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Abstract. The paper is devoted to the study of non-autonomous evolution
equations: invariant manifolds, compact global attractors, almost periodic and

almost automorphic solutions. We study this problem in the framework of

general non-autonomous (cocycle) dynamical systems. First, we prove that
under some conditions such systems admit an invariant continuous section

(an invariant manifold). Then, we obtain the conditions for the existence of

a compact global attractor and characterize its structure. Third, we derive a
criterion for the existence of almost periodic and almost automorphic solutions

of different classes of non-autonomous differential equations (both ODEs (in

finite and infinite spaces) and PDEs).

1. Introduction

The aim of this paper is the study of the problem of existence an invariant manifold
(continuous invariant section), almost periodic periodic and almost automorphic
solutions of non-autonomous dynamical systems using the fixed point method.

In section 2 we give some known facts about compact global attractors of dynamical
systems.

Section 3 is dedicated to Banach contraction principle and its generalizations. Our
main result in this section is Theorem 3.7, which establishes the relation between
the Krasnosel’kii generalized contraction principle [21, 22] and fixed point theorems
of Boynd and Wong [4] and Browder [7].

Let(X, ρ) be a complete metric space.

Theorem 1.1. (Classic) Let f : X 7→ X be a contraction (there exists α ∈ (0, 1)
such that ρ(f(x1), f(x2)) ≤ αρ(x1, x2) for all x1, x2 ∈ X), then there exists a unique
attractive fixed point p ∈ X of the map f , i.e. there exists a unique point p ∈ X
such that f(p) = p and fn(x) → p as n → ∞ uniformly w.r.t. x on the bounded
subsets from X.

LetW and Ω be two complete metric spaces and denote byX := W×Ω its Cartesian
product. Recall that a continuous map F : X → X is called triangular, if there are
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two continuous maps f : W × Ω → W and g : Ω → Ω such that F = (f, g), i.e.
F (x) = F (u, ω) = (f(u, ω), g(ω)) for all x =: (u, ω) ∈ X.

Theorem 1.2. (Hirsh M. W., Pugh C. C. and Shub M. - 1977, Non-autonomous
version of Theorem 1.1) Let Ω be a compact metric space, X := W×Ω and F : X 7→
X be a contraction in the first variable (i.e. k := sup{Lip(F (·, ω)) ω ∈ Ω} < 1),
then

(i) there exists a unique continuous function γ : Ω 7→ W such that the graph
of γ is F invariant;

(ii) ρ(Fn(u, ω), γ(gn(ω))) ≤ knρ(u, γ(ω)) for all u ∈W,ω ∈ Ω and n ∈ Z+.

In suction 4 we prove (Theorem 4.4 - the main result of paper) that under some
conditions a non-autonomous dynamical system admits an invariant continuous
section (an invariant manifold). This result generalizes the theorem 1.2 (first item)
and the main result from [12].

Section 5 is dedicated to the study of compact global attractors of non-autonomous
dynamical systems. The main result of this section is Theorem 5.3, which give
the sufficient conditions of global asymptotically stability of continuous invariant
section from Theorem 4.4. Thus the theorem 5.3 give the sufficient conditions of
existence a compact global attractor for general non-autonomous dynamical sys-
tems.

Using the general results from Sections 3–5 we study the problem of existence the
almost periodic and almost automorphic motions of non-autonomous dynamical
systems in Section 6 and also we give the sufficient conditions of its global asymp-
totic stability.

In Section 6 are presented the application of results, obtained in Sections 3–6, to the
study of the almost periodic and almost automorphis solutions of different classes of
non-stationary evolution equations (Finite-dimensional ODEs, Carateadory’s equa-
tions, ODEs with impulses, Infinite-dimensional systems (ODEs in Banach spaces,
Evolution equations with monotone operators)).

2. Compact Global Attractors of Dynamical Systems

Let X be a topological space, R (Z) be a group of real (integer) numbers, R+ (Z+)
be a semi-group of the nonnegative real (integer) numbers, S be one of the two sets
R or Z and T ⊆ S (S+ ⊆ T) be a sub-semigroup of additive group S.

Triplet (X,T, π), where π : T × X → X is a continuous mapping satisfying the
following conditions:

(1) π(0, x) = x;

(2) π(s, π(t, x)) = π(s+ t, x);

is called a dynamical system. If T = R (R+) or Z (Z+), then the dynamical system
(X,T, π) is called a group (semi-group). In the case, when T = R+ or R the
dynamical system (X,T, π) is called a flow, but if T ⊆ Z, then (X,T, π) is called a
cascade (discrete flow).
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Sometimes, briefly, we will write xt instead of π(t, x).

Below X will be a complete metric space with metric ρ.

A nonempty set M ⊆ X is called positively invariant (negatively invariant, in-
variant) with respect to dynamical system (X,T, π) or, simple, positively invariant
(negatively invariant, invariant), if π(t,M) ⊆ M (M ⊇ π(t,M), π(t,M) = M) for
every t ∈ T.

A closed positively invariant set, which does not contain own closed positively
invariant subset, is called minimal.

It easy to see that every positively invariant minimal set is invariant.

Let M ⊆ X. The set

ω(M) :=
⋂
t≥0

⋃
τ≥t

π(τ,M)

is called ω-limit for M .

Let M be some family of subsets from X.

Dynamical system (X,T, π) will be called M-dissipative if for every ε > 0 and
M ∈ M there exists L(ε,M) > 0 such that πtM ⊆ B(K, ε) for any t ≥ L(ε,M),
where K is a certain fixed subset from X depending only on M. In this case K we
will call the attractor for M.

For the applications the most important ones are the cases when K is bounded or
compact and M = {{x} | x ∈ X} or M = C(X), or M = {B(x, δx) | x ∈ X, δx > 0},
or M = B(X).

The system (X,T, π) is called:

(i) point dissipative if there exist K ⊆ X such that for every x ∈ X

(3) lim
t→+∞

ρ(xt,K) = 0;

(ii) compact dissipative if the equality (3) takes place uniformly w.r.t. x on
the compacts from X;

(iii) bounded dissipative if the equality (3) takes place uniformly w.r.t. x on
every bounded subset from X.

Let (X,T, π) be compactly dissipative and K be a compact set attracting every
compact subset from X. Let us set

(4) J := ω(K) =
⋂
t≥0

⋃
τ≥t

π(τ,K).

It can be shown [9] that the set J defined by equality (4) doesn’t depends on
the choice of the attractor K, but is characterized only by the properties of the
dynamical system (X,T, π) itself. The set J is called a Levinson center of the
compact dissipative dynamical system (X,T, π).



4 DAVID CHEBAN AND BJOERN SCHMALFUSS

3. Contraction Principle and its Generalizations

This section is dedicated to Banach contraction principle and its generalizations.
Our main result in this section is Theorem 3.7, which establishes the relation be-
tween the Krasnosel’kii generalized contraction principle [21, 22] and fixed point
theorems of Boynd and Wong [4] and Browder [7].

3.1. Classical Contraction Principle. Let (X, ρ) be a complete metric space, τ
be a topology generated by ρ. Two metrics ρ1 and ρ2 are equivalent (respectively,
topologically equivalent) if every fundamental sequence with respect to ρ1 is fun-
damental and with respect to ρ2 and vice versa (respectively, if the metrics ρ1 and
ρ2 generate the same topology τ).

A mapping f : X 7→ X is called λ-contracting (λ-contraction) if ρ(f(x1), f(x2)) ≤
λρ(x1, x2) for all x1, x2 ∈ X, where λ ∈ (0, 1).

A mapping f : X 7→ X is called contracting (a contraction), if for every λ ∈ (0, 1)
there exists a metric ρλ equivalents to initial metric ρ such that ρλ(f(x1), f(x2)) ≤
λρλ(x1, x2) for all x1, x2 ∈ X.

It is well known the following result

Theorem 3.1. [27, 28] The mapping f : X 7→ X is a λ-contraction if and only the
following conditions hold:

(F1) the mapping f : X 7→ X admits a unique fixed point, i.e. there exists a
unique point p ∈ X such that f(p) = p;

(F2) the fixed point p ∈ X is globally attracting, i.e.

lim
n→+∞

fn(x) = p

for every x ∈ X, where f0 := IdX and fn := fn−1 ◦ f for all n ∈ N;
(F3) the fixed point p ∈ X is uniformly attracting, i.e. there exists δ0 > 0 such

that the equality (5) takes place uniformly with respect to x ∈ B(p, δ0) :=
{x ∈ X | ρ(x, p) < δ0}.

