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1 Introduction

The global attractors play a very important role in the qualitative study of
difference equations (both autonomous and non-autonomous). The present work is
dedicated to the study of global attractors of quasi-linear non-autonomous difference
equations

Unt1 = A(o(n,w))uy + F(up,o(n,w)), (1)

where 2 is a metric space (generally speaking non-compact), (2, Z+,0) is a dynam-
ical system with discrete time Zy, A € C(Q, [E]) and the function F' € C(E x Q, F)
satisfies to ”the condition of smallness” (see condition (ii) in Theorem 4). An anal-
ogous problem was studied by Cheban D. and Mammana C. [6] when the space
is compact and Cheban D., Mammana C. and Michetti E. [8] in general case.

The obtained results are applied while studying a special class of triangular
maps describing a discrete-time growth model of the Solow type where workers and
shareholders have different but constant saving rates and the population growth rate
dynamic is described by the logistic equation (see Brianzoni S., Mammana C. and
Michetti E. [3]). The resulting system is given by 7' = (T3, T} ), where
(1= 8)u+ (uf +1) 7 (50 + 5,uP)

1+n

To(u,w) =

and
T (w) = w(l —w)

©D. Cheban, C. Mammana, E. Michetti, 2008



2 D. CHEBAN, C. MAMMANA, E. MICHETTI

(for all (u,w) € R4 x [0,1]), § € (0,1) is the depreciation rate of capital, s,, € (0, 1)
and s, € (0,1) are the constant saving rates for workers and shareholders respec-
tively, p € (—o0,1),p # 0, is a parameter related to the elasticity of substitution
between labor and capital.

This paper is organized as follows.

In Section 2 we establish the relation between triangular maps and non-
autonomous dynamical systems with discrete time.

Section 3 is devoted to the study of the existence of compact global attractors of
skew-product dynamical systems. The sufficient conditions of existence of compact
global attractors for skew-product dynamical systems with non-compact base is
given (Theorem 2).

In Section 4 we study the linear non-autonomous dynamical systems with dis-
crete time and prove that they admit a unique compact invariant manifold and its
description is given (Theorem 3).

In Section 5 we prove the existence of compact global attractors of quasi-linear
dynamical systems (Theorem 5) and give the description of the structure of these
attractors (Theorem 6).

In Section 6 we give some applications of general results from sections 2-5 to the
study of special class of the triangular maps T : R%r — Ri describing a triangu-
lar growth model with logistic population growth rate as studied in Brianzoni S.,
Mammana C. and Michetti E. [3].

2 Triangular maps and non-autonomous dynamical systems

Let W and €2 be two complete metric spaces and denote by X := W x Q its
Cartesian product. Recall (see, for example,[16-18]) that a continuous map F :
X — X is called triangular, if there are two continuous maps f : W x Q@ — W
and g : Q — Q such that F = (f,g), i.e. F(x) = F(u,w) = (f(u,w), g(w)) for all
z=: (u,w) € X.

Consider a system of difference equations

Un+1 = f(unawn)
{ Wn+1 = g(wn)v (2)

for all n € Z,, where Z is the set of all non-negative integer numbers.
Along with system (2) we consider the family of equations

Un+1 = f(unagnw) (w € Q)? (3)

which is equivalent to system (2). Let ¢(n,u,w) be a solution of equation (3)
passing through the point u € W for n = 0. It is easy to verify that the map
©: Zy x W xQ—W ((n,u,w) — p(n,u,w) ) satisfies the following conditions:

1. p(0,u,w) =u for all u € W and w € Q;

2. p(n+m,u,w) = p(n,p(m,u,w),o(m,w)) foralln,m € Z,,u € Wandw € €,
where o(n,w) := ¢g"w;



GLOBAL ATTRACTORS OF QUASI-LINEAR ... 3

3. themap ¢ : Z, x W x Q — W is continuous.

Denote by (2, Z4,0) the semi-group dynamical system generated by positive
powers of the map ¢g: Q — €, i.e. o(n,w) = g"w for all n € Z; and w € .

Recall [5,19] that a triple (W, ¢, (Q, Z4,0)) (or briefly ¢) is called a cocycle over
the semi-group dynamical system (€2, Z;, o) with fiber W.

Let X :=W x Q and (X, Z4,m) be a semi-group dynamical system on X, where
m(n, (u,w)) = (¢(n,u,w),o(n,w)) for allu € W and w € Q, then (X, Z,, m) is called
[19] a skew-product dynamical system, generated by the cocycle (W, ¢, (Q, Z4,0)).

Remark 1. Thus, the reasoning above shows that every triangular map generates
a cocycle and, obviously, vice versa, i.e. having a cocycle (W, ¢, (Q, Z1,0)) we can
define a triangular map F': W x Q — W x Q by the equality

F(u>w) = (f(uaw)vg(w))7

where f(u,w) = ¢(1,u,w) and g(w) := o(l,w) for all u € W and w € Q. The
semi-group dynamical system defined by the positive powers of the map F : X —
X (X :=W x Q) coincides with the skew-product dynamical system, generated by
cocycle (W, ¢, (Q, Z4,0))

Taking into consideration this remark we can study triangular maps in the frame-
work of cocycles with discrete time.

