying the following
conditions (see, for example, [24]):

1) ¢(0,v,9) =v for allv € E and g € H(f);
2) ot @(r,0,9), 92) = @t +7,0,9) for every v € E, g € H(f) and t,7 € R
3) the mapping ¢ : Ry x E x H(f) — E is continuous.

Denote by Y := H(f) and (Y,R;,0) a dynamical system of translations (a semi-
group system) on Y, induced by the dynamical system of translations (C(R x
E,E),R,o0). The triplet (E, ¢, (Y,Ry,0)) is a cocycle on (Y, Ry, o) with the fiber
E. Thus, equation (6) generates a cocycle (E, ¢, (Y,R4,0)) and a non-autonomous
dynamical system ((X,Ry,7), (Y,Ry,0),h), where X := E x Y, 7 := (¢,0) and
h:=prs: X =Y.

Remark 3.13. 1. Let Q := H(f) and (Q,R,n) be the shift dynamical system on
Q. The equation (6) (the family of equation (7)) may be written in the form (4),
where F : Q x E — E is defined by equality F(g,u) := g(0,u) for all g € H(f) =Q
and u € E, then F(gi,u) = g(t,u) (9:(s,u) := o(t,g)(s,u) = g(t + s,u) for all
t,s€ R andu € E).

2. In this work we show that every IFS generates some non-autonomous dynamical
system (see Section 4 and also [10]). Many examples of non-autonomous dynami-
cal systems, generated by non-autonomous differential/difference equations (ODEs,
PDEs and functional-differential equations) reader can find, for example, in the
books [7] and [24].

Definition 3.14. A mapping v :Y — X is called an invariant section of the non-
autonomous dynamical system ((X,Tq,7), (Y, To,0),h), if it is a section of the fiber
space (X, h,Y) and v(Y) is an invariant subset of the dynamical system (X, T, )
(or, equivalently, wty(y) = v(cty) for allt € T andy € Y).

Denote by a : K(X) x K(X) — Ry the Hausdorff distance on K(X), i.e.
a(4, B) := max(B(A, B), B(B, A)).
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Theorem 3.15. Let A be a metric space, {(X,Ty,my), (Y, T2,0),h) (A € A) be a
family of non-autonomous dynamical system and suppose the following conditions
are fulfilled:

(i) the space Y is compact;
(i) Y is invariant, i.e. o'Y =Y for all t € Ty;
(iii) the non-autonomous dynamical systems ((X, Ty, my), (Y, T2, 0), h) are equicon-
tracting in the extended sense, i.e. there exist positive numbers N and v
such that

(8) p(’”)\(taml)arnk(t:l‘?)) < Neiytp(mlaaa)

forall N € A, z1,20 € X (h(z1) = h(x2)) and t € Ty;

(iv) for each t € T the mapping (A\,z) — 7wx(t,z) from A x X into X is
continuous;

V) TV, X)={v|~v:Y = K(X) is a set-valued S—continuous mapping and
h(y(y)) =y for ally € Y} #0.

(i) for each A € A there exists a unique invariant section vy € I'(Y, X) of the
non-autonomous dynamical system (X, Ty, 7y), (Y, Ts,0),h);

(ii) the non-autonomous dynamical system (X, Ty, my), (Y, Ta,0),h) is com-
pactly dissipative (i.e. (X,Tq,7my) is compactly dissipative) and its global
attractor center J» = v, (Y);

(iii) 7§J) = J;\(t,y) forallt €Ty andy €Y

(iv) the mapping X — v is continuous, i.e.

)\lim sup (A (Y), 10 () = 0;
— Ao yey

(v) if (Y,Ta,0) is a group-dynamical system (i.e. To = S), then the unique
invariant section vy of the non-autonomous dynamical system (X, Ty, 7y),
(Y, Ty, 0),h) is one-valued (i.e. yA(y) consists a single point for any y €
Y) and

(9) p(ma(t,z), mA(t, 1A (h(@)))) < Ne™" p(a, v (h(z)))
forallz € X andt € T.

Proof. Since the space Y is compact and invariant, then according to Theorem 2.3
the semi-group dynamical system (Y, T, o) can be prolonged to a group set-valued
dynamical system (Y,S, &) (this means that &(s,y) = o(s,y) for all (s,y) € TxY).