Remark 3.2. If the fixed point is uniformly attracting, then it is Lyapunov stable,
i.e. for all ε > 0 there exists a positive number δ = δ(ε) such that ρ(x, p) < δ
implies ρ(fn(x), p) < ε for all n ∈ Z+ (see, for example, [9, Ch.1]).

3.2. M. A. Krasnosel’skii’s Generalized Contraction Principle. The map-
ping f : X 7→ X is called [28] a generalized contraction (in the sense of Kras-
nosel’skii M. A.), if for any β ≥ α > 0 there exists a number λ(α, β) ∈ (0, 1) such
that ρ(f(x1), f(x2)) ≤ λ(α, β)ρ(x1, x2) for all (x1, x2) ∈ X2(α, β) := {(x1, x2) ∈
X ×X | α ≤ ρ(x1, x2) ≤ β}.

Theorem 3.3. (Krasnosel’skii M. A. [22, 28]) Let f be a generalized contract-
ing mapping from the complete metric space X onto itself, then f possesses the
properties (F1)− (F3).

Remark 3.4. [28] Let ϕ : R+ 7→ R+ be a continuous function satisfying the fol-
lowing conditions:
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(i) ϕ(t) > 0 for all t > 0;
(ii) ϕ(t) ≤ t for all t ∈ R+.

The mapping f is a generalized contraction if, for example, ρ(f(x1), f(x2)) ≤
ρ(x1, x2)− ϕ(ρ(x1, x2)) for all (x1, x2) ∈ X ×X.

Let ϕ : R+ 7→ R+. Denote by ϕ(t0 + 0) := lim
t→t0,t>t0

ϕ(t) (respectively, ϕ(t0 − 0) :=

lim
t→t0,t<t0

ϕ(t)) if the last limit exists.

The mapping ϕ is called upper semi-continuous from the right at the point t0 ∈ R+,
if there exists lim sup

t→t0,t>t0
ϕ(t) ≤ ϕ(t0).

Lemma 3.5. [14] Let ϕ : R+ 7→ R+ and the following conditions be fulfilled:

(G1) ϕ(t) < t for all t > 0;
(G2) ϕ s monotone increasing, i.e. t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2);
(G3) ϕ is right continuous on R+, i.e. ϕ(t0 + 0) = ϕ(t0) for all t0 ∈ R+.

Then for any β ≥ α > 0 there exists λ(α, β) := max{ϕ(t)/t | α ≤ t ≤ β} and
λ(α, β) ∈ [0, 1).

The mapping f : X 7→ X is called a ϕ-contraction, if ρ(f(x1), f(x2)) ≤ ϕ(ρ(x1, x2))
for all x,x2 ∈ X, where ϕ is some mapping from R+ to itself.

Theorem 3.6. [4, 7, 19] Let f : X 7→ X be a ϕ-contraction. Suppose that the
mapping ϕ : R+ 7→ R+ satisfies the condition (G1)-(G3). Then f has a unique
fixed point x0 and lim

n→∞
fn(x) = x0 for all x ∈ X.

Theorem 3.7. Let f : X 7→ X be a ϕ-contraction. Suppose that the mapping
ϕ : R+ 7→ R+ satisfies the condition (G1)-(G3).

Then f possesses the properties (F1)− (F3).

Proof. Let f be a ϕ-contraction. If the mapping ϕ satisfies the conditions (G1)-
(G3), then by Lemma 3.5 for all β ≥ α > 0 there exists λ(α, β) ∈ (0, 1) such
that ϕ(t) ≤ λ(α, β)t for all t ∈ [α, β]. Let now (x1, x2) ∈ X × X such that α ≤
ρ(x1, x2) ≤ β. Then we have

ρ(f(x1), f(x2)) ≤ ϕ(ρ(x1, x2)) ≤ λ(α, β)ρ(x1, x2).

To finish the proof it is sufficient to apply the Krasnosel’kii Theorem 3.3. �

4. Invariant Sections of Non-Autonomous Dynamical Systems

Below prove that under some conditions a non-autonomous dynamical system ad-
mits an invariant continuous section (an invariant manifold). This result generalizes
the theorem 1.2 (first item) and the main result from [12].

Let (X,T1, π) and (Y,T2, σ) (S+ ⊆ T1 ⊆ T2 ⊆ S) be two dynamical systems.
A mapping h : X → Y is called a homomorphism (isomorphism, respectively)
of the dynamical system (X,T1, π) on (Y,T2, σ), if the mapping h is continuous
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(homeomorphic, respectively) and h(π(x, t)) = σ(h(x), t) ( t ∈ T1, x ∈ X). In
this case the dynamical system (X,T1, π) is an extension of the dynamical system
(Y,T2, σ) by the homomorphism h, but the dynamical system (Y,T2, σ) is called a
factor of the dynamical system (X,T1, π) by the homomorphism h. The dynamical
system (Y,T2, σ) is called also a base of the extension (X,T1, π).

A triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism from (X,T1, π)
on (Y,T2, σ) and (X,h, Y ) is a fiber space, is called a non-autonomous dynamical
system.

A triplet 〈W,ϕ, (Y,T2, σ)〉 (or shortly ϕ), where (Y,T2, σ) is a dynamical system on
Y , W is a complete metric space and ϕ is a continuous mapping from T1 ×W × Y
in W , possessing the following conditions:

a. ϕ(0, u, y) = u (u ∈W, y ∈ Y );
b. ϕ(t+ τ, u, y) = ϕ(τ, ϕ(t, u, y), σ(t, y)) (t, τ ∈ T1, u ∈W, y ∈ Y ),

is called [30] a cocycle on (Y,T2, σ) with the fiber W .

Let X := W ×Y and define a mapping π : X×T1 → X as following: π((u, y), t) :=
(ϕ(t, u, y), σ(t, y)) (i.e. π = (ϕ, σ)). Then it is easy to see that (X,T1, π) is a
dynamical system on X which is called a skew-product dynamical system [30] and
h = pr2 : X → Y is a homomorphism from (X,T1, π) on (Y,T2, σ) and, conse-
quently, 〈(X,T1, π), (Y,T2, σ), h〉 is a non-autonomous dynamical system.

Thus, if we have a cocycle 〈W,ϕ, (Y,T2, σ)〉 on the dynamical system (Y,T2, σ) with
the fiber W , then it generates a non-autonomous dynamical system 〈(X,T1, π),
(Y,T2, σ), h〉 (X := W × Y ) called a non-autonomous dynamical system generated
by the cocycle 〈W,ϕ, (Y,T2, σ)〉 on (Y,T2, σ).

Non-autonomous dynamical systems (cocycles) play a very important role in the
study of non-autonomous evolutionary differential equations. Under appropriate
assumptions every non-autonomous differential equation generates a cocycle (a non-
autonomous dynamical system). Below we give an example of this.

Example 4.1. Let E be a finite-dimensional real or complex Euclidean space. Let
us consider a differential equation

(5) u′ = f(t, u),

where f ∈ C(R × E,E). Along with equation (5) we consider its H-class [6],[24],
[30], [31], i.e. the family of equations

(6) v′ = g(t, v),

where g ∈ H(f) = {fτ : τ ∈ R}, fτ (t, u) = f(t+ τ, u) for all (t, u) ∈ R× E and by
bar we denote the closure in C(R× E,E). We will suppose also that the function
f is regular, i.e. for every equation (6) the conditions of the existence, uniqueness
and extendability on R+ are fulfilled. Denote by ϕ(·, v, g) the solution of equation
(6) passing through the point v ∈ E at the initial moment t = 0. Then there
is a correctly defined mapping ϕ : R+ × E × H(f) → E satisfying the following
conditions (see, for example, [6], [30]):

1) ϕ(0, v, g) = v for all v ∈ E and g ∈ H(f);
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2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t+ τ, v, g) for every v ∈ E, g ∈ H(f) and t, τ ∈ R+;
3) the mapping ϕ : R+ × E ×H(f)→ E is continuous.

Denote by Y := H(f) and (Y,R, σ) a dynamical system of translations (a semigroup
system) on Y , induced by the dynamical system of translations (C(R×E,E),R, σ).
The triplet 〈E,ϕ, (Y,R, σ)〉 is a cocycle on (Y,R, σ) with the fiber E. Thus, equation
(5) generates a cocycle 〈E,ϕ, (Y,R, σ)〉 and a non-autonomous dynamical system
〈(X,R+, π), (Y,R, σ), h〉, where X := En × Y , π := (ϕ, σ) and h := pr2 : X → Y .

Let (Y, S, σ) be a two-sided dynamical system, (X,S+, π) be a semi-group dynamical
system and h : X → Y be a homomorphism of (X,S+, π) onto (Y, S, σ).