Let (X, Z4,m) (respectively, (W, p, (2, Z4+,0))) be a semi-group dynamical sys-
tem (respectvely, a cocycle).

A map v : Z — X is called an entire trajectory of the semi-group dynamical
system (X, Z,, o) passing through the point € X (respectively, u € W), if v(0) = =
and y(n +m) = w(m,y(n)) for all n € Z and m € Z,..

Denote by @, (o) the set of all the entire trajectories of the semi-group dynamical
system (2, Z1, o) passing through the point w €  at the initial moment n = 0 and
O(0) :=J{Pu(o) | w e Q}.

A map p: Z — W is called an entire trajectory of the cocycle (W, p, (Q, Z1,0))
passing through the point (u,w) € W x Q, if ;(0) = w and there exists a € @, (o)
such that pu(n +m) = ¢(m, u(n), a(n)) for alln € Z and m € Z,.

Let Y be a complete metric space, (X, Z4, ) (respectively, (Y, Z4, o)) be a semi-
group dynamical system on X (respectively, V), and h : X — Y be a homomorphism
of (X,Z4,m) onto (Y, Z4,0). Then the triple (X, Z4,7), (Y,Z4+,0),h) is called a
non-autonomous dynamical system.

Let W and Y be complete metric spaces, (Y, Z1,0) be a semi-group dynamical
system on Y and (W, ¢, (Y, Z,,0)) be a cocycle over (Y, Z,,0) with the fiber W
(or, by short, ¢), i.e. ¢ is a continuous mapping of Z, x W x Y into W satisfying
the following conditions: ¢(0,w,y) = w and p(t + 7,w,y) = ¢(t, (T, w,y),0(T,y))
forallt, 7€ Zy,weW andy €Y.

We denote X := W x Y and define on X a skew product dynamical system
(X, Zy,7) by the equality m = (¢,0), i.e. w(t,(w,y)) = (p(t,w,y),o(t,y)) for all
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t € Zy and (w,y) € W x Y. Then the triple (X, Z4,7),((Y,Z4+,0),h) is a non-
autonomous dynamical system (generated by cocycle ), where h = pro : X — Y is
the projection on the second component.

3 Global attractors of dynamical systems

Let 91 be a family of subsets from X.

A semi-group dynamical system (X, Z,,7) will be called 9-dissipative if for
every ¢ > 0 and M € 9 there exists L(e, M) > 0 such that 7(n, M) C B(K,¢) for
any n > L(e, M), where K is a certain fixed subset from X depending only on 9.
In this case K we will call an attracting set for 91.

For the applications the most important ones are the cases when K is bounded
or compact and M := {{z} | x € X} or M := C(X), or M := {B(x,d,) | z €
X, 05 > 0}, or M := B(X) where C(X) (respectively B(X)) is the family of all
compact (respectively, bounded) subsets from X.

The system (X, Z, ) is called:

— point dissipative if there exists K C X such that for every x € X

lim p(7w(n,z), K) = 0; (4)

n—-+4+oo

— compact dissipative if the equality (4) takes place uniformly w.r.t. x on the
compact subsets from X;

Let (X, Z4, ) be a compact dissipative semi-group dynamical system and K be
an attracting set for C'(X). We denote by

J=K) = |J m(m, K),

n>0m>n

then the set J does not depend of the choice of K and is characterized by the
properties of the semi-group dynamical system (X, Z,, 7). The set J is called a
Levinson center of the semi-group dynamical system (X, Z;, ).

Theorem 1. [5] Let (X, Zy,m) be point dissipative. For (X, Zy,m) to be compact
dissipative it is necessary and sufficient that X7 (K) be relatively compact for any
compact K C X.

Let E be a finite-dimensional Banach space and (E, ¢, (2, Z1,0)) be a cocycle
over (2, Z4,0) with the fiber E (or shortly ¢).
A cocycle ¢ is called:

- dissipative, if there exists a number r > 0 such that

lim sup [@(n, u, w)| <7 (5)

n—-+00

for all w € Q and u € F;
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- uniform dissipative, if there exists a number r > 0 such that

limsup sup |p(n,u,w)| <r
n—=+00 ,eQ |ul<R

for all compact subset Q' C Q and R > 0.
Let (X, Z4,m) be a dynamical system and = € X. Denote by
Wp 1= Np20Umznm(m, )
the w-limit set of point .
Theorem 2. The following statements hold:

1. if the semi-group dynamical system (Q, Z4,0) and the cocycle ¢ are point dissi-
pative, then the skew-product dynamical system (X, Zy, ) is point dissipative;

2. if the semi-group dynamical system (Q, Z4,0) is compact dissipative and the
cocycle ¢ is uniform dissipative, then the skew-product system (X, Zy,m) is
compact dissipative.

Proof. Let x := (u,w) € X := E x Q, then under the conditions of Theorem the
set X, = {m(n,x) : n € Z;} is relatively compact and w, C B[0,7] x K, where
B[0,r] :={u € E: |u|l <r}, ris a number figuring in the inequality (5) and K is
a compact appearing in (4). Thus the semi-group dynamical system (X, Z,, ) is
point dissipative.

According to first statement of Theorem the skew-product dynamical system (X,
Z4, ) is point dissipative. Let M be an arbitrary compact subset from X := E x Q,
then there are R > 0 and a compact subset ' C Q such that M C B[0, R] x Q.