Let @ : K(X)xK(X) — Ry be the Hausdorff’s distance on K (X) and d : I'(Y, X) x
I(Y, X) — Ry be the function defined by the equality

(10) d(y1,72) == Zlelga(% W), 72())-

Note that (10) defines a complete distance on I'(Y, X) (see [10]).

For t € T; and X € A, by S% we denote the mapping of I'(Y, X) into itself defined
by the equality (Si7v)(y) = ma(t,y((0?)"ty)) forallt € T,y € Y and v € T'(Y, X).
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It is easy to see that Sy € ['(Y, X), S{S] = Si7" for all t,7 € T; and v € I'(Y, X)
and, hence, {S% };er, forms a commutative semi-group. We will show that
(11) d(S571,S52) < Ne "d(y1,72)

for allt € Ty and v; € T(Y, X) (i = 1,2). In fact. To prove the inequality (11) it is
sufficient to show that

(12) a(my (oY), M2 (oY) < Nem"td(v1,72)
for all y € Y, where o7ty :={q €Y | o(t,q) = y}.

Let v € m{y2(0~"y) be an arbitrary element, then there is ¢ € o'y and z2(y) €
~2(q) so that v = 7 (t,-)az2(y). We choose z1(y) € y1(¢) such that

(13) p(z1(y), 72(y)) < a(11(q);72(9) < d(y1,72)

(by compactness of v;(q) (¢ = 1,2) obviously an such z;(y) there exists and addi-
tionally h(z1(y)) = h(z2(y)) = ¢). Then we have

p(mswi(y), mhaa(y)) < Ne " p(ai(y), z2(y)) < Ne 'd(y1,72),

Le. for all v € m{y2 (0 ty) there exists u := w'z1(y) € w{y1(cy) so that p(u,v) <

Ne "'d(y1,72). This means that B(7{y1(c7'y), m{12(07"y)) < Ne "td(y,v2).
Analogously, the inequality B(m{y2(c™ty), mi11 (07 y)) < Ne " d(y1,72) can be
established and, consequently, a(m 1 (67 y), T2 (07 ty)) < Ne "!d(y1,72) for all
y € Y and t € Ty. Thus the inequality (12) is established.

We will show now that for each to € Ty the mapping (X, ) — S5 from AxI'(Y, X)
into I'(Y, X) is continuous. In fact. Let Ay — A\g and v — 0. We shall prove that
S;O Ve — Si‘;’m in the space I'. Denote by

k

(14) m(A) ;== sup p(wiox,ﬂﬁfgm)
z€vo(Y)

and note that m(A) — 0 as A = Ao. If we suppose that it is not true, then there
are g9 > 0, A\, = Ao and zp — 2o (g € Y0(Y)) such that
(15) p(ﬂioka?k,ﬂi%mk) > gp.

Passing into limit in (15) as k¥ — +o0o we obtain g9 < 0. The obtained contradiction
shows that m(\) — 0 as A — Ao.

Let y €Y and v € wi‘i)'yg(o_toy), then there are ¢ € 0=ty and z € yy(q) such that
v = 7r§\°0:n. Denote by u := wﬁ\oaz, then we have
(16) plu,v) = p(wﬁ\ow,ﬂi‘;x) < Esu;()y)p(wioa:,wﬁ\%w) =m(\).

&0

From the inequality (16) it follows B(m{°vo(0~*0y), 7 v0(o"0y)) < m(A). Analo-
gously one can establish the inequality ﬂ(wi%fyo(a_toy), W;?) Yo(o~ty)) < m(A) and,
consequently,

(17) a(my0(0™y), 78 Yo (070y)) < m(N)
for ally € Y and A € A. From (17) it follows that
(18) (S0, 5 70) <m(A) =0

as A — Ag and, consequently,
(S5 ik, S 70) < d(SC Yk, S5 70) + d(S 70,55 70) <
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Ne " d(vy,v0) + m(A) = 0

as A\p — Ao- By Lemma 3.1 (see also Remark 3.2) for each A\ € A the semi-group
{S{ }ter admits a unique stationary point v, € I'(Y, X) and the mapping A —
is continuous.

Let us write by Ky := v, (Y), then K is a nonempty compact and invariant set of
the dynamical system (X, Ty, ). From the inequality (8) it follows that

. t _
tkgloo p(m\M,K)=0

for all M € K(X) and, consequently, the dynamical system (X, Ty, ) is compactly
dissipative and its global attractor center Jy C K. On the other hand, Ky C Jj,
because the set Ky = 7, (Y) is compact and invariant, but J, is the maximal
compact invariant set of (X, Ty, 7). Thus we have Jy = 7, (Y).