Let 〈(X,S+, π), (Y,S, σ), h〉 be a non-autonomous dynamical system. Recall that
a mapping γ : Y 7→ X is called a section (selector) of the homomorphism h, if
h(γ(y)) = y for all y ∈ Y. The section γ of the homomorphism h is called invariant
if γ(σ(t, y)) = π(t, γ(y)) for all y ∈ Y and t ∈ S+.

Remark 4.2. A continuous section γ ∈ Γ(Y,X) is invariant if and only if γ ∈
Γ(Y,X) is a stationary point of the semigroup {St | t ∈ S+}, where St : Γ(Y,X)→
Γ(Y,X) is defined by the equality (Stγ)(y) := π(t, γ(σ(−t, y))) for all y ∈ Y and
t ∈ S+.

We consider a special case of the foregoing construction. Let 〈W,ϕ, (Y, S, σ)〉 be
a cocycle over (Y,S, σ) with the fiber W and 〈(X,S+, π), (Y, S, σ), h〉 be the non-
autonomous dynamical system generated by this cocycle. Then h ◦ γ = IdY and
since h = pr2, then γ = (ψ, IdY ), where γ ∈ Γ(Y,X) and ψ : Y → W . Hence,
to each section γ there corresponds a mapping ψ : Y → W and conversely. There
being a one-to-one relation between Γ(Y,W × Y ) and C(Y,W ), where C(Y,W ) is
the space of continuous functions ψ : Y → W, we identify these two objects from
now on. The semi-group {St | t ∈ S+} naturally induces a semi-group {Qt | t ∈ S+}
of the mappings of C(Y,W ). Namely,

(Stγ)(y) = πtγ(σ−ty) = πt(ψ, IdY )(σ−ty) =
πt(ψ(σ−ty), σ−ty) = (U(t, σ−ty)ψ(σ−ty), y) = ((Qtψ)(y), y),

where U(t, y) := ϕ(t, ·, y).

Hence, St(ψ, IdY ) = (Qtψ, IdY ) with (Qtψ)(y) = U(t, σ−ty)ψ(σ−ty) (y ∈ Y ). We
have the following properties:

a. Q0 = IdC(Y,W );
b. QtQτ = Qt+τ ( t, τ ∈ S+).

Let Y be a compact metric space. Consider a non-autonomous dynamical system
〈(X,S+, π), (Y, S, σ), h〉 and denote by Γ(Y,X) the family of all continuous sections
of the homomorphism h. By equality

(7) d(ϕ1, ϕ2) := max
y∈Y

ρ(ϕ1(y), ϕ2(y))

there is defined a metric on Γ(Y,X).

Let X×̇X := {(x1, x2) : x1, x2 ∈ X,h(x1) = h(x2)} and let V : X×̇X → R+ be a
mapping satisfying the following conditions:



8 DAVID CHEBAN AND BJOERN SCHMALFUSS

(C1) a(ρ(x1, x2)) ≤ V (x1, x2) ≤ b(ρ(x1, x2)) for all (x1, x2) ∈ X×̇X, where a, b
are two functions from A (A := {a | a : R+ → R+, a is continuous, strongly
increasing and a(0) = 0 }) and Im(a) = Im(b) ;

(C2) V (x1, x2) = V (x2, x1) for all (x1, x2) ∈ X×̇X;
(C3) V (x1, x2) ≤ V (x1, x3) + V (x3, x1) for all x1, x2, x3 ∈ X such that h(x1) =

h(x2) = h(x3).

From the conditions (C1)–(C3) follows that the function V on each fiber Xy =
h−1(y) defines some metric which is topologically equivalent to ρ.

Lemma 4.3. [9] Suppose that the function V : X×̇X → R+ satisfies the conditions
(C1)–(C3). Then by equality

p(γ1, γ2) := max{V (γ1(y), γ2(y))| y ∈ Y }

on Γ(Y,X) there is defined a complete metric that is topologically equivalent to (7).

Denote by St : Γ(Y,X)→ Γ(Y,X) the mapping, defined by the equality (Stγ)(y) =
πtγ(σ−1y) for all t ∈ S+, γ ∈ Γ(Y,X) and y ∈ Y . It is easy to check that the family
of mappings {St}t≥0 is a commutative semigroup.

Theorem 4.4. If there is a function V : X×̇X → R+ satisfying Conditions (C1)–
(C3) and

(C4) V (x1t, x2t) ≤ ω(t, V (x1, x2)) (∀(x1, x2) ∈ X×̇X, t ≥ 0), where ω is a
mapping from T+ × R+ into R+ satisfying the following condition:
(a) ω(t, ·) : R+ 7→ R+ is monotone increasing for all t > 0;
(b) there exists a positive number t0 ∈ S+ such that

(i) ω(t0, r) < r for all r > 0;
(ii) the mapping ω(t0, ·) is right continuous on R+.

Then the semigroup {St}t≥0 has a unique fixed point γ ∈ Γ(Y,X) which is an
invariant section of h.

Proof. Note that

p(Stγ1, S
tγ2) = sup{V (πtγ1(σ−ty), πtγ2(σ−ty))| y ∈ Y }

≤ sup{ω(t, V (γ1(σ−ty), γ2(σ−ty)) | y ∈ Y } ≤ ω(t, p(γ1, γ2))
for all t ∈ S+ and γ1, γ2 ∈ Γ(Y,X).

Thus for t0 > 0 we have p(St0γ1, S
t0γ2) ≤ ω(t0, p(γ1, γ2)) for all γ1, γ2 ∈ Γ(Y,X)

and the mapping ω(t0, ·) : R+ 7→ R+ possesses the properties (G1)-(G3). By
Theorem 3.6 we have the unique fixed point γ for the mapping St0 . From this
fact and taking into consideration that {St}t≥0 is commutative we obtain that γ
is a unique fixed point of the semigroup {St}t≥0. This means that γ is a unique
invariant continuous section of h. Theorem is proved. �

Corollary 4.5. If there is a function V : X×̇X → R+ satisfying Conditions (C1)–
(C3) and

(C4.a) V (x1t, x2t) ≤ N e−νtV (x1, x2) (∀(x1, x2) ∈ X×̇X, t ≥ 0), where N and ν
are two positive numbers.
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Then the semigroup {St}t≥0 has a unique fixed point γ ∈ Γ(Y,X) which is an
invariant section of h.

Proof. This statement follows from Theorem 4.4. In fact, in this case it is sufficient
to note that the mapping ω(t, r) := N e−νtr possesses the properties (G1)-(G3) for
all t > t0 := ν−1 lnN . �

Corollary 4.6. If there is a function V : X×̇X → R+ satisfying Conditions (C1)–
(C3) and

(C4.b) V (x1t, x2t) ≤ V (x1,x2)
(1+(α−1)tV (x1,x2)α−1)1/(α−1) (∀(x1, x2) ∈ X×̇X, t ≥ 0),

where α > 1.

Then the semigroup {St}t≥0 has a unique fixed point γ ∈ Γ(Y,X) which is an
invariant section of h.

Proof. To prove this statement it is sufficient to note that the mapping ω(t, r) :=
r

(1+(α−1)trα−1)1/(α−1) possesses the properties (G1)-(G3) for all t > 0. �

Lemma 4.7. Let f : R+ 7→ R+ be a function satisfying the following conditions:

(H1) f(0) = 0;
(H2) f(t) > 0 for all t > 0;
(H3) f is locally Lipschitz;
(H4) f satisfy the condition of Osgud, i.e. for all ε > 0

∫ ε
0

dt
f(s) = +∞.

Then the equation

(8) u′ = −f(u)

admits a unique solution ω(t, r) with initial condition ω(0, r) = r and the mapping
ω : R2

+ 7→ R+ possesses the following properties:

(i) the mapping ω : R2
+ 7→ R+ is continuous;

(ii) ω(t, r) < r for all r > 0 and t > 0;
(iii) for all t ∈ R+ the mapping ω(t, ·) : R+ 7→ R+ is increasing;
(iv) ω(0, t) = 0 for all t ∈ R+;
(v) lim

t→+∞
sup

0≤r≤r0
ω(t, r) = 0 for all r0 > 0.

Proof. This statement directly follows from the general properties of autonomous
scalar differential equations (see, for example, [17, 20]). �

Remark 4.8. 1. The local condition of Lipschitz in Lemma 4.7 guarantees the
uniqueness of Cauchy problem for the equation (8). It may be replaced by more
general condition (see, for example, [21]).

