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Abstract. In the present paper we consider a special class of equations

(1) x′ = f(t, x)

when the function f : R × E → E (E is a strictly convex Banach space) is

V –monotone with respect to (w.r.t.) x ∈ E, i.e. there exists a continuous non-
negative function V : E×E → R+, which equals to zero only on the diagonal,

so that the numerical function α(t) := V (x1(t), x2(t)) is non-increasing w.r.t.

t ∈ R+, where x1(t) and x2(t) are two arbitrary solutions of (1) defined onR+.
The main result of this paper states that every V –monotone Levitan al-

most periodic (almost automorphic, Bohr almost periodic) equation (1) with

bounded solutions admits at least one Levitan almost periodic (almost auto-
morphic, Bohr almost periodic) solution. In particulary, we obtain some new

criterions of existence of almost recurrent (Levitan almost periodic, almost

automophic, recurrent in the sense of Birkgoff) solutions of forced vectorial
Liénard equations.

1. Introduction

The problem of the almost periodicity of solutions of non-linear almost periodic
ordinary differential equations

(2) x′ = f(t, x)

was studied by many authors (see, for example, [4, 9, 10, 12, 13, 14, 19, 25, 27, 28]
and the bibliography therein).

In the present paper we consider a special class of equations (2), where the function
f : R×E → E (E is a Banach space) is V –monotone with respect to (w.r.t.) x ∈ E,
i.e. there exists a continuous non-negative function V : E × E → R+ which equals
to zero only on the diagonal so that the numerical function α(t) := V (x1(t), x2(t))
is non-increasing w.r.t. t ∈ R+, where x1(t) and x2(t) are two arbitrary solutions of
(2) defined and bounded on R+. This class of non-linear differential equations (2) is
interesting enough and well studied (see, for example, [10, 12, 16, 20, 18, 24, 25, 34]
and the bibliography therein).

If the function α(t) = V (x1(t), x2(t)) is strictly decreasing, then equation (2) admits
a single almost periodic solution if there exists a bounded solution on R+.
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In general case (when the function α(t) = V (x1(t), x2(t)) is non-increasing) the
proof of the existence of an almost periodic solution (under the assumption that a
bounded solution exists on R) turns out to be difficult. For example, the difficulty
consists in the fact that equation (2) might have an infinite number of bounded
solutions on R (for instance, all solutions might be bounded on R) and it is not
clear how should we pick an almost periodic solution out of this set of bounded
solutions.

Let ϕ(t, u, f) be a unique solution of V -monotone equation (2) with the initial
condition ϕ(0, u, f) = u and let it be defined on R+. In virtue of the fundamental
theory of ODEs with the V -monotone right hand side the mapping ϕ possesses the
following properties:

1. ϕ(0, u, f) = u;
2. ϕ(t+ τ, u, f) = ϕ(t, ϕ(τ, f, z), fτ ) for every t, τ ∈ R+ and u ∈ E, where fτ

is a τ -translation of the function f ;
3. ϕ is continuous;
4. V (ϕ(t, u1, f), ϕ(t, u2, f)) ≤ V (u1, u2) for every t ∈ R+ and u1, u2 ∈ E.

Properties 1.-4. will make the basis of our research of the abstract V -monotone
non-autonomous dynamical system (NDS).

The main result of this paper states that every V –monotone Levitan almost periodic
(almost automorphic, Bohr almost periodic) equation (2) with bounded solutions
admits at least one Levitan almost periodic (almost automorphic, Bohr almost
periodic) solution. In particulary, we obtain some new criterions of existence of
almost recurrent (Levitan almost periodic, almost automophic, recurrent in the
sense of Birkgoff) solutions of forced vectorial Liénard equations. The problem
of Bohr almost periodicity of solutions of forced vectorial Liénard equations was
studied by P. Cieutat [15] (see also the bibliography therein).

This paper is organized as follows.

Section 2 contains the notions of cocycles, skew-product dynamical systems and
non-autonomous dynamical systems. We give some examples of cocycles, generated
by non-autonomous differential equations.

In Section 3 we introduce the notion of V -monotone non-autonomous dynamical
systems and establish some properties of this class of NDS (Theorem 3.4 and Lemma
3.5).

In Section 4 we establish some general facts about compact motions of nonau-
tonomous dynamical systems (Theorems 4.10 and 4.11).

Section 5 is devoted to the study of Levitan almost periodic (almost recurrent, Bohr
almost periodic, almost automorphic, recurrent in the sense of Birkhoff) motions
of V -monoton NDS. This Section contains the main result of our paper (Theorems
5.30 and 5.33 and also Corollaries 5.31 and 5.34) where we prove that the V -
montone NDS on the strictly convex metric space with compact motion admits
at least one almost recurrent (Levitan almost periodic, almost automorphic, Bohr
almost periodic, almost automorphic, recurrent in the sense of Birkhoff) motion.
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In section 6 the description of the structure of the set of bounded motions of V -
monotone NDS is given (Theorems 6.1 and 6.2).

Section 7 is devoted to the application of our general results obtained in sections
4-6 to the study of almost recurrent (Levitan almost periodic, almost automorphic,
Bohr almost periodic, almost automorphic, recurrent in the sense of Birkhoff) solu-
tions of certain classes of differential equations (forced vectorial Liénard equations,
dissipative differential equations, the second order equation w′′+B(ωt, w′)+Aw =
f(ωt)).

2. Cocycles, Skew-Product Dynamical Systems and Non-Autonomous
Dynamical Systems

Let X be a complete metric space, R (Z) be a group of real (integer) numbers, R+

(Z+) be a semi-group of nonnegative real (integer) numbers, S be one of the two
sets R or Z and T ⊆ S (S+ ⊆ T) be a sub-semigroup of the additive group S.

Let (X,T, π) be a dynamical system.

Definition 2.1. Let (X,T1, π) and (Y,T2, σ) (S+ ⊆ T1 ⊆ T2 ⊆ S) be two dy-
namical systems. A mapping h : X → Y is called a homomorphism (isomor-
phism, respectively) of the dynamical system (X,T1, π) onto (Y,T2, σ), if the map-
ping h is continuous (homeomorphic, respectively) and h(π(x, t)) = σ(h(x), t) (
t ∈ T1, x ∈ X). In this case the dynamical system (X,T1, π) is an extension of
the dynamical system (Y,T2, σ) by the homomorphism h, but the dynamical system
(Y,T2, σ) is called a factor of the dynamical system (X,T1, π) by the homomorphism
h. The dynamical system (Y,T2, σ) is called also a base of the extension (X,T1, π).

Definition 2.2. A triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism
from (X,T1, π) onto (Y,T2, σ), is called a non-autonomous dynamical system (NDS).

Definition 2.3. A triplet 〈W,ϕ, (Y,T2, σ)〉 (or shortly ϕ), where (Y,T2, σ) is a dy-
namical system on Y , W is a complete metric space and ϕ is a continuous mapping
from T1 ×W × Y to W , satisfying the following conditions:

a. ϕ(0, u, y) = u (u ∈W, y ∈ Y );
b. ϕ(t+ τ, u, y) = ϕ(τ, ϕ(t, u, y), σ(t, y)) (t, τ ∈ T1, u ∈W, y ∈ Y ),

is called [28] a cocycle on (Y,T2, σ) with the fiber W .

Definition 2.4. Let X := W × Y and define a mapping π : X × T1 → X as
following: π((u, y), t) := (ϕ(t, u, y), σ(t, y)) (i.e. π = (ϕ, σ)). Then it is easy
to see that (X,T1, π) is a dynamical system on X which is called a skew-product
dynamical system [28] and h = pr2 : X → Y is a homomorphism from (X,T1, π)
onto (Y,T2, σ) and, consequently, 〈(X,T1, π), (Y,T2, σ), h〉 is a non-autonomous
dynamical system.

Thus, if we have a cocycle 〈W,ϕ, (Y,T2, σ)〉 on the dynamical system (Y,T2, σ) with
the fiber W , then it generates a non-autonomous dynamical system 〈(X,T1, π),
(Y,T2, σ), h〉 (X := W × Y ) called a non-autonomous dynamical system generated
by the cocycle 〈W,ϕ, (Y,T2, σ)〉 on (Y,T2, σ).
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Non-autonomous dynamical systems (cocycles) play a very important role in the
study of non-autonomous evolutionary differential equations. Under appropriate
assumptions every non-autonomous differential equation generates a cocycle (a non-
autonomous dynamical system). Below we give some examples of theses.