Let now Ty = S. Then we will show that the set v, (y) contains a single point for any
y € Y. If we suppose that it is not true, then there are yo € Y and 1,72 € (%)
(x1 # z2). Let ¢; € ®,, (i = 1,2) be such that ¢;(S) C Jx. Then we have

(19) T (Bi(—1)) =2 (1 = 1,2)
for all ¢t € T;. Note that from inequality (8) and equality (19) it follows that

p(x1,2) = p(73 ($1(=1)), 7{ (P2(—1))) <
(20) Ne™"'p(¢1(—t), p2(~t)) < Ne7"'C

for all t € T, where C := sup{p(¢1(s), #2(s)) : s € S}. Passing to the limit in (20)
as t — 400 we obtain xy; = 2. The obtained contradiction proves our statement.

Thus, if Ty = S, the unique fix point vy € I'(Y, X) of the semi-group of operators
{S%}ier, is a single-valued function and, consequently, it is continuous. Finally,
inequality (9) follows from (8), because h(vyx(h(z))) = (ho~x)(h(z)) = h(z) for all
z € X. O

Remark 3.16. If (Y, Ts,0) is a semi-group dynamical system (i.e. To = Ry or
Z ), then the unique invariant section vy of the non-autonomous dynamical system
(X, Ty,my), (Y, Ty, 0),h) is multi-valued (i.e. vx(y) contains, generally speaking,
more than one point). This fact is confirmed by the below example, which is a slight
modification of example from [25, Chl,p.42-43].

Example 3.17. Let Y := [—1,1] and (Y, Z,0) be a cascade generated by positive
powers of the odd function g, defined on [0, 1] in the following way:
2 , 0<y<j3
9(y) = .
2(y - 1) >y 9 < Yy S 1.

It is easy to check that g(Y) =Y. Let us put X := RxY and denote by (X, Zy, )
a cascade generated by the positive powers of the mapping P: X — X

@ r(y)=(6l )

where f(u,y) = %u + %y Finally, let h = pry : X — Y. From (21), it fol-
lows that h is a homomorphism of (X,Zy,n) onto (Y,Z,,0) and, consequently,
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((X,Z4,7),(Y,Z4,0),h) is a non-autonomous dynamical system. Note that

(22) |(U1,y) - (u27y)| = |u1 - U2| = 10|P(U’17y) - P(U2Jy)|
From (22), it follows that
(23) |P™(u1,y) — P (u2,y)| < Nem"[(ur,y) — (uz, y)|

for all n € Z,, where N = 1 and v = In10. By Theorem 3.15 there exists a
unique S-continuous invariant section v € I'(Y, X)) of non-autonomous dynamical
system ((X,Zy,n),(Y,Z4,0),h). According to [25, p.43] v(y) is homeomorphic to
the Cantor set for all y € [-1,1].

4. ITERATED FUNCTION SYSTEMS, DISCRETE INCLUSIONS AND COCYCLES

Definition 4.1. A iterated function system (IFS) cosists of a complete metric
space (X, p) together with a finite set of mappings f; : X —» X (i = 1,...,m)
(the notation {X; fi, i = 1,...,m}). The IFS {X; f;, i = 1,...,m} is called
hyperbolic if every function f; (i=1,...,m) is a contraction.

Let W be a topological space. Denote by C' (W) the space of all continuous operators
f: W — W equipped with the compact-open topology. Consider a set of operators
M C C(W) and, respectively, an ensemble (collage) of discrete dynamical systems
(W, f)feam ((W, f) is a discrete dynamical system generated by positive powers of

map f).

Definition 4.2. A discrete inclusion DI(M) is (see, for example, [14]) a set of all
sequences {{z;} | j > 0} C W such that

T = fi;xj1
for some f;; € M (trajectory of DI(M)), i.e.
zj = fi, fi,_ - fixo all f;, € M.
Definition 4.3. A bilateral sequence {{z;} | j € Z} C W is called a full trajectory

of DI(M) (entire trajectory or trajectory on Z), if xpyj = fi;Tnyj1 for alln € 7
and j € Z .