Note that X}, := {m(n,M): n€ Zy} C Z;[O,R]XQ’ =A{(¢(n,u,w),o(n,w)) : ne

Zi,u € B[0,R], w € Q'}. We will show that the set X}, is relatively compact.
In fact, let {zx} C X7, then there are {uz} C B[0,R], {wx} € Q and {ny} C
Z4 such that zp = (o(ng, ug,wr), o(ng,wi)). By compact dissipativity of system
(Q, Z1,0) and uniform dissipativity of the cocycle ¢ the sequences {¢(ng, g, wg)}
and o(ng,wy)) are relatively compact and, consequently, the sequence {zj} is so.
Now to finish the proof it is sufficient to refer to Theorem 1. O

4 Linear non-autonomous dynamical systems

Let ©Q be a complete metric space and (2, Z4,0) be a semi-group dynamical
system on {2 with discrete time.

Recall that a subset A C Q) is called invariant (respectively, positively invariant,
negatively invariant) if o(n, A) = A (respectively,o(n,A) C A, A C o(n, A)) for all
nes;.

Below in this section we will suppose that the set 2 is invariant, i.e. o(n,) = Q
for all n € Z,. Let E be a finite-dimensional Banach space with the norm | - |
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and W be a complete metric space. Denote by [E] the space of all linear continuous
operators on F and by C(£2, W) the space of all the continuous functions f : Q — W
endowed with the compact-open topology, i.e. the uniform convergence on compact
subsets in ). The results of this section will be used in the next sections.

Consider a linear equation

Upt1 = A(o(n,w))u, (we Q) (6)
and an inhomogeneous equation
Un+1 = A(O’(?’L, W))Un + f(U(nv w))? (7)

where A € C(Q,[E]) and f € C(Q, E).

Recall that a linear bounded operator P : E — FE is called a projection, if
P? = P, where P2 := Po P.

Let U(n,w) be the Cauchy operator of linear equation (6). Following [10] we will
say that equation (6) has an exponential dichotomy on €2, if there exists a continuous
projection valued function P : Q) — [E] satisfying:

1. P(o(n,w))U(n,w) =U(n,w)P(w);

2. Ug(n,w) is invertible as an operator from ImQ(w) to ImQ(o(n,w)), where
Uqg(n,w) :=U(n,w)Q(w);

3. there exist constants 0 < ¢ < 1 and N > 0 such that
|Up(n,w)|| < N¢" and [[Ug(n,w) ™| < Ng¢"
for all w € Q and n € Z4, where Up(n,w) := U(n,w)P(w).

Let w € Q and 7, € ®,(0). Consider a difference equation

Unt1 = A(Yw(n))un + f(w(n)), (8)

and the corresponding homogeneous linear equation
Upt1 = A(Yw(n))u, (v € Q). 9)

Let (X, p) be a metric space with distance p. Denote by C(Z, X) the space of
all the functions f : Z — X equipped with a pointwise topology. This topology can
be metricised. For example, by the equality

. = 1 dn(fladQ)
d(f1, f2) = Z %ma

1

where d,(f1,d2) = max{p(fi(k), f2(k)) | k € [-n,n]}, a distance is defined on
C(Z,X) which generates the pointwise topology.
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If z € X and A, B C X, then denote by p(z, A) := inf{p(z,a) | a € A} and
B(A, B) :=sup{p(a, B) | a € A} the semi-distance of Hausdorff.

Denote by C(X) (respectively, B(X)) the family of all compact (respectively,
bounded) subsets from X, C (2, E') the space of all the continuous functions f : Q —
E, G E) ={fecCQE): |fl|:= sup |f(w)] < 400} . Note that the space

Cy(Q2, E) equipped with the norm || - || is a Banach space.

Theorem 3. Suppose that the linear equation (6) has an exponential dichotomy on
Q. Then for f € Cp(Q, E) the following statements hold:

1. the set I, := {u € E | 3y, € ¥, such that equation (8) admits a bounded
solution 1), defined on Z with the initial condition 1,(0) = u} is nonempty
and compact;

2. p(n, 1y, w) = Igny) for alln € Zy and w € Q, where ¢(n,u,w) is a so-
lution of equation (7) with the condition p(0,u,w) = u and p(n, M,w) =
{o(n,u,w) [ ue M};

3. the map w — 1, is upper-semicontinuous, i.e.

lim ((1y, 1) =0

w—wo
for every wg € Q, where B is the semi-distance of Hausdorff;
4. if Q is compact, then the set I := {1, | w € Q} is also compact.

Proof. Let w € . Since Q is invariant, the set ®,(c) # 0. We fix 7, € ®,(0).
Under the conditions of Theorem 3 equation (9) has an exponential dichotomy on
2 with the same constants N and ¢ that in equation (6). Then equation (8) admits
the unique solution v, , : Z — E with the condition

1+q

1
lorllo < Ny 10 (Dlloe < N{ T '

Al (10)

where ||f]| := sup{|f(w)| | w € Q} and ||y]|co := sup{|vw(n)| | » € Z} (see, for
example,[11,15]). Thus, the set I, is not empty. From the continuity of the function
¢: Zy X ExQ — FE and inequality (10) follows that the set I, is closed, bounded
and

|u |<N HfH

for all u € I, and w € €.