Example 2.5. Let E be a real or complex Banach space and Ω be a metric space.
Denote by C(Ω × E,E) the space of all continuous mappings f : Ω × E 7→ E
endowed by compact-open topology. Consider the system of differential equations

(3)
{
u′ = F (ω, u)
ω′ = G(ω),

where Ω ⊆ E,G ∈ C(Ω, E) and F ∈ C(Ω×E,E). Suppose that for the system (3)
the conditions of the existence, uniqueness, continuous dependence of initial data
and extendability on R+ are fulfilled. Denote by (Ω,R+, σ) a dynamical system
on Ω generated by the second equation of the system (3) and by ϕ(t, u, ω) – the
solution of the equation

(4) u′ = F (ωt, u) (ωt := σ(t, ω))

passing through the point u ∈ E for t = 0. Then the mapping ϕ : R+×E×Ω → E
is continuous and satisfies the conditions: ϕ(0, u, ω) = u and ϕ(t + τ, u, ω) =
ϕ(t, ϕ(τ, u, ω), ωt) for all t, τ ∈ R+, u ∈ E and ω ∈ Ω and, consequently, the sys-
tem (3) generates a non-autonomous dynamical system 〈(X,R+, π), (Y,R+, σ), h〉
(where X := E × Ω, π := (ϕ, σ) and h := pr2 : X → Ω).

We will give some generalization of the system (3). Namely, let (Ω,R+, σ) be a
dynamical system on the metric space Ω. Consider the system

(5)
{
u′ = F (ωt, u)
ω ∈ Ω,

where F ∈ C(Ω×E,E). Suppose that for the equation (4) the conditions of the exis-
tence, uniqueness and extendability on R+ are fulfilled. The system 〈(X,R+, π), (Ω,
R+, σ), h〉, where X := E × Ω, π := (ϕ, σ), ϕ(·, u, ω) is the solution of (4) and
h := pr2 : X → Ω is a non-autonomous dynamical system generated by the equa-
tion (5).

Example 2.6. Let us consider a differential equation

(6) u′ = f(t, u),

where f ∈ C(R × E,E). Along with equation (6) we consider its H-class [4],[25],
[28], [30], i.e. the family of equations

(7) v′ = g(t, v),

where g ∈ H(f) := {fτ : τ ∈ R}, fτ (t, u) := f(t+ τ, u) for all (t, u) ∈ R×E and by
bar we denote the closure in C(R× E,E). We will suppose also that the function
f is regular, i.e. for every equation (7) the conditions of the existence, uniqueness
and extendability on R+ are fulfilled. Denote by ϕ(·, v, g) the solution of equation
(7) passing through the point v ∈ E at the initial moment t = 0. Then there
is a correctly defined mapping ϕ : R+ × E × H(f) → E satisfying the following
conditions (see, for example, [4], [28]):

1) ϕ(0, v, g) = v for all v ∈ E and g ∈ H(f);
2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t+ τ, v, g) for every v ∈ E, g ∈ H(f) and t, τ ∈ R+;
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3) the mapping ϕ : R+ × E ×H(f) → E is continuous.

Denote by Y := H(f) and (Y,R+, σ) a dynamical system of translations (a semi-
group system) on Y , induced by the dynamical system of translations (C(R ×
E,E),R, σ). The triplet 〈E,ϕ, (Y,R+, σ)〉 is a cocycle on (Y,R+, σ) with the fiber
E. Thus, equation (6) generates a cocycle 〈E,ϕ, (Y,R+, σ)〉 and a non-autonomous
dynamical system 〈(X,R+, π), (Y,R+, σ), h〉, where X := E × Y , π := (ϕ, σ) and
h := pr2 : X → Y .

Remark 2.7. Let Ω := H(f) and (Ω,R, π) be the shift dynamical system on Ω.
The equation (6) (the family of equation (7)) may be written in the form (4), where
F : Ω × E 7→ E is defined by equality F (g, u) := g(0, u) for all g ∈ H(f) = Ω and
u ∈ E, then F (gt, u) = g(t, u) (gt(s, u) := σ(t, g)(s, u) = g(t + s, u) for all t, s ∈ R
and u ∈ E).

Definition 2.8. The cocycle ϕ is called V−monotone (see [10], [25], [34]) if there
exists a continuous function V : E × E × Ω → R+ with the following properties:

(i) V(u1, u2, ω) ≥ 0 for all ω ∈ Ω and u1, u2 ∈ E;
(ii) V(u1, u2, ω) = 0 if and only if u1 = u2;
(iii) V(ϕ(t, ω, u1), ϕ(t, ω, u2), θtω) ≤ V(u1, u2, ω) for all u1, u2 ∈ E,ω ∈ Ω and

t ∈ T+.

3. V -Monotone NDS

Definition 3.1. A nonautonomous dynamical system 〈(X,T1, π), (Ω,T2,Θ), h〉 is
said to be uniformly stable in the positive direction on compacts of X if, for arbitrary
ε > 0 and compact subset K ⊆ X, there is δ = δ(ε,K) > 0 such that inequality
ρ(x1, x2) < δ (x1, x2 ∈ K,h(x1) = h(x2)) implies that ρ(πtx1, π

tx2) < ε for t ∈ T1,
where πt := π(t, ·).

Definition 3.2. Denote by X×̇X = {(x1, x2) ∈ X ×X | h(x1) = h(x2) }. If there
exists the function V : X×̇X → R+ with the following properties:

(i) V is continuous;
(ii) V is positive defined, i.e. V (x1, x2) = 0 if and only if x1 = x2;
(iii) V (x1t, x2t) ≤ V (x1, x2) for all (x1, x2) ∈ X×̇X and t ∈ T+

1 := {t ∈
T1 | t ≥ 0},

then the nonautonomous dynamical system 〈(X,T1, π), (Ω,T2,Θ), h〉 is called (see
[10] and [34], [25]) V - monotone.

Definition 3.3. Non-autonomous dynamical system 〈(X,T1, π), (Ω,T2,Θ), h〉 is
called stable in the sense of Lagrange in positive direction (st.L+), if for every
compact subset K ⊆ X the set

⋃
{πtK | t ∈ T+

1 } is relatively compact.

Theorem 3.4. Every V - monotone st.L+ nonautonomous dynamical system 〈(X,
T1, π), (Ω,T2,Θ), h〉 is uniformly stable in the positive direction on compacts from
X.

Proof. Let 〈(X,T1, π), (Ω,T2,Θ), h〉 be a V - monotone nonautonomous dynamical
system and it is not uniformly stable in the positive direction on compacts from X.
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Then there is an ε0 > 0, a sequence {tn} ⊆ T1 (tn → +∞ as n→ +∞), a sequence
δn → 0 (δn > 0), a compact K0 ⊆ X and sequences {xi

n} ⊆ K0 (i = 1, 2) such that

(8) ρ(x1
n, x

2
n) < δn and ρ(x1

ntn, x
2
ntn) ≥ ε0

for all n ∈ N. Since the dynamical system 〈(X,T1, π), (Ω,T2,Θ), h〉 is st.L+, then
without loss in generality we may suppose that the sequences {xi

n} (i = 1, 2) and
{xi

ntn} (i = 1, 2) are convergent. We denote by xi = lim
n→+∞

xi
n (i = 1, 2) and

x̄i = lim
n→+∞

xi
ntn (i = 1, 2). According to inequality (8) we obtain x1 = x2 and

x̄1 6= x̄2. On the other hand in view of V - monotonicity of 〈(X,T1, π), (Ω,T2,Θ), h〉
we have

(9) V (x1
ntn, x

2
ntn) ≤ V (x1

n, x
2
n)

for all n ∈ N. Passing to the limit in (9) as n→ +∞ we obtain the equality x̄1 = x̄2

which contradicts to inequality (8). This contradiction proves Theorem 3.4. �

We denote by K = {a ∈ C(R+,R+) | a(0) = 0, a is strict increasing}.

Lemma 3.5. Let 〈(X, T1, π), (Ω,T2, σ), h〉 be a V -monotone non-autonomous dy-
namical system and there are two functions a, b ∈ K such that

(i) Im(a) = Im(b), where Im(a) is the set of the values of a ∈ K;
(ii) a(ρ(x1, x2)) ≤ V (x1, x2) ≤ b(ρ(x1, x2)) for all x1, x2 ∈ X (h(x1) = h(x2)).

Then 〈(X, T1, π), (Ω,T2, σ), h〉 is uniformly stable in the positive direction on com-
pacts from X.

Proof. Let ε > 0 be an arbitrary positive number and δ(ε) := b−1(a(ε)), then it
easy to check that the inequality ρ(x1, x2) ≤ δ(ε) implies ρ(x1t, x2t) ≤ ε for all
t ∈ T+ and x1, x2 ∈ X with condition h(x1) = h(x2). �

4. Some General Properties of NDS

Let (Ω,T, σ) be a group (two-sided) dynamical system.

Definition 4.1. The point ω ∈ Ω is called (see, for example, [30] and [32]) positively
(negatively) stable in the sense of Poisson if there exists a sequence tn → +∞ (tn →
−∞ respectively) such that ωtn → ω (ωt := σ(t, ω)). If the point ω is Poisson stable
in both directions, in this case it is called Poisson stable.

Denote by Nω := {{tn} | σtnω → ω}, N+
ω := {{tn} ∈ Nω | tn → +∞} and

N−
ω := {{tn} ∈ Nω|tn → −∞}.