2. Lemma 4.7 gives us an algorithm of construction of function with properties
(G1)-(G3). For example, the function ω(t, r) := ln et+r

et+r+1−er (t, r ∈ R+) possesses
the mentioned above properties, because it is a unique solution of differential equa-
tion (8) (f(u) = eu − 1 for all u ∈ R+) with initial condition ω(0, r) = r.
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3. The function ω(t, r) := r
(1+(α−1)trα−1)1/(α−1) is the solution of equation (8)

(f(u) = uα for all u ∈ R+ and α > 1) with initial condition ω(0, r) = r.

4. If the function f : R+ 7→ R+ satisfies the conditions (H1)-(H4), then the function
g : R+ 7→ R+, defined by equality: g(t) := af(bt) for all t ∈ R+ (a and b are some
positive numbers), possesses the same property.

Theorem 4.9. Let 〈W,ϕ, (Y, S, σ)〉 be a cocycle over dynamical system (Y,S, σ)
with fiber W . If there is a function V : W ×W × Y 7→ R+ satisfying the following
conditions:

(i) a(ρ(u1, u2)) ≤ V(u1, u2, y) ≤ b(ρ(u1, u2)) for all (u1, u2) ∈ W ×W and
y ∈ Y , where a, b are two functions from A;

(ii) V(u1, u2, y) = V(u2, u1, y) for all (u1, u2) ∈W ×W and y ∈ Y ;
(iii) V(u1, u2, y) ≤ V(u1, u3, y) + V(u3, u1, y) for all u1, u2, u3 ∈W and y ∈ Y .
(iv) V(ϕ(t, u1, y), ϕ(t, u2, y), σ(t, y)) ≤ ω(t,V(u1, u2, y)) (∀(u1, u2) ∈ W ×W ,

y ∈ Y and t ≥ 0), where ω is a mapping from T+×R+ into R+ satisfying
the following condition:
(a) ω(t, ·) : R+ 7→ R+ is monotone increasing for all t > 0;
(b) there exists a positive number t0 ∈ S+ such that

(i) ω(t0, r) < r for all r > 0;
(ii) the mapping ω(t0, ·) is right continuous on R+.

Then the semigroup {Qt}t≥0 ((Qtµ)(y) := U(t, σ−ty)µ(σ−ty) (y ∈ Y ), where
U(t, y) := ϕ(t, ·, y)) has a unique fixed point µ ∈ C(Y,W ) which is an invariant
section of cocycle ϕ.

Proof. Let X := W × Y, π := (ϕ, σ) and 〈(X,S+, π), (Y,S, σ), h〉 (h := pr2 :
X 7→ Y ) be a non-autonomous dynamical system associated by cocycle ϕ. We
define the mapping V : X×̇X 7→ R+ by equality: V (x1, x2) := V(u1, u2, y), where
xi := (ui, y), ui ∈ W (i = 1, 2) and y ∈ Y. Now to finish the proof of Theo-
rem it is sufficient to apply Theorem 4.4 for non-autonomous dynamical system
〈(X,S+, π), (Y, S, σ), h〉 because under the conditions of Theorem 4.9 all conditions
of Theorem 4.4 will hold. �

Corollary 4.10. Let 〈W,ϕ, (Y,S, σ)〉 be a cocycle over dynamical system (Y,S, σ)
with fiber W . If ρ(ϕ(t, u1, y), ϕ(t, u2,y)) ≤ ω(t, ρ(u1, u2)) (∀(u1, u2) ∈ W × W
and t ≥ 0), where ω is a mapping from T+ × R+ into R+ satisfying the following
condition: there exists a positive number t0 ∈ S+ such that

(i) ω(t0, ·) : R+ 7→ R+ is monotone decreasing;
(ii) ω(t0, r) < r for all r > 0;
(iii) the mapping ω(t0, ·) is right continuous on R+.

Then the semi-group {Qt}t≥0 ((Qtµ)(y) := U(t, σ−ty)µ(σ−ty) (y ∈ Y ), where
U(t, y) := ϕ(t, ·, y)) has a unique fixed point µ ∈ C(Y,W ) which is an invariant
section of cocycle ϕ.

Proof. This statement follows from Theorem 4.9. In fact, it is easy to verify that
the mapping V : W ×W × Y 7→ R+ defined by equality V(u1, u2, y) := ρ(u1, u2)
(for all u1, u2 ∈W and y ∈ Y ) satisfies all conditions of Theorem 4.9. �
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5. Global Attractors of Non-Autonomous Dynamical Systems

In this section we study the compact global attractors of non-autonomous dynam-
ical systems. The main result is Theorem 5.3, which give the sufficient conditions
of global asymptotically stability of continuous invariant section from Theorem 4.4.
Thus the theorem 5.3 give the sufficient conditions of existence a compact global
attractor for general non-autonomous dynamical systems.

Lemma 5.1. Let ω : S+ × R+ → R+ and there exists a positive number t0 ∈ S+

such that

a. ω(t0, ·) : R+ 7→ R+ is monotone increasing;
b. ω(t0, r) < r for all r > 0;
c. the mapping ω(t0, ·) is continuous on R+;
d. ω(t+ τ, r) ≤ ω(t, ω(τ, r)) for all t, τ ∈ S+ and r ∈ R+;
e. for every r ∈ R+ the mapping ω(·, r) : S+ → R+ is continuous.

Then the following statements hold:

(i) the equality

(9) lim
t→+∞

ω(t, r) = 0

takes place for all r ∈ R+;
(ii) if the mapping ω : S+ × R+ → R+ is continuous, then the equality (9)

holds uniformly with respect to r on every compact subset from R+.

Proof. Consider the sequence {cn(r)}, where cn(r) := ω(nt0, r) for all n ∈ N and
r ∈ R+. According to property d. the sequence {cn(r)} is decreasing (i.e. cn+1(r) ≤
cn(r) for all n ∈ Z+ and r ∈ R+) and, consequently, it is convergent. Let k(r) :=
lim
n→∞

cn(r) for all r ∈ R+.

Now we will prove that k(r) = 0 for all r ∈ R+. From the condition b. and c. it
follows that k(0) = 0. If we suppose that there exists r0 > 0 such that k(r0) > 0,
then

(10) cn+1(r0) = ω((n+ 1)t0, r0) ≤ ω(t0, ω(nt0, r)) = ω(t0, cn(r0))

for all n ∈ N. Passing into limit in the inequality (10) we obtain k(r0) ≤ ω(t0, k(r0)).
Since k(r0) > 0, the last inequality contradicts to the condition b. The obtained
contradiction proves our statement.

Let now t ∈ S+ (t ≥ t0), nt ∈ N and τt ∈ [0, t0) such that t = t0nt + τt, then

(11) ω(t, r) = ω(t0nt + τt, r) ≤ ω(t0nt, ω(τt, r)) ≤ ω(t0nt,m(r)),

where m(r) := max
0≤τ≤t0

ω(τ, r). From the inequality (11) we obtain (9).

If the mapping ω : T+ × R+ → R+ is continuous, then we put

m0(l) := max
0≤τ≤t0, 0≤r≤l

ω(τ, r)

and from the inequality

ω(t, r) = ω(t0nt + τt, r) ≤ ω(t0nt, ω(τt, r)) ≤ ω(t0nt,m0(l))
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we conclude that the equality (9) takes place uniformly with respect to r on interval
[0, l] for all l > 0. Lemma is proved. �

Remark 5.2. It easy to see that Lemma 5.1 is not true without condition d.

Theorem 5.3. Let ω : S+ × R+ → R+ be a continuous function satisfying the
condition

ρ(x1t, x2t) ≤ ω(t, ρ(x1, x2)) (∀(x1, x2) ∈ X×̇X, t ≥ 0).

Suppose that there exists a positive number t0 ∈ S+ such that

a. ω(t0, ·) : R+ 7→ R+ is monotone increasing;
b. ω(t0, r) < r for all r > 0.

Then the following statements hold:

(i) the semigroup {St}t≥0 has a unique fixed point γ ∈ Γ(Y,X) which is an
invariant section of h;

(ii) the dynamical system (X,T, π) admits a compact global attractor J ;
(iii) J = γ(Y ).