The second statement of the theorem follows from the equality Sp,(®.,(0)) =
Po(hwy(0) (h € Z), where Spy, is an h-translation of the trajectory 7, i.e.
ShYw(n) :=yu(n+h) for alln € Z.

We will prove now the third statement. Let wy € €, wp — wo, up € I, and
u, — . To prove our statement it is sufficient to show that v € I,,,. Since uy, € I, ,



8 D. CHEBAN, C. MAMMANA, E. MICHETTI

there is a trajectory 7., € ®,, (o) such that ,, converges to 7., € Py, (o) in
C(Z,9Q) and the equation

Unt1 = ALYy (1)) un + (7, (7)) (11)

has a solution v,,, with the initial condition v, (0) = uy, and satisfying inequality
(10), i.e

1+g¢

Ve ()] < Nlillf(mk)!\oo <NT— HfH (12)

for all n € Z and k € N. We will show that the sequence {l/ﬁ,wk (n)} converges for
every n € Z. In fact, by Tihonoff theorem the sequence {v,,, } C C'(Z, E) is relatively
compact. From equality (11) and inequality (12) follows that every limit point of
the sequence {V%k} is a (bounded on Z) solution of the equation

Un+1 = A(’on (n))un + f(7w0 (n)) (13)

Taking into account that equation (13) admits a unique solution bounded on Z,
we obtain the convergence of the sequence {V%k} in the space C(Z,E). We put

vy 1= khIJPoo Uy, - It is easy to see that 10(0) = u and, consequently, u € I,.

To prove the fourth assertion it is sufficient to remark that for every w € ) the
set I, is compact, the map F' : w — I, (F(w) := 1) is upper-semicontinuous and,
consequently, the set I := (J{l, | w € Q} = F(Q) is compact. The theorem is
completely proved. O

5 Global attractors of quasi-linear triangular systems

Consider a difference equation
Unt1 = f(un,0(n,w)) (w € Q). (14)

Denote by ¢(n,u,w) a unique solution of equation (14) with the initial condition
©(0,u,w) = u.

Equation (14) is said to be dissipative (respectively, uniform dissipative), if there
exists a positive number r such that

limsup |p(n,u,w)| < r (respectively, limsup sup |o(n,u,w)| <7)
n—-+00 n—+00 e |lu|<R

for all u € E and w € Q (respectively, for all R > 0 and Q € C(Q)).
Consider a quasi-linear equation

Upt1 = A(o(n,w))u, + F(uy, o(n,w)), (15)

where A € C(Q,[E]) and the function F € C(E x Q, E) satisfies to "the condition
of smallness” (condition (ii) in Theorem 4).
Denote by U(k,w) the Cauchy matrix for the linear equation

Unt1 = A(o(n,w))uy,.
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Theorem 4. Suppose that the following conditions hold:

1. there are positive numbers N and q < 1 such that

[U(n,w)| < N¢*  (n € Zy); (16)

2. |[F(u,w)] <C+Dlul (C>0,0<D<(1—q)N71) forallueE andw € Q.
Then equation (15) is uniform dissipative.

Proof. Let ¢(-,u,w) be the solution of equation (14) passing through the point
u € F for n = 0. According to the formula of the variation of constants (see, for
example,[14] and [15]) we have

n—1
p(nu,w) = Ulk,wu+ 3 Uln —m = 1,w)F(p(m, u,w), o(m,w)),
m=0
and, consequently,
n—1
lo(n,u,w)| < Ng"ful + Y ¢" ™ (C + Dlp(m, u,w))). (17)
m=0

We set u(n) := ¢ "|p(n,u,w)| and, taking into account (17), obtain

n—1 n—1
u(n) < Nlu| + CNq™" Y "™+ DNg " ) u(m). (18)
m=0 m=0

Denote the right hand side of inequality (18) by v(n). Note, that

v(n+1)—v(n) = QﬂLT + T“(n) < T“(“) + Tq ",

and, hence,
v(in+1 <<1+—)fun + —q "
( ) q () q

From this inequality we obtain

DN\n-1 CN1—qg*!
o(n) < (1+ 7)" vy 4 22T
q g 1l-gq
Therefore,
n—1 CN n—1
lp(n,u,w)| < (g + DN)"“gN|u| + q_il(q -1), (19)
because v(1) = N|u|. From (19) follows that
. CN
limsup sup |p(n,u,w)| < ——
n—+00 ,eQ |ul<R l—q

for all R > 0 and Q" € C(). The theorem is proved. O
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Let (E, ¢, (2, Z4+,0)) be a cocycle over (2, Z,, o) with the fiber E.
A family {I, | w € Jq} of nonempty compact subsets I, C E is called a compact
global attractor of the cocycle ¢, if the following conditions are fulfilled:

1. the semi-group dynamical system (2, Z,0) is compact dissipative;

2. the set I := J{L, | w € Jq} is relatively compact, where Jq is the Levinson
center of (Q, Z,,0);

3. the family I := {I, | w € Jq} is invariant with respect to the cocycle ¢, i.e.
U{e(n, I, q) | g € (™) Ho(n,w))} = Ly foralln € Zy and w € Jo, where
o = a(n, );

4. the equality
lim sup Ap(n, K,w), I) = 0
neteo we'
takes place for every K € C(E) and Q € C(f), where C(E) (respectively,
C(Q)) is a family of compact subsets from E (respectively, €2).