Definition 4.2. (Conditional compactness). Let (X,h,Ω) be a fiber space, i.e. X
and Ω be two metric spaces and h : X → Ω be a homomorphism from X onto Ω.
The subset M ⊆ X is said to be conditionally relatively compact, if the pre-image
h−1(Ω′)

⋂
M of every relatively compact subset Ω′ ⊆ Ω is a relatively compact

subset of X, in particularly Mω := h−1(ω)
⋂
M is relatively compact for every ω.

The set M is called conditionally compact if it is closed and conditionally relatively
compact.
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Example 4.3. Let K be a compact space, X := K × Ω, h = pr2 : X → Ω, then
the triplet (X,h,Ω) be a fiber space, the space X is conditionally compact, but not
compact.

Let 〈(X,T1, π), (Ω,T2, σ), h〉 be a non-autonomous dynamical system and ω ∈ Ω
be a positively Poisson stable point. Denote by

E+
ω := {ξ| ∃{tn} ∈ N+

ω such that πtn |Xω → ξ},
where Xω := {x ∈ X| h(x) = ω} and → means the pointwise convergence.

Lemma 4.4. [8, 10] Let ω ∈ Ω be a positively Poisson stable point, 〈(X,T1, π),
(Ω,T2, σ), h〉 be a non-autonomous dynamical system and X be a conditionally com-
pact space, then E+

ω is a nonempty compact sub-semigroup of the semigroup XXω
ω

(w.r.t. composition of mappings).

Corollary 4.5. Let ω ∈ Ω be a negatively Poisson stable point, 〈(X,T, π), (Ω,T, σ),
h〉 be a two-sided non-autonomous dynamical system and X be a conditionally com-
pact space, then E−ω := {ξ| ∃{tn} ∈ N−

ω such that πtn |Xω → ξ} is a nonempty
compact sub-semigroup of semigroup XXω

ω .

This assertion follows from Lemma 4.4.

Lemma 4.6. [8, 10] Let ω ∈ Ω be a two-sided Poisson stable point, 〈(X,T, π),
(Ω,T, σ), h〉 be a two-sided non-autonomous dynamical system and X be a condi-
tionally compact space, then Eω = {ξ| ∃{tn} ∈ Nω such that πtn |Xω → ξ} is a
nonempty compact sub-semigroup of the semigroup XXω

ω .

Corollary 4.7. Under the conditions of Lemma 4.6 E+
ω and E−ω are two nonempty

sub-semigroups of the semigroup Eω.

Lemma 4.8. [8, 10] Under the conditions of Lemma 4.6 the following assertions
hold:

(i) if ξ1 ∈ E−ω and ξ2 ∈ E+
ω , then ξ1 · ξ2 ∈ E−ω

⋂
E+

ω .
(ii) E−ω

⋂
E+

ω is a sub-semigroup of the semigroup E−ω , E
+
ω and Eω.

(iii) E−ω ·Eω ⊆ E−ω and E+
ω ·Eω ⊆ E+

ω , where A1 ·A2 := {ξ1 · ξ2|ξi ∈ Ai (i =
1, 2)} and Ai ⊆ Eω.

(iv) if at least one of the sub-semigroups E−ω or E+
ω is a group, then E−ω =

E+
ω = Eω.

Lemma 4.9. [8, 10] Let ω ∈ Ω be a two-sided Poisson stable point, 〈(X,T, π),
(Ω,T, σ), h〉 be a two-sided non-autonomous dynamical system and X be a condi-
tionally compact space and

inf
n∈N

ρ(x1tn, x2tn) > 0

for all {tn} ∈ N−
ω and x1, x2 ∈ Xω (x1 6= x2), then E−ω is a subgroup of the

semigroup Eω.

Let x ∈ X denote by Φx the family of all entire trajectory of dynamical system
(X,T1, π) passing through point x for t = 0, i.e. γ ∈ Φx if and only if γ : S → X is
a continuous mapping with the properties: γ(0) = x and πtγ(τ) = γ(t + τ) for all
t ∈ T1 and τ ∈ S.



8 DAVID N. CHEBAN

Theorem 4.10. Let (X,T, π), (Ω,S, σ)〉 be a NDS with the following properties:

(i) It admits a conditionally relatively compact invariant set J (i.e.
⋃
{Jω | ω ∈

Ω′} is relatively compact subset of X for any relatively compact subset Ω′

of Ω).
(ii) The NDS 〈(X,T, π), (Ω,S, σ), h〉 is positively uniformly stable on J ;
(iii) evry point ω ∈ Ω is two-sided Poisson stable.

Then

(i) all motions on J may be continued uniquely to the left and define on J a
two-sided dynamical system (J,S, π), i.e. the semi-group dynamical system
(X,T, π) generates on J a two-sided dynamical system (J,S, π);

(ii) for every ω ∈ Ω with Jω 6= ∅ there are two sequences {t1n} → +∞ and
{t2n} → −∞ such that

π(tin, x) → x (i = 1, 2)

as n→∞ for all x ∈ Jω.

Proof. First step: we will prove that the set J ⊂ X is distal in the negative direction
w.r.t. the non-autonomous dynamical system 〈(X,T, π), (Ω,S, σ), h〉, i.e. for all
ω ∈ Ω (with Jω 6= ∅) and x1, x2 ∈ Jω the following inequality holds

(10) inf
t≤0

ρ(γx1(t), γx2(t)) > 0 (x1 6= x2)

for all γxi
∈ Φxi

(i = 1, 2), where by Φx it is denoted the family of all the entire
trajectories of (X,T, π) passing through point x and belonging to J . If it is not true,
then there exist ω0 ∈ Ω, x0

i ∈ Jω0 (x0
1 6= x0

2), γ
0
i ∈ Φx0

i
(i = 1, 2) and −tn → −∞

such that

(11) ρ(γx0
1
(−tn), γx0

2
(−tn)) → 0

as n → ∞. Let ε := ρ(x0
1, x

0
2) > 0 and δ = δ(ε) > 0 be chosen from positively

uniformly stability of NDS 〈(X,T, π), (Ω,S, σ), h〉 on J . Then for sufficiently large
n from (11) we have ρ(γx0

1
(−tn), γx0

2
(−tn)) < δ and, consequently, ε = ρ(x0

1, x
0
2) =

ρ(πtnγx0
1
(−tn), πtnγx0

2
(−tn)) < ε. The obtained contradiction proves our assertion.

Second step: we will prove that for any ω ∈ Ω and x ∈ Jω the set Φx contains
only one entire trajectory of (X,T, π) belonging to J . Let Φ :=

⋃
{Φx | x ∈ J} ⊂

C(S, X), where C(S, X) is a space of all the continuous functions f : S → X
equipped with compact-open topology and (C(S, X),S, λ) is Bebutov’s dynamical
system (dynamical system of translations (see, for example, [10, 28, 29])). It is easy
to verify that Φ is a closed and invariant subset of dynamical system (C(S, X),S, λ)
and, consequently, induces on the set Φ the dynamical system (Φ,S, λ). Let H be
a mapping from Φ into Ω, defined by equality H(γ) := h(γ(0)), then it is possible
to verify that the triplet 〈(Φ,S, λ), (Ω,S, σ),H〉 is a non-autonomous dynamical
system. Now we will show that this non-autonomous dynamical system is distal on
the negative direction, i.e.

inf
t≤0

ρ(γt
x1
, γt

x2
) > 0

for all γx1 , γx2 ∈ H−1(ω) (γx1 6= γx2) and ω ∈ Ω. Indeed, otherwise there
exist ω0, γxi

∈ H−1(ω0) (i = 1, 2 and γx1 6= γx2) and tn → +∞ such that
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ρ(γ−tn
x1

, γ−tn
x2

) → 0 (where γτ := σ(γ, τ), i.e. γτ (s) := γ(τ + t) for all s ∈ S)
as n→∞ and, consequently,

(12) ρ(γx1(−tn), γx2(−tn)) ≤ ρ(γ−tn
x1

, γ−tn
x2

) → 0.

Since γx1 6= γx2 , then there exists t0 ∈ S such that γx1(t0) 6= γx2(t0). Let γ̃xi(t) :=
γxi

(t+ t0) for all t ∈ S, then γ̃xi
∈ Φω0 and from inequality (12) we have

(13) ρ(γ̃x1(−tn), γ̃x2(−tn)) → 0.

as n→∞,−tn−t0 → −∞. Thus we found ω0 := h(γxi
(t0)) and x̃i := pr1γxi

(t0) (i =
1, 2), x̃1, x̃2 ∈ Jω0 (x̃1 6= x̃2) and the entire trajectories γx̃i

∈ Φx̃i
(i = 1, 2)

such that γx̃1 and γx̃2 are proximal (see (13)). But (13) and (10) are contra-
dictory. Thus the negative distality of the non-autonomous dynamical system
〈(Φ,S, σ), (Ω,S, σ),H〉 is proved.