Let us consider the set-valued function F' : W — K(W) defined by the equality
F(z) :={f(x) |f € M}. Note that the set F(z) is compact because M is so. Then
the discrete inclusion DI(M) is equivalent to the difference inclusion

(24) Zj € F(Q?]'_l).

Denote by F,, the set of all trajectories of discrete inclusion (24) (or DI(M))
issuing from the point ¢ € W and F := U{Fy, | z0o € W}.

Below we will give a new approach concerning the study of discrete inclusions
DI(M) (or difference inclusion (24)). Denote by C(Zy,W) the space of all con-
tinuous mappings f : Zy — W equipped with the compact-open topology. Let
(C(Zs,W),Zy,0) be the dynamical system of translations (shift dynamical sys-
tem or dynamical system of Bebutov [24, 26]) on C(Z4+, W), i.e. o(k, f) := fr and
fris a k € Zy shift of f (i.e. fr(n) = f(n+k) for all n € Z).
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We may now rewrite equation (24) in the following way:
(25) zi1 = W)z, (@€ Q= C(Zy, M)

where w € (2 is the operator-function defined by the equality w(j) := f;;,, for all
Jj € Z4. We denote by ¢(n,zg,w) the solution of equation (25) issuing from the
point g € W at the initial moment n = 0. Note that Fp, = {¢(-, zo,w) | w € Q}
and F = {¢(,mo,w) | g € W,w € Q}, i.e. DI(M) (or inclusion (24)) is equivalent
to the family of non-autonomous equations (25) (w € Q).

From the general properties of difference equations it follows that the mapping
@ :Zy x W x Q — W satisfies the following conditions:

(i) ¢(0,z9,w) = g for all (zg,w) € W x
(ii) @(n + 7, z0,w) = w(n, e(7,20,w),0(1,w)) for all n,7 € Z, and (zg,w) €
W x Q;
(iii) the mapping ¢ is continuous;
(iv) for any n,t € Z4 and wy,ws €  there exists ws € 2 such that

(26) U(n,w2)U(r,w1) =U(n+ 7,ws),

where w € Q, U(n,w) = ¢(n,-,w) = [[j_,w(k), wk) = fi, (k =
0,1,...,n) and f;, := Idw.

Let W, Q2 be two topological spaces and (2, T, o) be a semi-group dynamical system
on 2.

Definition 4.4. Recall [24] that a triplet (W, ¢, (2, T,0)) (or briefly ) is called a
cocycle over (0, T, o) with the fiber W, if ¢ is a mapping from T x W x Q to W
satisfying the following conditions:

1. ¢(0,z,w) =z for all (z,w) € W x Q;
2. p(n+1,z,w) = p(n, (1, z,w),0(r,w)) for alln,7 € T and (z,w) € W xQ;
3. the mapping ¢ is continuous.

Let X := W x 1, and define the mapping 7 : X x T — X by the equality:
w((u,w),t) = (p(t,u,w),o(t,w)) (i-e. @ = (p,0)). Then it is easy to check that
(X, T,n) is a dynamical system on X, which is called a skew-product dynamical
system [1], [24]; but h = pry : X — Q is a homomorphism of (X, T, 7) onto (2, T, o)
and hence (X, T, n), (2, T,0),h) is a non-autonomous dynamical system.

Thus, if we have a cocycle (W, ¢, (2, T, o)) over the dynamical system (Q2, T, o) with
the fiber W, then there can be constructed a non-autonomous dynamical system
(X, Ty,m), (Q,T,0),h) (X := W x ), which we will call a non-autonomous dy-
namical system generated (associated) by the cocycle (W, ¢, (2, T, o)) over (22, T, o).

From that has been presented above it follows that every DI(M) (respectively,
inclusion (24)) in a natural way generates a cocycle (W, ¢, (Q,Z4,0)), where (2 =
C(Zy, M), (Q,Z,,0) is a dynamical system of shifts on  and ¢(n,z,w) is the
solution of equation (25) issuing from the point x € W at the initial moment n = 0.
Thus, we can study inclusion (24) (respectively, DI(M)) in the framework of the
theory of cocycles with discrete time.

Theorem 4.5. [10] The following statements hold:
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(i) Q@ = Per(o), where Per(c) is the set of all periodic points of (Q,Zy,0)
(i.e. w € Per(c), if there exists T € N such that o(T,w) = w);
(i) the set Q is compact;
(iii) Q 4s invariant, i.e. o'Q = Q for allt € 7.;
(iv) if M is a compact subset of C(W) and (W, ¢,(Q,Z,0)) is a cocycle gen-
erated by DI(M), then ¢ satisfies the condition (26).