Lemma 1. The cocycle ¢ is compact dissipative if and only if the skew-product
system (X, Zy,7) (X := E X Q and 7 := (¢,0)) is so.

Proof. This statement follows directly from the correspondig definitions. O

Theorem 5. Let (2, Zy,0) be a compact dissipative system and ¢ be a cocycle
generated by equation (15). Under the conditions of Theorem J the skew-product
system (X, Z,m) (X := E x Q and 7 := (p,0)), generates by cocycle ¢ admits a
compact global attractor.

Proof. This statement follows directly from Theorems 4, 2 and Lemma 1. O

Remark 2. Simple examples show that under the conditions of Theorem 5 the com-
pact global attractor {I, | w € 2}, generally speaking, is not trivial, i.e. the com-
ponent set I, contains more than one point. This statement can be illustrated by

the following example: uy 1 = %un + 12&52 .

Theorem 6. Let A € C(Q,[E]) and F € C(E xQ, E) and the following conditions
be fulfilled:

1. the semi-group dynamical system (Q, Zy,0) is compact dissipative and Jq its
Levinson center;

2. there ezist positive numbers N and q < 1 such that inequality (16) holds;
3. there exists C' > 0 such that |F(0,w)| < C for all w € Q;

4. |F(u1,w) — Flug,w)| < Llug —uz| (0 <L < N1 —gq)) for alw € Q and
uy, U9 c F.
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Then

1. the equation (15) (the cocycle ¢ generated by this equation) admits a compact
global attractor;

2. there are two positive constants N and v < 1 such that
’QD(TI,Ul,W) —QD(TI,UQ,W)’ SNV””U& _UQ‘ (20)
for all uyj,us € F and n € Z.

Proof. First step. We will prove that under the conditions of Theorem 6 equation
(15) admits a compact global attractor I = {I, | w € Jo}. In fact,

|F'(u,w)| <[F(0,w)] + Lju| < C+ Llu|

for all uw € E, where C' := sup{|F(0,w)| | w € 2}. According to Theorems 2 and 4,
equation (15) admits a compact global attractor I = {1, | w € Jq}.

Second step. Let ¢ be the cocycle generated by equation (15). In virtue of the
formula of the variation of constants, we have

p(n,u,w) = U(n,wju + nz_:;U(n —m—1,w)F(p(m,u,w),o(m,w)).
Consequently, .
p(n,u1,w) = @(n, ug,w) = U(n,w)(ur — u)+
nz:l U(n—m =1, A)[F(p(m,u,w),0(m,w)) = F(p(m, ug,w), o(m, w))].
Thus,m_1

[p(n, ur, w) — p(n, ug, w)| < Ng"(Jur — ug]
n—1

+Lq_1 Z q_m|gp(m7u17w) - @(m7u27w)‘)‘ (21)
m=0

Let u(n) := |p(n,u1,w) — @(n,uz,w)|g~". From (21) follows that

n—1
u(n) < N(\ul —up| + Lg™? Z u(m)) (22)
m=0

Denote by v(n) the right hand side of (22). The following inequality
v(n+1) —v(n) = LNq 'u(n) < LNq 'v(n). (23)
holds. From (23) we obtain

v(n) < (14 LNg™)"tu(1)
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and, since v(1) = N|u; — ug|, we get
u(n) < (1+LNqg 1) Nuj — ual. (24)
From (24) we have
[p(n, u1,w) = @(n,uz,w)| < (q+ LN)""'qNJu1 — us] (25)

for all uy,us € F and w € €.
To finish the proof of Theorem it is sufficient to put v := ¢ + LN and N :=
qN(q+ LN)~1. The theorem is proved. O

Remark 3. It is possible to show that under the conditions of Theorems 3 and 6
the set I, contains a single point (for all w € Jg) if the mapping o(1,-) : @ — Q
is invertible. If the mapping o(1,-) is not invertible, then the set I, may be very
complicated (for example I, may be a Cantor set). Below we give an example which
confirms this statement.

Example 1. Let Y := [-1,1] and (Y, Z4,0) be a cascade generated by positive
powers of the odd function g, defined on [0, 1] in the following way:
9(y) = .
2<y - 1) P) <y < 1

It is easy to check that g(Y) =Y. Let us put X := R x Y and denote by (X, Z,, )
a semi-group dynamical system generated by the positive powers of the mapping

P:X—-X
r(3)=C) &

where f(u,y) := %Ou + 1y. Finally, let h = pro : X — Y. From (26), it fol-
lows that h is a homomorphism of (X, Z;,7) onto (Y, Z4+,0) and, consequently,
(X, Z4,m),(Y,Z+,0),h) is a non-autonomous dynamical system. Note that

|(u1,y) = (u2, )| = |ur — ua| = 10[P(ur,y) — Puz,y)|. (27)
From (27), it follows that
[P (u1,y) = P"(ug,y)| < Nem""|(u1, y) — (uz,y)] (28)

for all n € Z,, where N = 1 and v = In10. By Theorem 6 the cocycle
(R,p,(Y,Z;,0)) admits a compact global attaror I := {I,: y € Y} and ¢ is expo-
nentially convergent, i.e. the inequality (20) takes place. According to [18, p.43] I,
is homeomorphic to the Cantor set for all y € [—1,1].