Now we can prove that for any ω ∈ Ω and x ∈ Jω the set Φx contains a unique
entire trajectory. In fact, if it is not true, then there exists ω0 ∈ Ω and x0 ∈ Jω0

and two different trajectories γ1, γ2 ∈ Φx0(γ1 6= γ2). In virtue of above γ1 and γ2

are negatively distal with respect to 〈(Φ,S, σ), (Ω,S, σ),H〉, i.e.

α(γ1, γ2) := inf
t≤0

ρ(γt
1, γ

t
2) > 0.

It is easy to check that from the conditional compactness of the set J it follows that
the set Φ of the NDS 〈(Φ,S, σ), (Ω,S, σ),H〉 is so. According to Lemmas 4.4-4.9 we
have the sequence {t1n} → +∞ such that

(14) γ
t1n
j → γj

as n→∞ (j = 1, 2). In particularly from (14) we obtain

(15) γj(s) = lim
n→∞

γj(s+ t1n)

for all s ∈ S. Since γ1(t) = γ2(t) for all t ≥ 0 then from (15) we have γ1 = γ2. The
obtained contradiction proves our statement.

Third step: let now π̃ be a mapping from S× J into J defined by equality

π̃(t, x) = π(t, x) if t ≤ 0 and γx(t) if t < 0

for all x ∈ J , where γx is a unique entire trajectory of the dynamical system
(X,T, π) passing through point x and belonging to J . To prove that (J,S, π̃) is
a two-sided dynamical system on J it is sufficient to verify the continuity of the
mapping π̃. Let x ∈ J, t ∈ S−, xn → x and tn → t, then there is a l0 > 0 such
that tn ∈ [−l0, l0] and, consequently,

(16) ρ(π̃(tn, xn), π̃(t, x)) = ρ(πtn+l0γxn
(−l0), πt+l0γx(−l0)) ≤

ρ(πtn+l0γxn
(−l0), πtn+l0γx(−l0)) + ρ(πtn+l0γx(−l0), πt+l0γx(−l0)).

Reasoning as in the proof of Lemma 4.6 it is possible to establish that the sequence
{γxn} is relatively compact in C(S, J) and that every limit point of this sequence
γ ∈ Φ and γ(0) = x. Taking into account the result of the second step we claim
that γxn

→ γx uniformly on every segment [−l, l] ⊂ S (l > 0). In particular,
γxn

(−l0) → γx(−l0). Passing now to limit in inequality (16) when n → ∞ we
obtain the continuity of mapping π̃ in the point (t, x).
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Consider the two-sided NDS 〈(J,S, π), (Ω,S, σ), h〉. Let ω ∈ Ω. Under the condi-
tions of Theorem we may apply Lemmas 4.4-4.9 and, consequently, E−ω = E+

ω = Eω.
From the last equality we have two sequences {tin} (i = 1, 2) such that t1n → +∞,
t2n → −∞ and lim

n→+∞
π(tin, x) = x for all x ∈ Jω. The theorem is completely

proved. �

Theorem 4.11. Let 〈(X,T, π), (Ω,S, σ), h〉 be a NDS with the following properties:

(i) It admits a conditionally relatively compact invariant set J ;
(ii) The point ω0 ∈ Ω is two-sided Poisson stable and Jω0 6= ∅;
(iii) The set Jω0 of NDS 〈(X,T, π), (Ω,S, σ), h〉 is positively uniformly stable,

i.e., ∀ε > 0 there exists δ(ε) > 0 such that ρ(x1, x2) < δ (x1, x2 ∈ Jω0)
implies ρ(x1t, x2t) < ε ∀ t ≥ 0;

(iv) Every point ω ∈ Ω is two-sided Poisson stable.

Then

(i) all motions on Jω0 may be continued uniquely to the left;
(ii) there are two sequences {t1n} → +∞ and {t2n} → −∞ such that

π(tin, x) → x

as n→∞ for all x ∈ Jω0 .

Proof. This statement my be proved with slight modification the proof of Theorem
4.10. �

5. Almost Automorphic Motios of V -Monotone NDS.

5.1. Recurrent, Almost Periodic and Almost Automorphic Motions. Let
(X,T, π) be a dynamical system.

Definition 5.1. A number τ ∈ T is called an ε > 0 shift of x (respectively, almost
period of x), if ρ(xτ, x) < ε (respectively, ρ(x(τ + t), xt) < ε for all t ∈ T).

Definition 5.2. A point x ∈ X is called almost recurrent (respectively, Bohr almost
periodic), if for any ε > 0 there exists a positive number l such that at any segment
of length l there is an ε shift (respectively, almost period) of point x ∈ X.

Definition 5.3. If the point x ∈ X is almost recurrent and the set H(x) :=
{xt | t ∈ T} is compact, then x is called recurrent.

Definition 5.4. A point x ∈ X of the dynamical system (X,T, π) is called Levitan
almost periodic [25], if there exists a dynamical system (Y,T, σ) and a Bohr almost
periodic point y ∈ Y such that Ny ⊆ Nx.

Remark 5.5. Let xi ∈ Xi (i = 1, 2, . . . ,m) be a Levitan almost periodic point of
the dynamical system (Xi,T, πi). Then the point x := (x1, x2, . . . , xm)) ∈ X :=
X1 × X2 × . . . × Xm is also Levitan almost periodic in the product dynamical
system (X,T, π), where π : T × X → X is defined by the equality π(t, x) :=
(π1(t, x1), π2(t, x2), . . . , πm(t, xm)) for all t ∈ T and x := (x1, x2, . . . , xm) ∈ X.
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Definition 5.6. A point x ∈ X is called stable in the sense of Lagrange (st.L), if
its trajectory {π(t, x) : t ∈ T} is relatively compact.

Definition 5.7. A point x ∈ X is called almost automorphic in the dynamical
system (X,T, π), if the following conditions hold:

(i) x is st.L;
(ii) there exists a dynamical system (Y,T, σ), a homomorphism h from (X,T, π)

onto (Y,T, σ) and an almost periodic in the sense of Bohr point y ∈ Y such
that h−1(y) = {x}.

Remark 5.8. 1. Every almost automorphic point x ∈ X is also Levitan almost
periodic.

2. A Levitan almost periodic point x with relatively compact trajectory {π(t, x) t ∈
T} is also almost automorphic (see [2, 3], [4], [25], [31] and also [17] and [26]). In
other words, an Levitan almost periodic point x is almost automorphic if and only
if its trajectory {π(t, x) t ∈ T} is relatively compact.

Lemma 5.9. [11] Let (X,T, π) and (Y,T, σ) be two dynamical systems, x ∈ X and
the following conditions be fulfilled:

(i) a point y ∈ Y is Levitan almost periodic;
(ii) Ny ⊆ Nx.

Then the point x is Levitan almost periodic, too.

Corollary 5.10. Let x ∈ X be a st.L point, y ∈ Y be an almost automorphic point
and Ny ⊆ Nx. Then the point x is almost automorphic too.

Proof. Let y be an almost automorphic point, then by Lemma 5.9 the point x ∈
X is Levitan almost periodic. Since x is st.L, then by Remark 5.8 it is almost
automorphic. �

Remark 5.11. We note (see, for example, [25] and [30]) that if y ∈ Y is a station-
ary (τ -periodic, almost periodic, quasi periodic, recurrent) point of the dynamical
system (Y,T2, σ) and h : Y → X is a homomorphism of the dynamical system
(Y,T2, σ) onto (X,T1, π), then the point x = h(y) is a stationary (τ -periodic, al-
most periodic, quasi periodic, recurrent) point of the system (X,T1, π).

Lemma 5.12. [11] If y ∈ Y is an almost automorphic point of the dynamical system
(Y,T, σ) and h : Y → X is a homomorphism of the dynamical system (Y,T, σ) into
(X,T, π), then the point x = h(y) is an almost automorphic point of the system
(X,T, π).

5.2. The Principle of Invariance for V -Monotone NDS.

Theorem 5.13. Suppose that the following conditions hold:

(i) ω ∈ Ω is a two-sided Poisson stable point;
(ii) the NDS 〈(X, T, π), (Ω,S,Θ), h〉 admits a conditionally precompact invari-

ant set J ;
(iii) 〈(X, T, π), (Ω,S, σ), h〉 be a V -monotone non-autonomous dynamical sys-

tem and there are two functions a, b ∈ K such that
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(a) Im(a) = Im(b), where Im(a) is the set of the values of a ∈ K;
(b) a(ρ(x1, x2)) ≤ V (x1, x2) ≤ b(ρ(x1, x2)) for all x1, x2 ∈ X (h(x1) =

h(x2)).

Then V (x1t, x2t) = V (x1, x2) for all t ∈ S and x1, x2 ∈ Jω.