5. SOME PROPERTIES OF LIPSCHITZ MAPPINGS

In this section we study some properties of Lipschitz maps, because they play the
important role in the study of generalized contraction Iterated Function Systems.
We introduce the notion of spectral radius for Lipschitz maps and we give the
necessary and sufficient conditions that a Lipschitz mapping is contracting in the
generalized sense in the term of its spectral radius.

Let (W, p) be a metric space.

Definition 5.1. A mapping f : W — W satisfies the Lipschitz condition, if there
exists a constant L > 0 such that p(f(z1), f(z2)) < Lp(z1,z2) for all z1,20 € W.
The smallest constant with above mentioned property is called the Lipschitz constant

Lip(f) of the mapping f.

Denote by Lip(W) :={f : W — W | Lip(f) < oo}.
Lemma 5.2. Let f € Lip(W), then the following statement hold:

(i) f* € Lip(W) for all n € N, where f* := f"" Lo f (Yn>2);
(ii) Lip(f") < Lip(f)" (Y n € N);
(iii) there ewists the limit

ry = lim (Lip(f™))7;

n—o0

(iv) 7y < Lip(f).

Proof. The first, second and fourth statements are obvious. To prove the third
statement we note that the sequence {b,} (b, := In(Lip(f™))) is sub-additive, i.e.

bpitno < by, + by, for all ny,ne € N. Thus there exists the limit lim %" (see, for
n— oo

example, [19, p.27]) and, consequently, there exists also the limit

. . 1 lim %o
lim (Lip(f"))7 = er "

n—0o0

O

Definition 5.3. The spectral radius of function f € Lip(W) is said to be the
. 1
(Lip(f"))= -

Definition 5.4. The function f € Lip(W) is said to be generalized contraction
(contracting in the extended sense) if ry < 1.

number vy := lim
n—oo

Remark 5.5. 1. If f € Lip(W) is a contraction (i.e., Lip(f) < 1), thenry < 1
because ry < Lip(f).
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2. If f € Lip(W) and vy < 1 then, generally speaking, f is not a contraction. This
fact is confirmed by the below example. In fact, let W := C[0,1] and f € Lip(W)
is defined by equality

(Fo)0) =5 [ o(apas

(t € [0,1] and p € C[0,1]). It is easy to verify that Lip(f™) = (%)”% In particular,

Lip(f) = %, Lip(f*) = 2 and Lip(f?) = 2L. In addition Lip(f") < 2(3)" for all

n € N. Thus the mapping f is a generalized contraction, but Lip(f) > 1.

Lemma 5.6. The function f € Lip(W) is a generalized contraction if and only if
there exist positive numbers N and v (0 < v < 1) such that

(27) Lip(f") < Nv"

for allm e N.

Proof. It is easy to see that from (27) we have r; <v < 1.

Let now 7y < 1 and € € (0,1 — ry). Then there is a number ny = ng(e) € N such
that (Lip(fm))= < ry + ¢ for all n € N with n > ng. We put v := ry + ¢ and
N := max{1,vLip(f),v>Lip(f?),...,v™ Lip(f™)}, then Lip(f*) < Nv" for all
n €N, O

Corollary 5.7. The mapping f is a generalized contraction if and only if one of
its iterates is contracting.

Definition 5.8. A subset of operators M C C(W) is said to be generally contract-
ing (contracting in the extended sense), if there are positive numbers N and v < 1
such that

L(fi, o fi, yo...0fi) <Nv"
f07" all filafiga---,fin S M andn (S N

Remark 5.9. 1. If the subset of operators M C C(W) is generally contracting,
then

(i) every function f € M is generally contracting;
(ii) every function f:=fi ofi, ,o...ofiy (fi, € M for allk=1,...,n)is
a generalized contraction.

2. Ifry < 1 for every function f € M,then the subset of operators M C C(W),

generally speaking, is not a generalized contraction. In fact, let W := R? and
M C C(W) consists from two functions {f1, fo}, where fi(x1,72) = (222, F) and
fa(w1,29) = (522, %). Then ry = g, rs, =1/2 and vy, = 5 (see [12]) and,

consequently, M := {f1, fa} is not generally contracting.