Remark 4. 1. If Q is a compact metric space the close results (Sections 2-5) were
established in [6].

2. The results of Sections 2-5 are true also in the case we replace the finite-
dimensional Banach space F by its closed subset.
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6 Applications

6.1 The model

The model we consider is a particular case of the growth model by Solow; it
has been obtained while considering the standard, neoclassical one-sector growth
model where the two types of agents, workers and shareholders, have different but
constant saving rates as in Bohm V. and Kaas L. [4] and where the production
function F': Ry — R4, mapping capital per worker k into output per worker y, is
of the CES type (as in Brianzoni S., Mammana C. and Michetti E. [1] and [2]), that
is given by

F(u) = (1 +u)?. (29)

However in the present work we add a further assumption, that is the population
growth rate evolves according to the logistic law, as also considered in Brianzoni S.,
Mammana C. and Michetti E. [3].

The resulting system, T' = (', u’), describing capital per worker (u) and popu-
lation growth rate (w) dynamics, is given by:

u = H% [(1 —0)u+ (uf + l)lT'l)(sw + sru”)}
T:.= (30)

W= dw(l —w)

where 0 € (0, 1) is the depreciation rate of capital, s,, € (0,1) and s, € (0,1) are
the constant saving rates for workers and shareholders respectively, p € (—o0, 1), p #
0 is a parameter related to the elasticity of substitution between labor and capital
(the elasticity of substitution between the two production factors is given by ﬁ)
and, finally, A € (0,4] for the dynamics generated by the logistic map not being
explosive.

We get a dicrete-time dynamical system described by the iteration of a map of
the plane of triangular type. In fact the second component of the previous system
does not depend on k, therefore the map is characterized by the triangular structure:

v = g(u,w)
T:= . (31)

As a consequence, the dynamics of the map T are influenced by the dynamics of
the uni-dimensional map f(n), that is the well-known logistic map.

6.2 Dynamics of the logistic map f\(z) = Az(1 — z).

We recall some general results for map fy (see, for example,[20]). For A € (0, 4]
the map fy acts from interval [0, 1] into itself and, consequently, it admits a compact
global attractor I C [0, 1]. Since I} is connected (see, for example, Theorem 1.33 [5])
and 0 € Iy, then I = [0,a)] (ay < 1).
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1. f0< A< Ag:=1, then I, = {0}

2. If A\g < A < A1 := 3, then the map f) has two fixed points: x = 0 is a repelling
fixed point and pg = 1 — 1/ is an attracting fixed point. If = € I \ {0,po},
then a, = 0 and w, = py.

3. If Ay < XA < Ay := 1+ /6, then the map fy has one repelling fixed point 2 = 0
and there is an attracting 2-periodic point p;.

4. There exists a increasing sequence {\;}72, such that

(a) Ak — Ao as k — 00, where Ao ~ 3,569....

(b) If A\p < A< A1 (K =2,3,...), then the map f) has one repelling fixed
point & = 0 there is an attracting 2*-periodic point pj.

5. For all 0 < A < Ay the structure of the attractor I is sufficiently simple.
Every trajectory is asymptotically periodic. There exists a unique attracting
2™ —periodic point p (the number m depends of \) which attracts all trajectory
from [0, 1], except for a countably set of points. For A > Ay the attractor Iy
is more complicated, in particularly, it may be a strange attractor (see [20]).

Let (X, Z,,m) be a semi-group dynamical system with discrete time.

A number m is called an e-almost period of the point z, if p(7(m+n, z), 7(n,z)) <
e forallne Z,.

The point x is called almost periodic, if for any € > 0 there exists a positive
number | € Z such that on every segment (in Zy) of length [ there may be found
an e-almost period of the point x.

(vi) Denote by Per(fy) the set of all periodic points of fy. If A = A\, then the map
£ has the 2-periodic point p; for all i € Z, (all the points p; are repelling).
The boundary K = JPer(fy) of set P(f)) is a Cantor set. The set K is
an almost periodic minimal and it does not contain a periodic points. The
set K attracts all trajectory from [0, 1], except for a countably set of points

P =UX,fy (Per(fy)). If 2 € [0,1] \ P, then w, = K (see [20]).

6.3 Existence of an attractor for p € (—oc0,0).

Lemma 2. Let (Ry x [0,1],T) be a triangular map admitting a compact global
attractor J C Ry x [0,1]. If p € [0,1] is a m-periodic point of the map T : [0,1] —
[0, 1] (T = (TQ,Tl)), then

1. Jp = I, x {p}, where I, = [ap, by] (ap,b, € Ry and a, < by);

2. there exists q € I, = [ap, by| such that (q,p) is a m-periodic point of the map
T.
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Proof. Let p € [0,1] be a m-periodic point of T, i.e. T{"(p) = p. Denote by S := T™
the mapping from X, := Ry x {p} into itself. Then, the semi-group dynamical
system (X, S) is compactly dissipative and its Levinson center coincides with J, =
I, x {p}. By Theorem 1.33 from [5] the compact set I, C R is connected and,
consequently, there are ap, b, € R4 such that a, < by, I, = [a,, by] and