Proof. Let x1, x2 ∈ Jω. Under the conditions of Theorem 5.13 by Lemma 3.5 and
Theorem 4.10 there are two sequences {t1n} → +∞ and {t2n} → −∞ such that

(17) π(tin, x) → x (i = 1, 2)

as n → ∞ for all x ∈ Jω. Define the function ψ : S 7→ R+ by equality ψ(s) :=
V (x1s, x2s) for all s ∈ S. It easy to check that 0 ≤ ψ(s) ≤ ψ(0) for all s ∈ S+ and
ψ(s1) ≤ ψ(s2) for all s1 ≤ s2 (s1, s2 ∈ S+). Thus there exists lim

s→+∞
ψ(s) = ψ0 ∈

[0, ψ(0)]. According to relation (17) we have ψ0 = lim
n→+∞

V (x1(s+t1n), x2(s+t1n)) =

V (x1s, x2s) for every s ∈ S and, consequently, ψ0 = ψ(0). �

Corollary 5.14. Suppose that the following conditions hold:

(i) every point ω ∈ Ω is two-sided Poisson stable;
(ii) the NDS 〈(X, T, π), (Ω,S, σ), h〉 admits a conditionally precompact invari-

ant set J ;
(iii) 〈(X, T, π), (Ω,S, σ), h〉 be a V -monotone non-autonomous dynamical sys-

tem and there are two functions a, b ∈ K such that
(a) Im(a) = Im(b), where Im(a) is the set of the values of a ∈ K;
(b) a(ρ(x1, x2)) ≤ V (x1, x2) ≤ b(ρ(x1, x2)) for all x1, x2 ∈ X (h(x1) =

h(x2)).

Then V (x1t, x2t) = V (x1, x2) for all t ∈ S, x1, x2 ∈ Jω and ω ∈ Ω.

5.3. Comparability of Motions by the Character of Recurrence. In this
subsection following B. A. Shcherbakov we introduce the notion of comparability of
motions of dynamical system by the character of their recurrence. While studying
stable in the sense of Poisson motions this notion plays the very important role
(see, for example, [29, 30]).

Let (X,T, π) and (Y,T, σ) be dynamical systems, x ∈ X and y ∈ Y . Denote by
Mx,p := {{tn} ⊂ R | {xtn} → p}, Lx,p := {{tn} ⊆ Mx,p | {tn} → ∞}, L+∞

x,p the set
of the sequences {tn} ∈ Mx,p such that tn → +∞. Assume L+∞

x (M) := ∪{Lx,p :
p ∈M} and L+∞

x = L+∞
x (X) .

Definition 5.15. A point x ∈ X is called comparable by the character of recurrence
with y ∈ Y w.r.t. M ⊂ Y or, in short, comparable with y w.r.t. the set M if
L+∞

y (M) ⊆ L+∞
x .

Denote by H(M) := {π(t, x) : x ∈M, t ∈ T}. Let (Y,S, σ) be a group dynamical
system.

Lemma 5.16. [6, 9] If L+∞
y,q ⊆ L+∞

x,p , then L+∞
y,σ(t,q) ⊆ L+∞

x,π(t,p) for all t ∈ T ⊆ S.

Corollary 5.17. Under the conditions of Lemma 5.16 if L+∞
y (M) ⊆ L+∞

x , then
L+∞

y (ΣM ) ⊂ L+∞
x where ΣM := {π(t, x) : x ∈M, t ∈ T}.
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Lemma 5.18. [6, 9] If L+∞
y,q ⊆ L+∞

x , then there exists a single point p ∈ ωx :=
∩t≥0∪τ≥txτ such that L+∞

y,q ⊆ L+∞
x,p .

Theorem 5.19. [6, 9] If a point x is comparable with y w.r.t. the set M , then
there exists a continuous mapping h : σ(T,ΣM ) → ωx satisfying the condition

(18) h(σ(t, q)) = π(t, h(q))

for all q ∈ σ(T,ΣM ) and t ∈ T.

Let a point x be comparable with y w.r.t. M . Note that at the point of view of
applications (see, for example, [4, 29, 30]) the following cases are the most impor-
tant.

1. L+∞
y,y ⊆ L+∞

x,x .

As it is shown in [29, 30], the inclusion L+∞
y,y ⊆ L+∞

x,x takes place if and only if
Ny ⊆ Nx. As it was mentioned in section 1.2 of the chapter I[9], the inclusion
Ny ⊆ Nx takes place if and only if x is comparable by recurrence with y.

2. L+∞
y ⊆ L+∞

x and L+∞
y,y ⊆ L+∞

x,x .

Assume M+
y = {{tn} : {tn} ∈ My, tn ∈ T+}.

Definition 5.20. We will call the point x strongly comparable (in positive direction)
with y if L+∞

y,y ⊆ L+∞
x,x and L+∞

y ⊆ L+∞
x .

The next theorem takes place.

Theorem 5.21. [6, 9] The following statements are equivalent:

1) The point x is strongly comparable with y.
2) There exists a continuous mapping h : H+(y) → H+(x) (H+(x) :=

{xt | t ≥ 0}) satisfying the condition (18) for all q ∈ H+(y) and t ∈ T+,
and besides h(y) = x.

3) M+
y ⊆ M+

x .

Remark 5.22. From Theorem 5.21 and from the results of the works [29, 30] follows
that the strong comparability of the point x with y is equivalent to their uniform
comparability if the point y is st. L+. In general case these notions are apparently
different (though we do not know the according example).

3. L+∞
y ⊆ L+∞

x .

Definition 5.23. We will say that the point x is comparable in limit (in positive
direction) with the point y if L+∞

y ⊆ L+∞
x .

5.4. Comparability of Motions by the Character of Recurrence of V -
Monotone NDS.

Definition 5.24. (X, ρ) is called [24] a metric space with segments if for any
x1, x2 ∈ X and α ∈ [0, 1], the intersection of B[x1, αr] (the closed ball centered at
x with radius αr, where r = ρ(x1, x2)) and B[x2, (1 − α)r] has a unique element
S(α, x1, x2).
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Definition 5.25. The metric space (X, ρ) is called [24] strict-convex if (X, ρ) is a
metric space with segments, and for any x1, x2, x3 ∈ X, x2 6= x3, and α ∈ (0, 1),
the inequality ρ(x1, S(a, x2, x3)) < max{ρ(x1, x2), ρ(x1, x3)} holds.

Definition 5.26. A subset C of X is said to be metric-convex (see [24]) if S(α, x1, x2) ∈
C for any α ∈ (0, 1) and x1, x2 ∈ C.

Definition 5.27. A Banach space X is said to be:

(i) uniformly convex, if for each 0 < ε ≤ 2 there exists δ(ε) > 0 such that
|x|, |y| ≤ 1 and |x− y| ≥ ε implies |x+ y| ≤ 2(1− δ(ε));

(ii) strictly convex, if for any x, y ∈ X with |x| = |y| = 1 and x 6= y, |λx +
(1− λ)y| < 1 for λ ∈ (0, 1).

Remark 5.28. 1. Uniformly convex Banach spaces are strictly convex, but the
converse is not true.

2. If (X, | · |) is a strictly convex Banach space, then the metric space (X, ρ)
(ρ(x1, x2) := |x1 − x2|) is metric-convex.

3. If M is a convex subset of strictly convex Banach space (X, | · |), then the metric
space (M,ρ) (ρ(x1, x2) := |x1 − x2|) is metric-convex.

4. Every convex closed subset X of the Hilbert space H equipped with metric
ρ(x1, x2) = |x1 − x2| is strictly metric-convex.

For any subset C of X we denote by convC the closed convex envelope of C, i.e.
convC is the intersection of all closed, metric-convex sets containing C.

Lemma 5.29. [10] Let (M,ρ) be a compact strictly metric-convex space and E be
a compact sub-semigroup of isometries of the semi-group MM (i.e. E ⊆ MM and
ρ(ξx1, ξx2) = ρ(x1, x2) for all ξ ∈ E and x1, x2 ∈M). Then there exists a common
fixed point x̄ ∈M of E, i.e. ξ(x̄) = x̄ for all ξ ∈ E.

Theorem 5.30. Suppose that the following conditions hold:

(i) ω ∈ Ω be a two-sided Poisson stable point;
(ii) 〈(X, T, π), (Ω,S, σ), h〉 be a V -monotone non-autonomous dynamical sys-

tem and
(a) there are two functions a, b ∈ K such that

(i) Im(a) = Im(b), where Im(a) is the set of the values of a ∈ K;
(ii) a(ρ(x1, x2)) ≤ V (x1, x2) ≤ b(ρ(x1, x2)) for all x1, x2 ∈ X

(h(x1) = h(x2));
(b) V (x1, x2) = V (x2, x1) for all (x1, x2) ∈ X×̇X;
(c) V (x1, x2) ≤ V (x1, x3) + V (x3, x2) for all x1, x2, x3 ∈ X with the

condition h(x1) = h(x2) = h(x3);
(iii) the space (Xω, Vω) is strictly metric-convex for all ω ∈ Ω, where Xω :=

h−1(ω) := {x ∈ X | h(x) = ω } (ω ∈ Ω) and Vω := V |Xω×Xω
;

(iv) the NDS 〈(X, T, π), (Ω,S, σ), h〉 admits a conditionally precompact invari-
ant set J ⊆ X such that the set Jω is metric-convex.