Lemma 5.10. Let M = {f1, fa,..., fm}, then the following statements hold:

(i) If Lip(f;) < 1 for all 1 < i < m, then the subset of operators M C C(W)
s generally contracting;

(ii) Letry, <1 for all1 <i < m and the mappings f1,..., fn are permutable
(i.e. fiof; = fiofi foralll < i,j < m), then the set of operators
M=A{f1,..., fm} is generally contracting.



CONTINUOUS DEPENDENCE OF ATTRACTORS ... 15

Proof. Let Lip(f;) < 1 for all i = 1,...,m. Then Lip(f;, o f;,_, ©...0 f;;) <
Lip(f;,) - .. Lip(f;;) < v™ for all n € N, where v := max{Lip(fi) | 1 <k < m}.

Let n € Nand f;, € M :={f1,...,fm} (1 <ir <mforall 1l <k <n). Then
fi,ofi,0...0fi, = ff*. . fhm where k; € Z; (1 < i < m) with condition
ki + ...+ k,, = n. Thus we have

(28) Lip(fi, © fi,—y 0.0 fi) = Lip(f{*) ... Lip(f3").
Since ry, < 1, then by Lemma 5.6 there are positive numbers N; and v; < 1 such
that
(29) Lip(fi') < Nivi!
for all n € N.
From the relations (28) and (29) follows that
Lip(fi, o fi,_,0...0fi,) < NV"

for all n € N, where N := max{VN;, | 1 <k < m} and v := max{y; | 1 < k <
m}.

O

6. RELATION BETWEEN COMPACT GLOBAL ATTRACTORS OF SKEW-PRODUCT
SYSTEMS, COLLAGES AND COCYCLES

Theorem 6.1. [10] Suppose the following conditions are fulfilled:

(i) M :={f; :i €I} is a compact subset from C(W);
(ii) the set M of operators is contracting in the extended sense.

Then the set-valued cascade (W, F') (discrete dynamical system generated by positive
powers of mapping F') is compactly dissipative, , where F(x) := {f(z) | f € M}
(Ve e W).

Theorem 6.2. [10] Let (W,p,(Q,T,0) be a cocycle, 2 be a compact space and
f:TxW:=» K(W) be a mapping defined by the equality

(30) f(tuw) = o(t,u, )

forallue W andt e T.

Then the mapping f possesses the following properties:

a. f(0,u) =u for allu € W,
. f(t, f(r,u) C f(t+7,u) forallt,7 € T and u € W;
c. [:TxW — K(W) is upper semi-continuous, i.e.

lim — B(f(t,u), f(to,u0)) =0 V(to,uo) € T x W;

t~>t07u~>u0
. if the cocycle (W, p, (Q,T,0)) satisfies the following condition:
(31) Vi, 7 € T,uz,us € W Juz such that p(t, o(r,2,u1),uz) = p(t + 7,2, u3),
then

o

o,

[ f(ru) = f(t+7,u)
forallt, 7€ T andu € W.
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Corollary 6.3. Every cocycle (W, p,(Q,T,o) with the compact Q and satisfying
the condition (31) gemerates a set-valued dynamical system (W, T, f), where f :
T x W — K(W) is defined by equality (30).

Definition 6.4. A cocycle p over (Q, T, c) with the fiber W is said to be a compactly
dissipative one, if there is a nonempty compact K C W such that

(32) Jim sup{B(U(t,)M. K) | @ € Q) =0
for any M € K(W), where U(t,w) := o(t,-,w).

Definition 6.5. [7, Ch.II] A metric space X possesses the property (S), if for every
compact subset K C X there exists a connected compact subset L C X such that
KCL.

Theorem 6.6. [7, Ch.II] Let Y be compact, (W, ¢, (Y,S,0)) be compactly dissipa-
tive and K be the nonempty compact subset of W appearing in the equality (32).
Then the following statements hold:

(i) wel, (y €Y) if and only if there exits a complete trajectory v:S — W
of the cocycle p, satisfying the following conditions: v(0) = w and v(S) is
relatively compact;

(i) Iy (y € Y) is connected, if the space W possesses the property (S).

Definition 6.7. The smallest compact set I C W with property (32) is said to be
a Levinson center (global attractor) of cocycle p.