U(m, p)ap, by] = [ap, bp], (32)

where T™(q,p) = (U(m,p)q, 17" (p)) for all (¢,p) € R+ x [0,1]. Since U(m,p) is a
continuous mapping from [ay, by] onto itself, then there exists at least one ¢ € [ay, by]

such that U(m,p)q = q. It is evident that (g, p) is a m-periodic point of the mapping
T = (T, T}). 0

Theorem 7. For all p < 0 the dynamic system (R4 x [0,1],T) admits a compact
global attractor J C Ry x [0,1]. If p € [0,1] is a m-periodic point of the map
Ty : [07 1] = [07 1] (T = (TQ’Tl))7 then

1. J, = I, x {p}, where I, = [ap,by] (ap,b, € Ry and a, < by);

2. there exists q € I, = [ap, by] such that (q,p) is a m-periodic point of the map
T.

Proof. Assume p € (—00,0) and let A = —p, then A € (0,400). We write 77 in
terms of A
1
Ti(u,w) = 170 [(1 —0u+ (v + 1)%(81” + sru_A)} =

_ 1A

1 1+ A5 4 sput
Trw ( )u+( " > ( )

1-6u+—2"

)=

1 A

- 14+ w

U Sy + Sl
(1+u)x 1+ud

(1—6)u+ (33)

A
Note that “A r — 1 as u — +o0, % — 8w a8 u — +0o and, conse-
(1+ur) X

quently, there exists M > 0 such that

U Sy + squ

(1+u)x 1+u

< M, (34)
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for all u € [0, +00).
Since 0 < 1%‘) <1 for all w € [0,1], then from (33) and (34) we obtain

0<T(u,w)<au+M (35)

for all (u,w) € R4 x [0,1], where a:=1—§ > 0.
Since the map T is triangular, to prove the first statement of Theorem it is
sufficient to apply Theorem 5. The second statement follows from the Lemma 2. [

Remark 5. 1. Tt is easy to see that the previous theorem is true also for § = 1 because
in this case = 1—¢ = 0 and from (35) we have T} (u,w) < M, V(u,w) € Ry x[0,1].
Now it is sufficient to refer to Thoerem 2.

2. If 6 = 0 the problem is open.
6.4 Existence of an attractor for p € (0,1) and s, < 0.

The semi-group dynamical system (X, Z,,7) is said to be:

- locally completely continuous if for every point p € X there exist § = d(p) > 0
and [ = I(p) > 0 such that 7' B(p, §) is relatively compact;

- weakly dissipative if there exist a nonempty compact K C X such that for
every € > 0 and z € X there is 7 = 7(e,2) > 0 for which 7(7,z) € B(K,¢).
In this case we will call K weak attractor.

Note that every semi-group dynamical system (X, Z;, ) defined on the locally
compact metric space X is locally completely continuous.

Theorem 8. [5] For the locally completely continuous dynamical systems the weak,
point and compact dissipativity are equivalent.

Theorem 9. For all p € (0,1) and s, < § the dynamic system (Ry x [0,1],T)
admits a compact global attractor J C Ry x [0,1]. If p € [0,1] is a m-periodic point
of the map Ty : [0,1] — [0,1] (T = (T3, T1)), then

1. Jy, = I, x {p}, where I, = [a,,b,] (ap,b, € Ry and ap < by);

2. there exists q € I, = [ap, by| such that (q,p) is a m-periodic point of the map
T.

Proof. If p € (0,1) we have

1 1-p
T (u,w) = T [(1 —du+ (u’ +1)» (sw—i—srup)} =
1
1 (uP +1)r N
R A st G )]_

_ 1iw [(1 = 8)u + sy + O(u)u] (36)



GLOBAL ATTRACTORS OF QUASI-LINEAR ... 17

(sw+sruP)

1
(uP+1)P
u 14+ur

where 6(u) — 0 as u — 4o00. In fact — 1 as u — +oo while

as u — +o0 and, consequently,

_>3r

1
P 1
(“fjj,l’) (sw+spu”)  (uP +1)7 (s + s,uP) o
Spu B u sp(uP + 1)
il
as u — +00, i.e. (ulj:b),p (sw + spu”) = spu + O(u)u. From (36) we have

1
Ty (u,w) = 170 [(1—=04 sp)u+ 0(u)u]
for all (u,w) € R2.
Since s, < 0 then «:=1—9+ s, < 1. Let Ry > 0 be a positive number such

that
l1—«

2 )
for all w > Rp. Note that for every (ug,wp) € R4 x [0,1], with ug > Ry, the
trajectory {T"(u,w) | n € Z;} starting from point (ug,wp) at the initial moment
n = 0, at least one time intersects the compact Ky := [0, ho] x [0, Ro], (ho > h). In
fact, if we suppose that this statement is false, then there exists a point (ug,wgy) €
Ry x [0,1] \ K¢ such that

10(u)| < (37)