Then there exists at least one point x ∈ Jω such that Nω ⊆ Nx.
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Proof. According to Lemma 3.5 the NDS 〈(X, T, π), (Ω,S, σ), h〉 is uniformly stable
in the positive direction. By Theorem 4.10 under the conditions of Theorem 5.30
the semi-group dynamical system (X,T, π) defines on J a group dynamical system
(J,S, π). Then under the conditions of Theorem 5.30, Eω 6= ∅ is a compact sub-
semigroup of the Ellis semigroup E(J,S, π). According to Theorem 5.13, we have
V (ξ(x1), ξ(x2)) = V (x1, x2) for all (x1, x2) ∈ Jω × Jω and ξ ∈ E(J,S, π) and
consequently, under the conditions of Theorem 5.30 we have a strictly metric-convex
(with respect to the complete metric Vω := V |Jω × Jω) compact set Jω and a
compact semigroup of isometries Eω acting on Jω. Applying Lemma 5.29, we
obtain a common fixed point x ∈ Jω. Now we will prove that Nω ⊆ Nx. In fact,
let {tn} ∈ Nω. Under the conditions of Theorem the set Q := ∪{π(tn, Jω) | n ∈ N}
is compact. If x1 and x2 are two accumulation points of the sequence {xtn}, then
there are {tin} ⊆ {tn} such that {xtin} → xi (i = 1, 2). On the other hand since the
set Q := ∪{π(tn, Jω) | n ∈ N} is compact we may suppose that the sequences {πti

n}
(πtn : Jω 7→ Q) is pointwise convergent and ξi (i = 1, 2) is its limit. Then ξi(x) = xi

and x1 = ξ1(x) = x = ξ2(x) = x2. Thus the sequence {xtn} is relatively compact
and admits a unique accumilation point and, consequently, it is convergent. The
theorem is proved. �

Corollary 5.31. Under the conditions of Theorem 5.30 the point x is stationary
(τ (τ > 0) - periodic, almost automorphic, almost periodic in the sense of Levitan,
almost recurrent, Poisson stable), if the point ω ∈ Ω is stationary (τ (τ > 0)
- periodic, almost automorphic, almost periodic in the sense of Levitan, almost
recurrent, Poisson stable).

Definition 5.32. A set M ⊂ X is called minimal with respect to a dynamical
system (X,T, π) if it is nonempty, closed and invariant and if no proper subset of
M has these properties.

Theorem 5.33. Suppose that the following conditions hold:

(i) Ω is a compact minimal set;
(ii) 〈(X, T, π), (Ω,S, σ), h〉 be a V -monotone non-autonomous dynamical sys-

tem and
(a) V (x1, x2) = V (x2, x1) for all (x1, x2) ∈ X×̇X;
(b) V (x1, x2) ≤ V (x1, x3) + V (x3, x2) for all x1, x2, x3 ∈ X with the

condition h(x1) = h(x2) = h(x3);
(iii) the space (Xω, Vω) is strictly metric-convex for all ω ∈ Ω;
(iv) the NDS 〈(X, T, π), (Ω,S, σ), h〉 admits a compact invariant set J ⊆ X

such that the set Jω (ω ∈ Ω) is metric-convex.

Then for all ω0 ∈ Ω there exists at least one point xω0 ∈ Jω0 such that Mω0 ⊆ Mxω0
.

Proof. According to Theorems 3.4 and 4.10, under the conditions of Theorem 5.13
the semi-group dynamical system (X,T, π) defines on J a group dynamical system
(J,S, π). Let ω0 ∈ Ω be an arbitrary point of Ω and E = E(J,S, π) be the Ellis
semigroup of the dynamical system (J,S, π), i.e. E(J,S, π) = {πt | t ∈ S }, where
by bar we denote the close in JJ (JJ is equipped with the topology of Tihonoff). We
denote by Eω0 := {ξ ∈ E | ξ(Jω0) ⊆ Jω0}. Then under the conditions of Theorem
5.13, Eω0 6= ∅ is a compact sub-semigroup of Ellis semi-group E. According to
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Theorem 4.10, we have V (ξ(x1), ξ(x2)) = V (x1, x2) for all (x1, x2) ∈ Jω0 × Jω0

and consequently, under the conditions of Theorem 5.13 we have a strictly metric-
convex (with respect to the complete metric Vω0 := V |Jω0 × Jω0) compact set
Jω0 and a compact semi-group of isometries Eω0 acting on Jω0 . Applying Lemma
5.29, we obtain a common fixed point x̄ω0 ∈ Jω0 . We denote by Σ := H(x̄ω0) =
{x̄ω0t | t ∈ S }. It is clear that Σ is a compact invariant set of (J,S, π). Obviously,
Σω0 := Σ

⋂
Jω0 = {xω0}. We will prove that Σω := Σ

⋂
Jω contains a single point

x̄ω. It is evident that Σω 6= ∅ for all ω ∈ Ω, because Ω and Σ are compact invariant
sets and Ω is minimal. Now we will prove that Σω contains exactly one point.
If we suppose the contrary, then there exist ω ∈ Ω and x1, x2 ∈ Σω such that
x1 6= x2. Since the set Ω is minimal, then there exists a sequence {tn} → −∞
such that ωtn → ω0 as n → +∞. Taking into consideration the compactness
of Σ, we may suppose that the sequences {xitn} (i = 1, 2) are convergent. We
denote by x′i = lim

n→+∞
xitn. It is clear that x′i ∈ Σω0 and, consequently, x′1 = x′2.

On the other hand, according to Theorem 4.10 the dynamical system (J,S, π) is
distal in negative direction and, consequently, x′1 6= x′2. The obtained contradiction
proves our statement. Thus, we have a compact invariant set Σ ⊆ J with the
following property Σω = Σ

⋂
Jω = {xω} for all ω ∈ Ω. It is easy to verify that

Mω0 ⊆ Mxω0
. �

Corollary 5.34. Under the conditions of Theorem 5.13 the point xω0 is stationary
(τ (τ > 0) - periodic, quasi-periodic, almost periodic, almost automorphic, recur-
rent), if the point ω ∈ Ω is stationary (τ (τ > 0) - periodic, quasi-periodic, almost
periodic, almost automorphic, recurrent).

6. On the Structure of Bounded Motions V -Monotone NDS

Theorem 6.1. Let 〈(X,T, π), (Ω,S, σ), h〉 be a V - monotone non-autonomous
dynamical system and the following conditions hold:

(i) V (x1, x2) = V (x2, x1) for all (x1, x2) ∈ X×̇X;
(ii) V (x1, x2) ≤ V (x1, x3) + V (x3, x2) for all x1, x2, x3 ∈ X with condition

h(x1) = h(x2) = h(x3);
(iii) the space (Xω, Vω) is strict metric-convex for all ω ∈ Ω, where Xω =

h−1(ω) = {x ∈ X | h(x) = ω} (ω ∈ Ω) and Vω = V |Xω×Xω .

If γxi ∈ Φxi ( i = 1, 2), x1, x2 ∈ Xω (ω ∈ Ω) and V (γx1(t), γx2(t)) = V (x1, x2) for
all t ∈ S, then the function γ : S → X (γ(t) := S(α, γx1(t), γx2(t)) for all t ∈ S)
defines an entire trajectory of dynamical system (X,T, π).

Proof. Let ω ∈ Ω, α ∈ [0, 1] and x1, x2 ∈ Xω. We denote by x := S(α, x1, x2). Let
γxi ∈ Φxi (i = 1, 2). Consider the function γ : S → J defined by equality

(19) γ(t) := S(α, γx1(t), γx2(t))

for all t ∈ S. We will show that γ is an entire trajectory of (X,T, π) with condition
γ(0) = x. In fact, under the conditions of Theorem

V (γ1(t), γ2(t)) = V (x1, x2) = d
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for all t ∈ S. Since V (γ1(t), γ(t)) = αd for all t ∈ S and 〈(X,T, π), (Ω,T, σ), h〉 is V
- monotone, we have

V (γ1(t+ τ), πtγ(τ)) = V (πtγ1(τ), πtγ(τ)) ≤ V (γ1(τ), γ(τ)) ≤ αd

and

V (γ2(t+ τ), πtγ(τ)) = V (πtγ2(τ), πtγ(τ)) ≤ V (γ2(τ), γ(τ)) ≤ (1− α)d

and, consequently,
πtγ(τ) ∈ S(α, γ1(t+ τ), γ2(t+ τ))

and so πtγ(τ) = γ(t + τ) for all τ ∈ S and t ∈ T. Now we will prove that the
function γ is continuous. It is clear that γ is continuous on T. Let t0 ∈ S, t0 ≤ 0
and t = t0 + h (|h| < δ, δ > 0), then we have

(20) ρ(γ(t0 + h), γ(t0)) = ρ(πt0+|t0|+δ+hγ(−|t0| − δ), πt0+|t0|+δγ(−|t0| − δ)).