Proof. The first statement follows from the theorem 4.4. Denote by J := γ(Y ),
then J is a compact invariant set of dynamical system (X,T, π). We will show
that the set J attracts every bounded subset B from X. Since B is bounded and
J = γ(Y ) is compact, then B ⊆ B(J,R) := ∪y∈Y {x ∈ Xy | ρ(x, γ(y)) ≤ R}, where
Xy := h−1(y) = {x ∈ X | h(x) = y}, R := sup

y∈Y
Ry, Ry := diam(B) + ρ(γ(y), By)

and By := B ∩Xy. Let x ∈ B and y := h(x), then we have

(12) ρ(π(t, x), π(t, γ(y))) ≤ ω(t, ρ(x, γ(y))) ≤ ω(t, Ry) ≤ ω(t, R)

for all x ∈ B. From the inequality (12) and Lemma 5.1 follows that

sup
x∈B

ρ(π(t, x), π(t, γ(h(x)))) ≤ ω(t, R)→ 0

as t→ +∞ and, consequently,

lim
t→+∞

β(π(t, B), J) = 0

for all bounded subset B from X. The Theorem is proved. �

Corollary 5.4. If

(i) ρ(x1t, x2t) ≤ ρ(x1,x2)
(1+(α−1)tρ(x1,x2)α−1)1/(α−1) (∀(x1, x2) ∈ X×̇X, t ≥ 0), where

α > 1.

Then the following statements hold:

(i) the semigroup {St}t≥0 has a unique fixed point γ ∈ Γ(Y,X) which is an
invariant section of h;

(ii) the dynamical system (X,S+, π) admits a compact global attractor J ;
(iii) J = γ(Y ).
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Proof. To prove this statement it is sufficient to note that the mapping ω : S+ ×
R+ → R+, where ω(t, r) := r

(1+(α−1)trα−1)1/(α−1) , is continuous and possesses the
properties a. and b. of Theorem 5.3. �

A family of nonempty compact sets {Iy | y ∈ Y } is called a compact global attractor
of cocycle 〈W,ϕ, (Y, S, σ)〉 (or shortly ϕ) if the following conditions are fulfilled:

(i) I = ∪{Iy | y ∈ Y } si relatively compact;
(ii) {Iy | y ∈ Y } is invariant with respect to cocycle ϕ, i.e. ϕ(t, Iy, y) = Iσ(t,y)

for all t ∈ S+ and y ∈ Y ;
(iii) lim

t→+∞
sup
y∈Y

β(ϕ(t,K, y), I) = 0 for all K ∈ C(W ).

Remark 5.5. [9] 1. Let {Iy | y ∈ Y } be the compact global attractor of cocycle ϕ
and (X,S+, π) be a skew product dynamical system generates by cocycle ϕ. Then
the set J := ∪{Jy | y ∈ Y }, where Jy := Iy × {y}, is the compact global attractor
of (X,S+, π).

2. If the skew-product dynamical system (X,S+, π) (generates by ϕ) admits the
compact global attractor J , then the cocycle ϕ has the compact global attractor
{Iy | y ∈ Y }, where Iy := pr1(pr−1

2 (y) ∩ J).

Theorem 5.6. Let 〈W,ϕ, (Y,S, σ)〉 be a cocycle over dynamical system (Y,S, σ)
with fiber W . Suppose that there exists a continuous mapping ω : S+ × R+ 7→ R+

such that
ρ(ϕ(t, u1, y), ϕ(t, u2, y)) ≤ ω(t, ρ(u1, u2))

(∀u1, u2 ∈ W , y ∈ Y and t ≥ 0). If there exists a positive number t0 ∈ S+ such
that

(i) ω(t0, ·) : R+ 7→ R+ is monotone increasing;
(ii) ω(t0, r) < r for all r > 0.

Then the following statement hold:

(i) the semigroup {Qt}t≥0 ((Qtµ)(y) := U(t, σ−ty)µ(σ−ty) (y ∈ Y ), where
U(t, y) := ϕ(t, ·, y)) has a unique fixed point µ ∈ C(Y,W ) which is an
invariant section of cocycle ϕ;

(ii) the dynamical system (X,S+, π) admits a compact global attractor J ;
(iii) J = γ(Y ).

Proof. Let X := W×Y, π := (ϕ, σ) and 〈(X,S+, π), (Y,S, σ), h〉 (h := pr2 : X 7→ Y )
be a non-autonomous dynamical system associated by cocycle ϕ. Now to finish
the proof of Theorem it is sufficient to apply Theorem 5.3 for non-autonomous
dynamical system 〈(X,S+, π), (Y, S, σ), h〉 because under the conditions of Theorem
5.6 all conditions of Theorem 4.4 will hold. �

6. Almost Periodic and Almost Automorphic Motions of
Non-Autonomous Systems

Using the general results from Sections 3–5 we study the problem of existence the
almost periodic and almost automorphic motions of non-autonomous dynamical
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systems in this section and also we give the sufficient conditions of its global as-
ymptotic stability.

Let T = R or R+, (X,T, π) be a dynamical system, x ∈ X, τ, ε ∈ T, τ > 0, ε > 0.
We denote π(x, t) by a short-hand notation xt.

The point x is called a stationary point if xt = x for all t ∈ T. The point x is called
τ -periodic if xτ = x.

The number τ is called ε-shift (ε-almost period) of a point x if ρ(xτ, x) < ε (ρ(x(t+
τ), xt) < ε for all t ∈ T).

The point x is called almost recurrent (almost periodic) if for any ε > 0 there exists
positive number l such that on every segment of length l can be found a ε-shift
(ε-almost period) of the point x.

A point x is called recurrent if it is almost recurrent and the set H(x) = {xt | t ∈ T}
is compact.

Denote by Mx = {{tn} | {xtn} is convergent}.
Theorem 6.1. ([31]) Let (X,T1, π) and (Y,T2, σ) be dynamical systems with T1 ⊂
T2. Assume that h : X → Y is a homomorphism from (X,T1, π) onto (Y,T2, σ). If
the point x ∈ X is stationary (τ -periodic, quasi-periodic, almost periodic, recurrent),
then the point y := h(x) is also stationary (τ -periodic, quasi-periodic, almost peri-
odic, recurrent) and Mx ⊂My.

An autonomous dynamical system (Y,T, σ) is said to be pseudo recurrent if the
following conditions are fulfilled:

a) Y is compact;
b) (Y,T, σ) is transitive, i.e. there exists a point y0 ∈ Y such that Y =
{y0t | t ∈ T};

c) every point y ∈ Y is stable in the sense of Poisson, i.e.

Ny = {{tn} | σ(tn, y)→ y and |tn| → +∞} 6= ∅.

A point y ∈ Y is said to be pseudo recurrent if the dynamical system (H(y),T, π)
is pseudo recurrent.

Lemma 6.2. ([10]) Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical
system and the following conditions are fulfilled:

1) (Y,T2, σ) is pseudo recurrent;
2) γ ∈ Γ(Y,X) is an invariant section of the homomorphism h : X → Y .

Then the autonomous dynamical system (γ(Y ),T2, π) is pseudo recurrent.

Let T = S and (X,S, π) be a two-sided dynamical system.

A recurrent point x ∈ X is called almost automorphic (see, for example, [32]) if
whenever tα is a net with xtα → x∗, then x∗(−tα)→ x too.

A motion ϕ(t, u0, y0) (u0 ∈ E and y0 ∈ Y ) of the cocycle ϕ is called recurrent
(almost periodic, almost automorphic, quasi-periodic, periodic), if the point x0 :=
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(u0, y0) ∈ X := E × Y is a recurrent (almost periodic, almost automorphic, quasi-
periodic, periodic) point of the skew-product dynamical system (X,S+, π) ( π :=
(ϕ, σ)).

Lemma 6.3. [11] If y ∈ Y is an almost automorphic point of the dynamical system
(Y, S, σ) and g : Y → X is a homomorphism of the dynamical system (Y,S, σ) onto
(X,S+, π), then the point x := g(y) is an almost automorphic point of the system
(X,S+, π).

Theorem 6.4. Let Y be a compact metric space, 〈(X,S+, π), (Y,S, σ), h〉 be a
non-autonomous dynamical system and y ∈ Y be a τ -periodic (almost periodic,
quasi-periodic, almost automorphic, recurrent, pseudo-recurrent) point. If there is
a function V : X×̇X → R+ satisfying Conditions (C1)–(C3) and

(C4.c) V (x1t, x2t) ≤ ω(t, V (x1, x2)) (∀(x1, x2) ∈ X×̇X, t ≥ 0), where ω is a
mapping from R2

+ into R+ satisfying the following condition: there exists
a positive number t0 ∈ S+ such that
(a) ω(t0, ·) : R+ 7→ R+ is monotone decreasing;
(b) ω(t0, r) < r for all r > 0;
(c) the mapping ω(t0, ·) is right continuous on R+.

Then there exists at least one τ -periodic (almost periodic, quasi-periodic, almost au-
tomorphic, recurrent, pseudo-recurrent) point x ∈ Xy := h−1(y) = {x ∈ X | h(x) =
y} of dynamical system (X,S+, π).