(Un, wp) == T"(up,wo) € R4 x [0,1] \ Ko (38)

for all n € Z,. Taking into consideration that w,, — h (or 0) as n — +00, we obtain
from (38) that u, > Ry for all n > ng, where ng is a sufficiently large number from
Z+. Without loss of generality, we may suppose that ng = 0 (if ng > 0 then we
start from the initial point (up,,wn,) = T (ug, wp), where T™ := T o T~ for all
no > 2). Thus we have

un > Ry (39)
for all n > 0 and
Untl = T [y, + 0 (up)un] (40)
From (37) and (40) we obtain
11—« 1+a
Upt1 < QUy + Uy = 5 Uy, (41)
since u%w <1 for all w > 0. From (41) we have
1 n
ung( —12—a) ugp — 0 as n — +00, (42)

but (39) and (42) are contradictory. The obtained contradiction proves the state-
ment. Let now (ug,wp) € Ry x [0,1] be an arbitrary point.
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(a) If up < Ry and u,, < Ry for all n € N, then limsup u,, < Rp;

n—-4oo

(b) If there exists ng € N such that u,, > Ry, then there exists mg € N (mgy > no)
such that (um,,wm,) € Ko (see the proof above).

Thus we proved that for all (ug,wp) € R% there exists mg € N such that (g, wm,) €
Ky. According to Theorem 8 the semi-group dynamical system (Ry x [0,1],7)
admits a compact global attractor.

The second statement follows from the lemma 2. The theorem is proved. O

6.5 Structure of the attractor

Lemma 3. Suppose that the following conditions are fulfilled:

1. (R4+ x [0,1],T) is a triangular map admitting a compact global attractor J C
R+ X [07 1];

2. p € 0,1] is a periodic point of the map T : [0,1] — [0,1] (T = (T, T1));
3. there are two positive numbers N and q < 1 such that
p(T" (u1,w), T (uz,w)) < Nq"p(u, ug) (43)
for all (u;,w) € Ry x[0,1] (i=1,2) andn € N.

Then then J, = I, x {p}, where I, = [ap,b,] (ap,b, € Ry and a, = by, i.e. I,
consists a single point.

Proof. To prove this statement we note that from the conditions (43) and (32) we
have

diam(J,) = diam(T™(J,)) < N¢"diam(J,) (44)
for all & € N. From the inequality (44) we obtain diam(J,) = 0. Taking into
consideration the equalities J, = I,, x {p} and (32) we obtain a, = b,,. O

Theorem 10. [9] Let X be a compact metric space and (X, Z4,7), (Q, Z4,0),h)
be a non-autonomous dynamical system. Suppose that the following conditions are

fulfilled:
1. The point w € Q is almost periodic;

2. lm p(w(t,z1),7(t,x2)) =0 for all x1,z2 € X such that h(x1) = h(z2).

t—-+o0

Then there exists a unique almost periodic point x,, € X, such that

lim p(n(t,x),n(t,2,)) =0

t——+o0

for all x € X,,,.
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Theorem 11. Suppose that p < 0 and one of the following conditions hold:

1. 8y < min{d, s, } and 0 < X\ < Ao, where Ny is a positive root of the quadratic
equation (s, — sy)A2 + (s, — 20)\ — § = 0;

2. 8p < Sy < 0.

Then

1. the semi-group dynamic system (Ry x [0,1],T) admits a compact global attrac-
tor J C Ry x [0,1];

2. if p € [0,1] is a m-periodic (respectively, almost periodic) point of the map
Ty : [0,1] — [0,1] (T = (T»,T1)), then J, = I, x {p}, where I, = [ap, by
(ap,b, € Ry and a, = by, i.e. I, consists a single m-periodic (respectively,
almost periodic) point .

Proof. Assume p € (—00,0) and let A = —p, then A € (0,400). We write 77 in
terms of A (see the proof of Theorem 9)

1 A
Ty(u,w) = —— | (1 - d)u+ —— o w5
1+w (1 +UA)X 1+u
Denote by
f(u) . U Sw + sTu)‘
L 4wy et
then
£(u) = Sw + (=5 X+ (A + 1) )ul

(1 + u)2H1/A

It easy to verify that under the conditions of Theorem f’(u) < s, for all for all
u > 0. Consider the non-autonomous difference equation

Upt+1 = A(o(n,w))up + F(uy, o(n,w)) (45)

corresponding to triangular map 7" = (73,7T3), where A(w) = %H, F(u,w) =
%Hf(u) and o(n,w) := T3 (w) for all n € Z; and w € [0, 1]. Under the conditions
of Theorem we can apply Theorem 6. By this Theorem the semi-group dynamical
system (R4 x [0,1],T) is compact dissipative with Levinson center J and there are
two positive numbers A and ¢ < 1 such that

p(T" (u1, w), T (uz,w)) < Ng"p(u, ug) (46)

for all (u;,w) € Ry x [0,1] (: = 1,2). To finish the proof of Theorem it is sufficient
to apply the lemma 3 and theorem 10. ]
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6.6 Conclusion

Under the conditions of Theorem 7 or 9 the mapping T' = (T»,71) (71 = f))
admits a compact global attractor Jy C Ry %[0, 1]. There exists a increasing sequence
{72, such that

1. A\ — Ao as k — 00, where A =~ 3,569....

2. If A < A< A1 (B =2,3,...), then the map T = (T»,77) has at least one
fixed point (qo,0) € Jy and there is an 2¥-periodic point (g, px) € Ja.

3. For A > A\, the set Jy, may be a strange attractor. For example, under the
conditions of Theorem 11, for A = Ay the attractor Jy contains an almost
periodic (but not periodic) minimal set.
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