Passing to limit in (20) as h→ 0 we obtain lim
h→0

γ(t0 + h) = γ(t0). �

Theorem 6.2. Under the conditions of Theorem 6.1 if in additionally

(i) there exists a function a ∈ K with property lim
t→+∞

a(t) = +∞ such that

a(ρ(x1, x2)) ≤ V (x1, x2) for all (x1, x2) ∈ X×̇X;
(ii) γx1 ∈ Φx1 (x1 ∈ Xω) is bounded (i.e. the set γx1(S) is bounded in X);
(iii) γx2 ∈ Φx2 ( x2 ∈ Xω) and V (γx1(t), γx2(t)) = V (x1, x2) for all t ∈ S.

Then

(i) γx2 is bounded too;
(ii) the function γ : S → X (γ(t) := S(α, γx1(t), γx2(t)) for all t ∈ S) defines a

bounded entire trajectory of dynamical system (X,T, π).

Proof. Note that a(ρ(γx1(t), γx2(t))) ≤ V (γx1(t), γx2(t) = V (x1, x2) for all t ∈ S.
From the last inequality we obtain

(21) ρ(γx1(t), γx2(t))) ≤ a−1(V (x1, x2))

for all t ∈ S. Taking into account the boudedness of γx1 and (21) we ontain the
boundedness of γx2 .

Let ω ∈ Ω, xi ∈ Xω, γxi ∈ Φxi (i = 1, 2) α ∈ (0, 1) and γ(t) := S(α, γx1(t), γx2(t))
for all t ∈ S, then γ(0) = x := S(α, x1, x2) and by Theorem 6.1 γ is a bounded
entire trajectory of dynamical system (X,T, π). �

7. Applications

Lemma 7.1. Let 〈W,ϕ, (Ω,T2, σ)〉 be a cocycle, 〈(X,T1, π), (Ω,T2, σ), h〉 be the
NDS generated by cocycle ϕ (X = W × Ω, π := (ϕ, σ), h := pr2 : X 7→ Ω and
T1 ⊆ T2) and ϕ(T1, u0, ω0) ((u0, ω0) ∈ W × Ω) be relatively compact subset of W.
Then the set J := H(x0) := {π(t, x0) | t ∈ T1} is conditionally relatively compact
with respect to NDS 〈(X,T1, π), (Ω,T2, σ), h〉, where x0 := (u0, ω0) ∈ X.
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Proof. Let K ⊆ Ω be an arbitrary compact subset of Ω and {xn} ⊆ h−1(K) ∩ J
(xn = (un, ωn)). Since h(xn) = ωn ∈ K, then the sequence {ωn} is relatively
compact. For xn ∈ J = H(x0) there exists tn ∈ T1 such that

(22) max{ρ(ω0, σ(tn, ω0), ωn), ρ(ϕ(tn, u0, ω0), un)} ≤ 1
n

(n ∈ N). From the inequality (22) it follows that the sequence {un} is relatively
compact, because {ϕ(tn, u0, ω0)} is so. Thus the sequence {xn} := {(un, ωn)} is
relatively compact. �

7.1. Almost Periodic and Almost Automorphic Solutions of Forced Vec-
torial Liénard Equations. Let (Ω,R, σ) be a two-sided dynamical system. Con-
sider the following vectorial Liénard equation

(23) u′′(t) +
d

dt
[∇F (u(t))] + Cu(t) = f(ωt),

where ωt := σ(t, ω), f ∈ C(Ω, Em), C : Em 7→ Em is a symmetric and nonsingular
linear operator, and∇F denotes the gradient of the convex function F on Em. If the
operator C is positive definite, then by introducing the product space Em ×Em '
E2m endowed with the inner product associated to the quadratic form Q given by

Q(u, v) := |u|2 + 〈C−1v, v〉,

the equation (23) can be put the form

(24) U ′(t) +G(ωt, U(t)) = 0,

where G ∈ C(Ω × E2m, E2m) and the partial function G(ω, ·, ·) is monotone for
each ω ∈ Ω with respect to inner product associated to Q, i.e. for each ω ∈ Ω

〈G1(ω, u1, v1)−G1(ω, u2, v2), u1 − u2〉+
〈C−1(G2(ω, u1, v1)−G2(ω, u2, v2)), v1 − v2〉 ≥ 0,(25)

for all u1, u2, v1 and v2 ∈ Em. Indeed, by letting v(t) := u′(t) +∇F (u(t)); U(t) :=
(u(t), v(t)), equation (23) reduces to

U ′(t) +∇Φ(U(t)) + JU(t) = F(ωt)

where Φ(u, v) := F (u), J :=
(

0 −I
C 0

)
and F(ω) := (0, f(ω)).

Lemma 7.2. [15] Let I the interval [0,+∞) or the whole real line R. Let f(t) :=
f(ωt) (∀t ∈ I) bounded on I. If u ∈ C2(I,Rn) is a bounded on I solution of
equation (23), then u′ and u′′ are bounded on I too.

Theorem 7.3. The following statements hold:

(i) Let ω0 ∈ Ω be a τ -periodic (almost automorphic, almost periodic in the
sense of Levitan, almost recurrent, stable in the sense of Poisson) point.
If the equation (23) admits a bounded on R solution u0, then (23) has at
least one τ -periodic (almost automorphic, almost periodic in the sense of
Levitan, almost recurrent, stable in the sense of Poisson) solution u such
that Nω0 ⊆ Nu.
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(ii) Let ω0 ∈ Ω be a τ -periodic (quasi-periodic, almost periodic in the sense
of Bohr, recurrant in the sense of Birkhoff) point. If the equation (23)
admits a bounded on R solution u0, then (23) has at least one τ -periodic
(quasi-periodic, almost periodic in the sense of Bohr, recurrant in the sense
of Birkhoff) solution u such that Mω0 ⊆ Mu.

Proof. Consider the equation (24). By Lemma 7.2 it admits a bounded on R
solution U0(t) := (u0(t), u′0(t)) (t ∈ R).

Denote by ϕ the cocycle associated by equation (23), where ϕ(t, x, ω) is the solution
of equation (23) with initial condition ϕ(0, x, ω) = x and x = (u, v). Let X = Ω×
Rn, (X,R+, π) be a skew-product dynamical system and 〈(X,R+, π), (Ω,R, σ), h〉
be a nonautonomous dynamical system, generated by equation (24). Denote by
V : X → R+ the function defined by equality V(ω, (u1, v1), (u2, v2)) := 1

2 (〈u1 −
u2, u1 − u2〉+ 〈C−1(v1 − v2), v1 − v2〉) for all (ω, (ui, vi)) ∈ X := Ω×Rn (i = 1, 2),
then

V (ωt, ϕ(t, x1, ω), ϕ(t, x2, ω)) =
1
2
(〈ϕ1(t, x1, ω)− ϕ1(t, x2, ω)), ϕ1(t, x1, ω)− ϕ1(t, x2, ω)〉+

〈C−1(ϕ2(t, x1, ω))− ϕ2(t, x2, ω), ϕ2(t, x2, ω)− ϕ2(t, x2, ω))〉
(ϕ := (ϕ1, ϕ2)). Since

dV (ωt, ϕ(t, x1, ω), ϕ(t, x2, ω))
dt

= 〈G1(ωt, ϕ1(t, x1, ω))−G1(ωt, ϕ1(t, x2, ω)),

ϕ1(t, x1, ω)− ϕ1(t, x2, ω)〉+ 〈C−1(G2(ωt, ϕ1(t, x1, ω))−G2(ωt, ϕ1(t, x2, ω))),
ϕ2(t, x1, ω)− ϕ2(t, x2, ω)〉,

then by (25) one has V (ωt, ϕ(t, x1, ω), ϕ(t, x2, ω)) ≤ V (ω, x1, x2) for all ω ∈ Ω, x1,
x2 ∈ X and t ∈ R+.

Let u0 be a bounded on R solution of equation (23), then by Lemmma 7.2 U0 :=
(u0, u

′
0) is the bounded on R solution of equation (24). Let x0 := U0(0) ∈ Rn×Rn,

V := co(ϕ(R, x0, ω0)) be the compact convex hull of the set ϕ(R, x0, ω0) and Iω :=
{x ∈ V | such that ϕ(t, x, ω) is a solusion of (23) defined on R and ϕ(R, x, ω) ⊆ V
}. It easy to veryfy that Iω is a nonempty and compact subset of V. According
to Theorem 6.2 the set Iω0 is convex. Now to finish the proof of Theorem it is
sufficient to refere Theorems 5.30 and 5.33 (see also Corollaries 5.31 and 5.34). �

Example 7.4. We consider the equation

(26) x′′ + p(x)x′ + ax = f(ωt),

where p ∈ C(R,R), f ∈ C(Ω,R) and a is a positive number. Denote by y =
x′ + F(x), where F(x) =

∫ x

0
p(s)ds, then we obtain the system{

x′ = y −F(x)

y′ = −ax+ f(ωt).