Theorem 6.8. [10]

(i) Let (W, ¢, (2, T,0)) be a cocycle with the compact Q0 and satisfying the
condition (31). Then the following statements are equivalent:
(a) the cocycle ¢ is compactly dissipative;
(b) the skew-product dynamical system (X,T,n) generated by the cocycle
@ s compactly dissipative;
(c) the set-valued dynamical system (W,T, f) generated by the cocycle ¢
is compactly dissipative.
(ii) Let (W, ¢, (Q,T,0)) be a compact dissipative cocycle and the following con-
ditions be fulfilled:
(a) Q is compact and invariant (otQ = Q for allt € T);
(b) the cocycle ¢ satisfies condition (31).

Then I = pri(J), where J is the global attractor center of the skew-
product dynamical system (X, T,w) (generated by the cocycle p) and I is
the global attractor of the set-valued dynamical system (W, T, f) (generated
by the cocycle ).

Denote by ®(p) the set of all full trajectories of the cocycle .

Corollary 6.9. Let (W,p,(Q,T,0)) be a compactly dissipative cocycle and the
following conditions be fulfilled:

(i) Q is compact and invariant;
(ii) the cocycle ¢ satisfies condition (31).

Then I ={ue W : 3n € ®(p), n(0) =u and n(S) is relatively compact}.
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7. CONTINUOUS DEPENDENCE OF ATTRACTORS OF IFS

Theorem 7.1. [10] Suppose that the following conditions are fulfilled:

(i) M is a compact subset of C(W);
(il) M is contracting in the extended sense.

Then

(i) I, :={u €W : a solution p(n,u,w) of equation (25) is defined on Z and
o(Z, u,w) is relatively compact} # O for allw € Q, i.e. every equation (25)
admits at least one solution defined on Z with relatively compact range of
values;

) the sets I, (w € Q) and I :=J{I, : w € Q} are compact;

ii) the set-valued map w — I, is upper semi-continuous;

) the family of compact sets {I, : w € N} is invariant with respect to the

cocycle p, i.e. p(n,l,,w) = Isn, for alln € Zy and w € Q;

(v) plo(n,ur,w), p(n,us,w)) < Ne ""p(uy,us) for alln € Zy and w € Q and
uy,us € W, where N and v are positive numbers from the definition of the
contractivity of M in the extended sense;

(vi) if every map f € M is invertible, then

(a) I, consists of a single point u,;

(b) the map w — uy, is continuous;

(€) o(n,uy,w) = Uy(nw) for alln € Zy and w € Q;

(d) ple(n,u,w), p(n,u,,w)) < Ne *"p(u,u,) for alln € Zy and w € Q.

Let A be a compact metric space. Denote by C(AxTW, W) the space of all continuous
functions f : A x W +— W equipped with compact-open topology. If f € C(A x
W, W) then we denote by f* := f(),:) € C(W) and M?* := {f* | f € M}.

Consider a set of operators M C C(A x W, W) and, respectively, an ensemble (col-
lage) of discrete dynamical systems (W, f1) r,em, (W, fa) is a discrete dynamical
system generated by positive powers of map fy).

We consider the equation

(33) i1 =w(, i)z, (we Q:=C(AxXZi, M))
or
(34) Tjt1 = w(/\aj)xja (/\ € A7 w(/\a ) €y = C(Z+,M)),

where w € Q is the operator-function defined by the equality w(-,j) := f;,,, €
C(A x W, W) (or w(\,j) = fj‘,ﬂ € C(W,W) for all A € A) for all j € Z, i.e.
w(j) is a continuous function depending on two variables A € A and z € W. We
denote by ¢(-,n,xg,w) the solution of equation (33) (respectively, by ¢(\,n, zq,w)
the solution of equation (34)) issuing from the point o € W at the initial moment

n = 0.

From the general properties of difference equations it follows that the mapping
@i AXZy x W x Q — W satisties the following conditions:

(1) ©(\, 0,29, w) = x¢ for all (A, zg,w) € A x W x Q;
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(i) (A, n + T,x0,w) = (A, n, 0\, T,x0,w),0(7,w)) for all n,7 € Zs and
(A zo,w) € A X x

(iii) the mapping ¢ is continuous;

(iv) for any n,7 € Zy and wy,w, € Q there exists ws € Q such that

U n,w) U\, 7,w01) =U(Nn+ T,ws),

wherew € Q, U(A\,n,w) := oA\, n, - w) = [Ti_gw(X k), w\ k) = f (k=

0,1,...,n) and li‘) := Idw.
Let X := W x (Q, and define the mapping 7, : X x T — X by the equality:
m((u,w),t) = (p(\t,u,w),o(t,w)) (i.e. 7w = (pr,0)). Then it is easy to
check that for each A € A the triplet (X, T, 7)) is a dynamical system on X,
but h = prs : X — Q is a homomorphism of (X, T, ) onto (2, T,o) and hence
((X,T,7y), (2,T,0),h) is a family of non-autonomous dynamical systems depend-
ing on parameter A € A. Applying Theorem 3.15 to the family of dynamical systems
(X, T,7y), (2,T,0),h) we will receive the following result.