Proof. By Theorem 4.4 under the conditions of Theorem 6.4 the non-autonomous
dynamical system (X,S+, π), (Y,S, σ), h〉 admits a unique continuous invariant sec-
tion γ ∈ G(Y,X). By Theorem 6.1 and Lemmas 6.2, 6.3 x := γ(y) is a τ -periodic
(almost periodic, quasi-periodic, almost automorphic, recurrent, pseudo-recurrent)
point of dynamical system (X,S+, π). �

7. Applications

Below we give some application of results, obtained in Sections 3–6, to the study
of the almost periodic and almost automorphis solutions of different classes of non-
stationary evolution equations (Finite-dimensional ODEs, Carateadory’s equations,
ODEs with impulses, Infinite-dimensional systems (ODEs in Banach spaces, Evo-
lution equations with monotone operators)).

7.1. Finite-dimensional systems. Denote by Rn a real n−dimensional Euclidean
space with the scalar product 〈, 〉 and the norm | · | generated by the scalar product.
Let [Rn] be a space of all the linear mappings A : Rn → Rn equipped with the
operator norm.

Theorem 7.1. Let Y be a compact metric space, F ∈ C(Y × Rn,Rn), W ∈
C(Y, [Rn]) and the following conditions be held:

1. the matrix-function W is positively defined, i.e. 〈W(y)u, u〉 ∈ R for all y ∈
Y, u ∈ Rn, and there exists a positive constant a such that 〈W(y)u, u〉 ≥
a|u|2 for all y ∈ Y and u ∈ Rn.
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2. the function t → W(σty) is differentiable for every y ∈ Y and Ẇ(y) ∈
C(Y, [Rn]), where Ẇ(y) := d

dtW(σ(t, y))|t=0.
3. 〈Ẇ(y)(u− v) + (W(y) +W∗(y))(F (y, u)− F (y, v)), u− v〉 ≤ −θ(|u− v|2)

for all y ∈ Y and u, v ∈ Rn, where W∗(y) is a conjugate matrix and
θ : R+ 7→ R+ is a function possessing the properties (H1)-(H4) of Lemma
4.7;

(H5). there exists r0 > 0 such that θ(r)r−1/2 > M for all r > r0, where M :=
max
y∈Y
|F (y, 0)|.

Then

(i) the equation

(13) u′ = F (σ(t, y), u)

generates a cocycle ϕ on Rn which admits a unique invariant section µ ∈
C(Y,Rn);

(ii) the equation (13) admits at least one stationary (respectively, τ−periodic,
quasi-periodic, almost periodic, almost automorphic, recurrent, pseudo-
recurrent) solution, if the point y ∈ Y is stationary (respectively, τ−periodic,
quasi-periodic, almost periodic, almost automorphic, recurrent, pseudo-
recurrent);

(iii) the cocycle ϕ, generated by equation (13), admits a compact global attractor
{Iy : y ∈ Y }, where Iy := µ(y) for all y ∈ Y.

Proof. Since the function F ∈ C(Y ×Rn,Rn), then, according to the Peano theorem
(see, for example, [17]), the equation (13) admits at least one solution u(t) (t ∈
[0, tu), tu > 0) with the condition u(0) = u0 for every u0 ∈ Rn. We will show that
under the conditions of Theorem 7.1 this solution is unique. In fact, let ui(t) (i =
1, 2) be two solutions of the equation (13) defined on [0, t0) with the condition
ui(0) = x (i = 1, 2). We consider the function 〈W(σty)(u1(t)−u2(t), u1(t)−u2(t)〉.
According to the conditions 1. and 3. of Theorem 7.1 we have

a|u1(t)− u2(t)|2 ≤ 0

for all t ∈ [0, t0) and, consequently, u1(t) = u2(t) for all t ∈ [0, t0).

Now we will prove that every solution of the equation (13) is defined on R+. Let
u ∈ Rn and ϕ(t, u, y) be the unique solution of the equation (13) defined on
[0, t(u,y)). To prove that t(u,y) = +∞ it is sufficient to show that the solution
ϕ(t, u, y) is bounded on [0, t(u,y)). We denote by b := max

y∈Y
‖W(y)‖, T1(u, y) := {t ∈

[0, t(u,y)) | |ϕ(t, u, y)| ≤ r0 } and T2(u, y) := [0, t(u,y)) \ T1(u, y). It is clear that the
set T2(u, y) is open and, consequently, T2(u, y) =

⋃
α
{(tα, tβ) | β = β(α) }. For all

t ∈ T2(u, y) there exists α such that t ∈ (tα, tβ) , |ϕ(tα, u, y)| = |ϕ(tβ , u, y)| and
|ϕ(t, u, y)| > r0.

Denote by V : Rn 7→ R+ the function defined by the equality V(u, y) := 〈W (y)u, u〉
for all (u, y) ∈ X := Rn × Y. If |ϕ(t, u, y)| > r for all t ∈ (t1, t2) ⊂ R+, then

d

dt
V(σ(t, y), ϕ(t, u, y)) = 〈Ẇ (σ(t, y))ϕ(t, u, y), ϕ(t, u, y)〉+
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〈(W (σ(t, y)) +W∗(σ(t, y)))F (σ(t, y), ϕ(t, u, y)), ϕ(t, u, y)〉 ≤ −c(|ϕ(t, u, y)|) < 0,

where c(r) := −θ(r2) +Mr and M := maxy∈Y |F (y, 0)|.

Consequently,

(14) a|ϕ(t, u, y)|2 ≤ 〈W(σ(t, y))ϕ(t, u, y), ϕ(t, u, y)〉 ≤

〈W(ytα)ϕ(tα, u, y), ϕ(tα, u, y)〉 ≤ br20.

From the inequality (14) follows that |ϕ(t, u, y)| ≤
√

b
ar0 and, consequently, we

obtain sup{|ϕ(t, u, y)| | t ∈ [0, t(u,y)) } ≤ R0 := max{r0,
√

b
ar0}. Thus, the equation

(13) defines a cocycle ϕ on Rn.

Let X = Rn×Y, (X,R+, π) be a skew-product dynamical system and 〈(X,R+, π),
(Y, R, σ), h〉 be the non-autonomous dynamical system generated by the equation
(13). Denote by V : Rn × Rn × Y → R+ the function defined by the equality
V(u1, u2, y) := 〈W(y)(u1 − u2), u1 − u2)〉 for all (u1, u2, y) ∈ Rn × Rn × Y. Then

d

dt
V(ϕ(t, u1, y), ϕ(t, u2, y), σ(t, y)) = 〈Ẇ(σ(t, y))(ϕ(t, u1, y)− ϕ(t, u2, y)),

ϕ(t, u1, y)− ϕ(t, u2, y)〉+ 〈(W(σ(t, y)) +W∗(σ(t, y)))(F (σ(t, y), ϕ(t, u1, y))−
F (σ(t, y), ϕ(t, u2, y))), ϕ(t, u1, y)− ϕ(t, u2, y)〉 ≤ −θ(|ϕ(t, u1, y)− ϕ(t, u2, y)|2)

and, consequently, V(ϕ(t, u1, y), ϕ(t, u2, y), σ(t, y)) ≤ ω(t,V(u1, u2, y)) for all y ∈ Y,
u1, u2 ∈ Rn and t ∈ R+, where ω(t, r) is a unique solution of equation z′ = −θ(b−1z)
with initial condition ω(0, r) = r. By Lemma 4.7 for all t > 0 the mapping ω(t, ·) :
R+ 7→ R+ possesses the following properties:

(i) ω(t, ·) is monotone increasing;
(ii) ω(t, r) < r for all r > 0;
(iii) the mapping ω : R2

+ 7→ R+ is continuous;
(iv) ω(t+ τ, r) = ω(t, ω(τ, r)) for all t, τ, r ∈ R+.

By Corollary 5.4 the cocycle ϕ, generated by equation (13), admits a unique in-
variant continuous section µ ∈ C(Y,Rn). By Theorem 6.1 ϕ(t, µ(y), y) = µ(σ(t, y))
is a stationary (respectively, τ−periodic, quasi-periodic, almost periodic, almost
automorphic, recurrent, pseudo-recurrent) solution of equation (13).

The last statement of Theorem follows from Theorem 5.6. �

Remark 7.2. Note that the condition 4. (there exists r0 > 0 such that θ(r)r−1/2 >
M for all r > r0) it was used only to prove the extendability on R+ the solutions of
equation (13).