Theorem 7.5. Suppose the following conditions hold:

(i) p(x) ≥ 0 for all x ∈ R;
(ii) the equation (26) admits a bounded on R solution.
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Then

(i) if ω0 ∈ Ω is a τ -periodic (almost automorphic, almost periodic in the sense
of Levitan, almost recurrent, stable in the sense of Poisson) point, then
the equation (26) has at least one τ -periodic (almost automorphic, almost
periodic in the sense of Levitan, almost recurrent, stable in the sense of
Poisson) solution u such that Nω0 ⊆ Nu.

(ii) if ω0 ∈ Ω is a τ -periodic (quasi-periodic, almost periodic in the sense of
Bohr, recurrant in the sense of Birkhoff) point, then (26) has at least one
τ -periodic (quasi-periodic, almost periodic in the sense of Bohr, recurrant
in the sense of Birkhoff) solution u such that Mω0 ⊆ Mu.

Proof. Denote by F (x) :=
∫ x

0

∫ η

0
p(s)dsdη, then p(x)x′ = dF ′(x)

dt and F ′′(x) =
p(x) ≥ 0. Now our statement it follows from Theorem 7.3. �

7.2. Dissipative diferential equation. Let X be a real Banach space with the
norm | · | and X∗ its dual with the dual norm | · |. The value of f ∈ X∗ will be
denote by 〈x, f〉. Let J : X 7→ X∗ be the duality mapping of X [1, 33], i.e., for
x ∈ X, J(x) := {f ∈ X∗ | 〈x, f〉 = |x|2 = |f |2}.

Definition 7.6. The mapping F : X 7→ X is called dissipative, if for any x, y ∈ X,

(27) 〈F (x)− F (y), f〉 ≤ 0

for f ∈ J(x− y).

If X is a Hilbert space, then for any x ∈ X, J(x) = x, hence (27) become

〈F (x)− F (y), x− y〉 ≤ 0

for x, y ∈ X.

Lemma 7.7. [18] Let F : Ω×X 7→ X be a continuous function and for each ω ∈ Ω
the partial mapping F (ω, ·) : X 7→ X is dissipative in x. If x(t) and y(t) are two
solutions on interval (a, b) ⊆ R of the equation

(28) x′ = F (ωt, x) (ω ∈ Ω),

then
|x(t)− y(t)| ≤ |x(s)− y(s)|

for a ≤ s ≤ t ≤ b.

Corollary 7.8. Let F : Ω×X 7→ X be a continuous function and for each ω ∈ Ω
the partial mapping F (ω, ·) : X 7→ X is dissipative in x. Then the problem Cauchy

x′ = F (ωt, x), x(t0) = x0

admits at most one solution.

Theorem 7.9. Suppose the following conditions hold:

(i) X is a real and strictly convex Banach space;
(ii) F ∈ C(Ω×X,X);
(iii) for each ω ∈ Ω the mapping F (ω, ·) : X 7→ X is dissipative;
(iv) the equation (28) has a relatively compact on R solution u(t) (i.e. u(t) is

a solution of equation (28) defined on R and u(R) is relatively compact).
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Then

(i) If ω0 ∈ Ω is a τ -periodic (almost automorphic, almost periodic in the
sense of Levitan, almost recurrent, stable in the sense of Poisson) point,
then (28) has at least one τ -periodic (almost automorphic, almost periodic
in the sense of Levitan, almost recurrent, stable in the sense of Poisson)
solutin w̄ such that Nω0 ⊆ Nw̄.

(ii) If ω0 ∈ Ω is a quasi-periodic (almost periodic in the sense of Bohr, re-
currant in the sense of Birkhoff) point, then (28) has at least one quasi-
periodic (almost periodic in the sense of Bohr, recurrent in the sense of
Birkhoff) solution w̄ such that Mω0 ⊆ Mw̄.

Proof. Let u0 := u(0), V := convϕ(R, u0, ω0) (ϕ(t, u0, ω0) := u(t)) X̃ := V × Ω.
Denote by X := {(u, ω) ∈ X̃ | such that the equation (28) admits a unique
solution ϕ(t, u, ω) ∈ V (∀t ∈ R) }. Note that X is a closed subset of V × Ω. In
fact, let (u, ω) ∈ X̄ (by X̄ is denoted the closure of X in V × Ω), then there exists
a sequence {(un, ωn)} ⊆ X such that {(un, ωn)} → (u, ω) as n → ∞. Thus the
sequence {ωn} → ω as n → ∞ and ϕ(R, un, ωn) ⊆ V . Now we will prove that
the sequence {ϕ(t, un, ωn)} converges to ϕ(t, u, ω) uniformly with respect to t on
every interval [−L,L] ⊂ R (L > 0). For this end we remark that ϕ(t, un, ωn)′ =
F (ωnt, ϕ(t, un, ωn)) (∀t ∈ R) and, consequently, |ϕ(t, un, ωn)′| ≤ M(ω, u, L) for all
t ∈ [−L,L], where M(L) := max{|F (ω, v)| : ω ∈ Ω, v ∈ K(L)} and

K(L) := ∪{ϕ(t, un, ωn) | t ∈ [−L,L], n ∈ N}.

By Arzelà-Ascoli Theorem the sequence {ϕ(t, un, ωn)} is relatively compact in
compact-open topology. Note that every point of accumulation of this sequence
is a solution of the equation (28) passing though the point u ∈ V at the initial
moment t = 0. According to Corollary 7.8 the equation (28) admits at most one
solution with initial data u(0) = u. This means that the sequence {ϕ(t, un, ωn)} is
relatively compact and it has at most one point of accumulation and, consequently,
it is convergent and lim

n→∞
ϕ(t, un, ωn) = ϕ(t, u, ω) for all t ∈ R, i.e., (u, ω) ∈ X.

Now we can define onX a dynamical system as follow: π(t, (u, ω)) := (ϕ(t, u, ω), ωt)
for all (u, ω) ∈ X and t ∈ R. Let h := pr2 : X 7→ Ω be the mapping defined by equal-
ity h(u, ω) := ω. It easy to check that h is a homomorphism from (X,R, π) onto
(Ω,R, σ) and, consequently, the triplet 〈(X,R, π), (Ω,R, σ), h〉 is a non-autonomous
dynamical system (generated by equation (28) and its solution ϕ(t, u0, ω0)). Finally
we rmark that the space X is conditionally relatively compact. To finish the proof
of Theorem it is sufficient to apply Theorems 5.30 and 5.33 (see also Corollaries
5.31 and 5.34). �

Example 7.10. In quality of example which illustrates this theorem we can consider
the following equation

u′ = g(u) + f(θtω),
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where f ∈ C(Ω,R) and

g(u) =


(u+ 1)2 : u < −1

0 : |u| ≤ 1

−(u− 1)2) : u > 1.

7.3. The second order equation w′′+B(ωt, w′)+Aw = f(ωt). Let A be a nxn
positive definite matrixe and A1/2 its square root, B ∈ C(Ω×Rn, Rn). We consider
the second order equation

(29) w′′ +B(ωt, w′) +Aw = f(ωt) (ω ∈ Ω).

Letting u := A1/2w, v := w′, the equation (29) reduces to the first order equation u′ = A1/2v

v′ = −A1/2u−B(ωt, v) + f(ωt).

If for each ω ∈ Ω the mapping −B(ω, ·) : Rn 7→ Rn is dissipative, i.e.,

〈B(ω, u)−B(ω, v), u− v〉 ≥ 0

for all u, v ∈ Rn, then for each ω ∈ Ω, F (ω, u, v) := (A1/2v,−A1/2u−B(ω, v)+f(ω))
is dissipative in (u, v) ∈ Rn × Rn. Thus from Theorem 7.9 one has the following

Corollary 7.11. Suppose the following conditions hold:

(i) A is a positive definite matrix;
(ii) B : Ω× Rn 7→ Rn and f : Ω 7→ Rn are continuous functions;
(iii) The equation (29) admits a bounded on R solution w such that w′ is

bounded too.

Then the following statements hold:

(i) If ω0 ∈ Ω is a τ -periodic (almost automorphic, almost periodic in the
sense of Levitan, almost recurrent, stable in the sense of Poisson) point,
then (29) has at least one τ -periodic (almost automorphic, almost periodic
in the sense of Levitan, almost recurrent, stable in the sense of Poisson)
solution w̄ such that Nω0 ∈ Nw̄.

(ii) If ω0 ∈ Ω is a quasiperiodic (almost periodic in the sense of Bohr, recurant
in the sense of Birkhoff) point, then (26) has at least one qusiperiodic
(almost periodic, recurrent) solution w̄ such that Mω0 ∈ Mw̄.
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