Theorem 7.2. Suppose that the following conditions hold:

(i) A be a compact metric space;
(ii) M be a nonempty compact subset of C(A x W, W), where W is a complete
meltric space;
(iii) the subset M C C(A x W, W) is generalized contracting, i.e. there are two
positive numbers N and v < 1 such that Lip(f} o...o f}) < Nv™ for all
AN€A, neNandiy,... i, € N where f) := fr(\,-) and fi, € M.

Then the following statements hold:

i) for each A € A the non-autonomous dynamical system ((X,Zy,my), (£,
+
Ly, o), h) is compactly dissipative;
(i)
(35) p(ma(n, z1), mA(n, x2)) < Nv"p(21,22)

for alln € Zy and x w2 € X (M(x1) = h(z2)), i.e. the family of non-
autonomous dynamical systems ((X,Zy,7y),(Q,Z4,0),h) is generalized
contracting;

(iii) for each (\,w) € A x Q the set I} := {u € W | the solution o(\,n,u,w)
of equation (84) defined on Z with relatively compact range of values p(\,
Z,u,w)} is nonempty and compact;

(iv) for each X\ € A the family of subsets I* := {I} | w € Q} is invariant with
respect to cocycle @y := o(\, -, -,-), i.e. ox(t,I},w) = I;\(t,w) forallt € Z,
and w € Q;

(v) I} = pri(JD) for all X € A and w € Q, where J* is the global attractor of
dynamical system (X, Zy,7y);

(vi) for each X\ € A the set I* := U{I} | w € Q} = pri(J*) and, consequently,
it 1s compact;

(vii)

(36) lim sup a(I, 1) =0

A= o pen ¢
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and, consequently, we have also
li *,1*) = 0.
(37) Aim oI, 1) =0

Proof. Let ¢, be the cocycle generated by equation (34). Denote by (X,Z,,7y)
the skew-product dynamical system generated by cocycle ¢, (ie. X := W X
Q and 7\ = (pr,0)). Let (X,Z4,m)),(Q,Z4,0),h) be the non-autonomous
dynamical system associated by cocycle ¢y, where h := pro : X — Q. Un-
der the conditions of Theorem the family of non-autonomous dynamical systems
(X, Zy,my), (R, Z4,0), h) satisfies the inequality (35) because my(n,z) = (pa(n, u,
w), o(n,w)) (x := (u,w)) and @y (n,u,w) = w(A,n)o...ow(A, 1)u. By Theorem 3.15
for each A € A dynamical system (X,Z.,m) admits a compact global attractor J*
and there exists the unique invariant section vy € T'(2, X) such that:

(i) the mapping A\ — ~, is continuous, i.e.

(38) lim sup a(yx(w),va, (w)) = 0;
)\—>/\0 wEeN
(i) J) = 7 (w) for all w € Q and, consequently, J* = 7,(Q),where J)} :=
X,NJ* and X, := h™ }(w).

Since (X,Z,,my) is a skew-product dynamical system and X = W x Q, then
vx has the form (¢y, Idg), where ¢y € C(Q,W). Note that I} = pri(J)) and,
consequently, it is non-empty and compact. On the other hand 7 (n, J}) = J (;\(TW)
for all A € A, n € Z; and w € Q because () is invariant (i.e. o(n,Q) = Q for all
n € Z4) and, consequently, px(n, Ij‘,w) = a(ma(n, JA) = Qb)\(‘];\(nw)) =1

a(n,w)"
From the equalities (38) and vy = (¢x, Idq) follow the equalities (36) and (37). O

Remark 7.3. If M C C(A x W, W) is a finite set, i.e. M ={f1,..., fm}, then
the equality (87) coincides with Barnsley’s theorem of continuous dependence of
fractals on parameters [2, Th.1,Ch.III] (see also [18]).
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