Let E be a Banach space. The function F ∈ C(Y ×E,E), is called regular, if for all
u ∈ E and y ∈ Y there exists a unique solution ϕ(t, u, y) of equation (13) defined
on R+ with initial condition ϕ(0, u, y) = u.

Theorem 7.3. Let Y be a compact metric space, F ∈ C(Y × Rn,Rn) be a regular
function, W ∈ C(Y, [Rn]) and the following conditions be held:
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1. the matrix-function W is positively defined, i.e. 〈W(y)u, u〉 ∈ R for all
y ∈ Y, u ∈ Rn and there exists a positive constant a such that 〈W(y)u, u〉 ≥
a|u|2 for all y ∈ Y and u ∈ Rn.

2. the function t → W(σ(t, y)) is differentiable for every y ∈ Y and Ẇ(y) ∈
C(Y, [Rn]), where Ẇ (y) := d

dtW(σ(t, y))|t=0.
3. 〈Ẇ(y)(u− v) + (W(y) +W∗(y))(F (y, u)− F (y, v)), u− v〉 ≤ −θ(|u− v|2)

for all y ∈ Y and u, v ∈ Rn, where θ : R+ 7→ R+ is a function possessing
the properties (H1)-(H4) of Lemma 4.7.

Then

(i) the equation

(15) u′ = F (σ(t, y), u)

generates a cocycle ϕ on Rn which admits a unique invariant section µ ∈
C(Y,Rn);

(ii) the equation (15) admits at least one stationary (respectively, τ−periodic,
quasi-periodic, almost periodic, almost automorphic, recurrent, pseudo-
recurrent) solution, if the point y ∈ Y is stationary (respectively, τ−periodic,
quasi-periodic, almost periodic, almost automorphic, recurrent, pseudo-
recurrent);

(iii) the cocycle ϕ, generated by equation (13), admits a compact global attractor
{Iy : y ∈ Y }, where Iy := {µ(y)} for all y ∈ Y.

Proof. Taking into account the Remark 7.2 we can prove this statement by slight
modification the proof of Theorem 7.1. �

Example 7.4. As an example that illustrates these theorems we can consider the
following equation

u′ = g(u) + f(σ(t, ω)),
where f ∈ C(Ω,Rn) and 〈A(g(u1)− g(u2), u1 − u2〉 ≤ −α|u1 − u2|p (p ≥ 2) for all
u1, u2 ∈ Rn, where A ∈ [Rn] is a self-adjoint positive definite matrix and α > 0.

7.2. Caratheodory’s differential equations. Let us consider now the equation
(13) with the right hand side f satisfying the conditions of Caratheodory (see, for
example, [30]). The space of all Caratheodory’s functions we denote by C(R ×
Rn,Rn). Topology on this space is defined by the family of semi-norms [30]

dk,m(f) :=
∫ k

−k
max
|x|≤m

|f(t, x)|dt.

This space is metrizable, and on C(R × Rn,Rn) there can be defined a dynamical
system of translations (C(R× Rn,Rn),R, σ).

We consider the equation

(16)
dx

dt
= f(t, x),

where f ∈ C(R× Rn,Rn), and the family of equations

(17)
dx

dt
= g(t, x),
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where g ∈ H(f) := {fτ | τ ∈ R }, and fτ is a τ−translation of the function f w.r.t.
the variable t, i.e. fτ (t, x) := f(t + τ, x) for all t ∈ R and x ∈ Rn and by bar is
denoted the closure in the space C(R× Rn,Rn).

If the function f ∈ C(R × Rn,Rn) is regular, then ϕ is a cocycle on Rn (see, for
example, [30]) with the base H(f). Hence, we may apply the general results from
Section 4–6 to the cocycle ϕ generated by the equation (16) with a Caratheodory‘s
right hand side and obtain some results for this type of equations.

For instance, the following assertion holds.

Theorem 7.5. Let f ∈ C(R×Rn,Rn) be a regular and almost periodic function in
t ∈ R (in the sense of Stepanoff [24]) uniformly w.r.t. x on compacts from Rn, i.e.
for every ε > 0 and compact K ⊂ Rn the set

T(ε, f,K) := {τ ∈ R |
∫ 1

0

max
x∈K
|f(t+ τ + s, x)− f(t+ s, x)|ds < ε }

is relatively dense on R. Suppose that

〈f(t, x1)− f(t, x2), x1 − x2〉 ≤ −θ(|x1 − x2|2)

for all t ∈ R and x1, x2 ∈ Rn, where θ : R+ 7→ R+ is a function possessing the
properties (H1)-(H4) of Lemma 4.7.

Then

(i) the equation (16) generates a cocycle ϕ on Rn which admits a unique in-
variant section µ ∈ C(H(f),Rn);

(ii) every equation (17) admits a unique Bohr almost periodic solution µ(gt) =
ϕ(t, µ(g), g) (for all t ∈ R);

(iii) the cocycle ϕ, generated by equation (16), admits a compact global attractor
{Ig : g ∈ H(f)}, where Ig := {µ(g)} for all g ∈ H(f).

7.3. ODEs with impulse. Let {tk}k∈Z be a two-sided sequence of real numbers,
p : R → Rn be a continuously differentiable on every interval (tk, tk+1) function,
continuous to the right in every point t = tk, bounded on R, almost periodic in the
sense of Stepanoff [15, 24] and

p′(t) =
∑
k∈Z

skδtk ,

where sk := p(tk + 0)− p(tk − 0).

Consider the equation with impulse
dx

dt
= f(t, x) +

∑
k∈Z

skδtk

or, what is equivalent,

(18)
dx

dt
= f(t, x) + p′(t)

and parallely consider the family of equations

(19)
dx

dt
= g(t, x) + q′(t),
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where (g, q) ∈ H(f, p) := {(fτ , pτ ) | τ ∈ R} and by bar we denote the closure in
the product-space C(R× Rn,Rn)× C(R,Rn).

Suppose that the function f ∈ C(R×Rn,Rn) is regular, then for all (g, q) ∈ H(f, p)
the equation (19) admits a unique solution ϕ(t, x, g, q) (see [15] and [29]) satisfying
the initial condition ϕ(0, x, g, q) = x. This solution is continuous on every interval
(tk, tk+1) and continuous to the right in every point t = tk (see [15] and [29]).

By the transformation

(20) x := y + q(t)

we can bring the equation (19) to the equation

(21)
dy

dt
= g(t, y + q(t)).

Theorem 7.6. Let f ∈ C(R × Rn,Rn) be a regular and Bohr almost periodic
function in t ∈ R uniformly with respect to x on every compact subset from Rn and
p ∈ C(R,Rn) be a Stepanoff’s almost periodic function. Suppose that 〈f(t, x1) −
f(t, x2), x1−x2〉 ≤ −θ(|x1−x2|2) for all t ∈ R and x1, x2 ∈ Rn, where θ : R+ 7→ R+

is a function possessing the properties (H1)-(H4) of Lemma 4.7.

Then every equation (18) admits a unique Stepanovs almost periodic solution which
is globally asymptotically stable.

Proof. Let ϕ(t, x, g, q) be the cocycle generated by the family of equations (19) and
ϕ̃(t, y, g, q) be the cocycle generated by the family of equations (21). Then we have
the following equality

(22) ϕ(t, x, g, q) = q(t) + ϕ̃(t, x− q(0), g, q)).

We will show that it is possible to apply Theorem7.5 to the equation

dy

dt
= f(t, y + p(t)).

In fact,
〈f(t, y1 + p(t))− f(t, y2 + p(t)), y1 − y2〉 ≤ −θ(|y1 − y2|2)

for all t ∈ R and y1, y2 ∈ Rn. To finish the proof of the theorem it is sufficient to
apply Theorem 7.5 and take into consideration the relations (20) and (22). The
theorem is proved. �

7.4. Infinite-dimensional systems.

7.4.1. ODEs in Banach space. Let (E, |·|) be a Banach space. The upper semi-inner
product is defined [13, 26] by

〈x, y〉+ := |y| lim
t→0+

1
t
(|y + tx| − |y|)

and the lower semi-inner product by

〈x, y〉− := |y| lim
t→0+

1
t
(|y| − |y − tx|).
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Both limits exist for every norm, and they coincide with the inner product, if
E is a Hilbert space. In the case when E is a uniformly convex space we have
〈x, y〉+ = 〈x, y〉−.

Theorem 7.7. Let Y be a compact metric space, F ∈ C(Y × E,E) be a regular
function, W ∈ C(Y, [E]) and the following conditions be held:

1. the operator-function W is positively defined, i.e. 〈W (y)u, u〉 ∈ R for all
y ∈ Y, u ∈ E and there exists a positive constant a such that 〈W(y)u, u〉 ≥
a|u|2 for all y ∈ Y and u ∈ E.

2. the function t → W(σ(t, y)) is differentiable for every y ∈ Y and Ẇ(y) ∈
C(Y, [E]), where Ẇ(y) := d

dtW(σ(t, y))|t=0.
3. Re〈Ẇ (y)(u−v)+(W(y)+W∗(y))(F (y, u)−F (y, v)), u−v〉− ≤ −θ(|u−v|2)

for all y ∈ Y and u, v ∈ E, where θ : R+ 7→ R+ is a function possessing
the properties (H1)-(H4) of Lemma 4.7.

Then

(i) the equation

(23) u′ = F (σ(t, y), u)

generates a cocycle ϕ on E which admits a unique invariant section µ ∈
C(Y,E);

(ii) the equation (23) admits at least one stationary (respectively, τ−periodic,
quasi-periodic, almost periodic, almost automorphic, recurrent, pseudo-
recurrent) solution, if the point y ∈ Y is stationary (respectively, τ−periodic,
quasi-periodic, almost periodic, almost automorphic, recurrent, pseudo-
recurrent);

(iii) the cocycle ϕ, generated by equation (23), admits a compact global attractor
{Iy : y ∈ Y }, where Iy := {µ(y)} for all y ∈ Y.

Proof. Let X := E × Y, (X,R+, π) be a skew-product dynamical system and
〈(X,R+, π), (Y,R, σ), h〉 be the non-autonomous dynamical system generated by
equation (23). Denote by V : E×E×Y → R+ the function defined by the equality
V(u1, u2, y) := 〈W(y)(u1−u2), u1−u2)〉 for all (u1, u2, y) ∈ E×E×Y. Let us note
that the Dini derivative

D−u(t) := lim sup
h→0−

u(t+ h)− u(t)
h

,

then, one has

D−(V(ϕ(t, u1, y), ϕ(t, u2, y)), σ(t, y)) = 〈Ẇ(σ(t, y))(ϕ(t, u1, y)− ϕ(t, u2, y)),
ϕ(t, u1, y)− ϕ(t, u2, y)〉− + 〈(W(σ(t, y)) +W∗(σ(t, y)))(F (σ(t, y), ϕ(t, u1, y))−
F (σ(t, y), ϕ(t, u2, y))), ϕ(t, u1, y)− ϕ(t, u2, y)〉− ≤ −θ(|ϕ(t, u1, y)− ϕ(t, u2, y)|2)

and, consequently, V(ϕ(t, u1, y), ϕ(t, u2, y), σ(t, y)) ≤ ω(t,V(u1, u2, y)) for all y ∈ Y,
u1, u2 ∈ E and t ∈ R+, where ω(t, r) is a unique solution of equation z′ = −θ(b−1z)
with initial condition ω(0, r) = r, where b := maxy∈Y ‖W(y)‖. By Lemma 4.7 for
all t > 0 the mapping ω(t, ·) : R+ 7→ R+ possesses the following properties:

(i) ω(t, ·) is monotone decreasing;



22 DAVID CHEBAN AND BJOERN SCHMALFUSS

(ii) ω(t, r) < r for all r > 0;
(iii) the mapping ω : R2

+ 7→ R+ is continuous.

By Corollary 4.6 the cocycle ϕ, generated by equation (23), admits a unique invari-
ant continuous section µ ∈ C(Y,E). By Theorem 6.1 ϕ(t, µ(y), y) = µ(σ(t, y)) is a
stationary (respectively, τ−periodic, quasi-periodic, almost periodic, almost auto-
morphic, recurrent, pseudo-recurrent) solution of equation (23). The last statement
of Theorem follows from Theorem 5.6. �

Remark 7.8. In the almost periodic case Theorem 7.7 improves the result of Arino
O. and Hanebaly E. [1] and Trubnikov Yu. V. and Perov A. I. [33].

Example 7.9. As an example that illustrates Theorem 7.7 we can consider the
following equation

u′ = −|u|αu+ f(σ(t, y)),

where f ∈ C(Y,E) and α ≥ 0 if E is a Hilbert space and 0 ≤ α ≤ 1 if E is a
Banach space [1, 3].

7.4.2. Evolution equations with monotone operators. Let H be a real Hilbert space
with the inner product 〈, 〉, | · | :=

√
〈, 〉 and E be a reflexive Banach space contained

in H algebraically and topologically. Furthermore, let E be dense in H, and here
H can be identified with a subspace of the dual E′ of E and 〈, 〉 can be extended by
continuity to E′ × E. Finally, let (Y,R, σ) be a dynamical system on the compact
metric space Y.

We consider the initial value problem

(24) u′(t) +Au(t) = f(σ(t, y)) (y ∈ Y )

(25) u(0) = u,

where A : E → E′ is bounded (generally nonlinear),

|Au|E′ ≤ C|u|p−1
E +K,u ∈ E, p > 1,

coercive,
〈Au, u〉 ≥ a|u|pE , u ∈ E, a > 0,

uniformly monotone,

〈Au1 −Au2, u1 − u2〉 ≥ α|u1 − u2|β (∀u1, u2 ∈ E, where β ≥ 2),

and semi-continuous (see [25]).

A nonlinear ”elliptic” operator

Au = −
n∑
i=1

∂

∂xi
φ(
∂u

∂xi
) in D ⊂ Rn

u = 0 on ∂D,

where D is a bounded domain in Rn, φ(·) is an increasing function satisfying,
φ(0) = 0, c|ξ−η|p ≤

∑n
i=1(ξi−ηi)(φ(ξi)−φ(ηi) ≤ C|ξ−η|p ( for all ξ, η ∈ Rn), and

provides an example with H = L2(D), E = W 1,p
0 (D), E′ = W−1,p′(D), p′ = p

p−1 .
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The following result is established in [25] (Ch.2 and Ch.4). If x ∈ H and f ∈
C(Ω, E′), p′ = p

p−1 , then there exists a unique solution ϕ ∈ C(R+, H) of (24) –
(25).

We denote by ϕ(·, u, ω) the unique solution of (24) and (25). According to [18],
ϕ(·, u, ω) is a continuous cocycle on H.

Theorem 7.10. Suppose that the operator A satisfies the conditions above. Then
the following statements hold:

(i) the cocycle ϕ admits a unique invariant section µ ∈ C(Y,E);
(ii) the equation (24) admits at least one stationary (respectively, τ−periodic,

quasi-periodic, almost periodic, almost automorphic, recurrent, pseudo-
recurrent) solution, if the point y ∈ Y is stationary (respectively, τ−perio-
dic, quasi-periodic, almost periodic, almost automorphic, recurrent, pseudo-
recurrent);

(iii) the cocycle ϕ, generated by equation (23), admits a compact global attractor
{Iy : y ∈ Y }, where Iy := {µ(y)} for all y ∈ Y.

Proof. Let X := H × Y, (X,R+, π) be a skew-product dynamical system and
〈(X,R+, π), (Y,R, σ), h〉 be a non-autonomous dynamical system generated by the
equation (24). Denote by V : X×̇X 7→ R+ the function defined by the equality
V(u1, u2, y) := 〈u1 − u2, u1 − u2〉 for all (ui, y) ∈ X := H × Y (i = 1, 2). Then

d

dt
V (ϕ(t, u1, y), ϕ(t, u2, y)) = 2〈 d

dt
(ϕ(t, u1, y)− ϕ(t, u2, y)),

ϕ(t, u1, y)− ϕ(t, u2, y)〉 = 2〈−A(ϕ(t, u1, y)) +A(ϕ(t, u2, y)),
ϕ(t, u1, y)− ϕ(t, u2, y)〉 ≤ −θ(|ϕ(t, u1, y)− ϕ(t, u2, y)|2)

and, consequently, V (ϕ(t, u1, y), ϕ(t, u2, y)) ≤ ω(t, V (u1, u2, y)) for all y ∈ Y, u1,
u2 ∈ H and t ∈ R+, where θ(x) := 2αxβ/2 (for all x ∈ R+) and ω(·, ·) is the unique
solution of equation x′ = −2αxβ/2 with initial condition ω(0, x) = x. It is easy to
verify that the function V satisfies all the conditions of Theorems 4.4 and 5.3. To
finish the proof of Theorem it is to refer to Theorems 4.4 and 5.3. �
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[14] Glavan V. and Guţu V., Attractors and fixed points of weakly contracting relations. Fixed

Point Theory, v.5, No.2, 2004, pp.265-284.

[15] Halanay A. and Wexler D, Teoria calitativă a sistemelor cu impulsuri. Bucureşti, 1968.
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