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TOMÁS CARABALLO AND DAVID CHEBAN

Abstract. In this paper we continue the research started in a previous paper,
where we proved that the linear differential equation

(1) x′ = A(t)x + f(t)

with Levitan almost periodic coefficients has a unique Levitan almost periodic
solution, if it has at least one bounded solution and the bounded solutions of
the homogeneous equation

(2) x′ = A(t)x

are homoclinic to zero (i.e. lim
|t|→+∞

|ϕ(t)| = 0 for all bounded solution ϕ of (2)).

If the coefficients of (1) are Bohr almost periodic and all bounded solutions
of equation (2) are homoclinic to zero, then the equation (1) admits a unique
almost automorphic solution.

In this second part we first generalise this result for linear functional dif-
ferential equations (FDEs) of the form

(3) x′ = A(t)xt + f(t),

as well as for neutral FDEs.
Analogous results for functional difference equations with finite delay and

some classes of partial differential equations are also given.
We study the problem of existence of Bohr/Levitan almost periodic solu-

tions of differential equations of type (3) in the context of general semi-group
non-autonomous dynamical systems (cocycles), in contrast with the group
non-autonomous dynamical systems framework considered in the first part.

Dedicated to Russell Johnson on his 60th birthday

1. Introduction

The aim of this paper is to analyse the existence of Bohr/Levitan almost periodic
and almost automorphic solutions of linear evolution differential/difference equa-
tions (functional differential equations with finite delay, neutral functional differ-
ential equations, functional difference equations with finite delay and some classes
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of partial differential equations) with Bohr/Levitan almost periodic and almost
automorphic coefficients without Favard’s separation condition.

In our paper [5], this problem was studied for ordinary differential (and difference)
equations (the reader can also find in our paper [5] a large bibliography about
different generalizations of Favard’s theory and some information about applications
of Ellis semigroup in this theory). In particular, we established the following result:

The linear differential equation

(4) x′ = A(t)x + f(t)

with Levitan almost periodic coefficients possesses a unique Levitan almost periodic
solution, if it has at least one bounded solution and the bounded solutions of the
homogeneous equation

(5) x′ = A(t)x

are homoclinic to zero (i.e. lim
|t|→+∞

|ϕ(t)| = 0 for all bounded solution ϕ of (5)).

If the coefficients of (4) are Bohr almost periodic, and all bounded solutions of
equation (5) (respectively, of all limiting equations

(6) y′ = B(t)y,

where B ∈ H(A) := {At : t ∈ R}, At(s) := A(t + s), and by bar we denote the
closure in the compact–open topology) homoclinic to zero, then, equation (1) admits
a unique almost automorphic (respectively, Bohr almost periodic) solution.

This paper is organized as follows.

In Section 2, we collect some well known facts from the theory of dynamical systems
(both autonomous and non-autonomous). Namely, the notions of almost periodic
(both in the Bohr and Levitan senses), almost automorphic and recurrent motions,
shift dynamical systems, almost periodic and almost automorphic functions, co-
cycle, skew-product dynamical systems, and general non-autonomous dynamical
systems. We also recall some results from our first part [5] which will be also
necessary for our analysis in this paper.

Section 3 is devoted to the study of some general properties of one-sided (semi-
group) non-autonomous dynamical systems which permit to extend Theorems 2.6
and 2.11 in our first part [5] to this class of systems. To this respect, it is worth
pointing out that, in contrast with the situations in [5], the examples considered
in the present paper only generate semi-group dynamical systems and, therefore,
the theory developed in [5] cannot be applied directly to them. Moreover, in order
to prove the abstract results in Section 3, new ideas and techniques are necessary.
The situation is as follows. Every functional differential (respectively, functional
difference or evolution partial differential equation) generates a semi-group non-
autonomous dynamical system under some appropriate assumptions. Then, we
prove that there exists a two-sided subsystem of the original one-sided one, but
being single-valued in the positive direction and set-valued (generally speaking) in
the negative direction. So, it is not possible to apply directly the theory developed in
our first part [5]. Then, we prove that this system can be embedded into a Bebutov
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dynamical system (shift dynamical systems on the space of entire trajectories),
which is a two-sided single-valued dynamical system.

This construction can be considered as a “bridge” between two-sided single-valued
dynamical systems (for which we can apply Theorems 2.6 and 2.11) and one-sided
dynamical systems, allowing to transport our results in part I to the context of
semi-group non-autonomous dynamical systems.

In Section 4, we will apply our general results from Section 3 to the analysis of the
existence of Bohr (respectively, Levitan) almost periodic and almost automorphic
solutions of different classes of evolution equations (functional differential/difference
equations with finite delay, neutral functional differential equations, linear partial
differential equations) with Bohr almost periodic (respectively, Levitan almost pe-
riodic) and almost automorphic coefficients.

2. Preliminaries on the Theory of Dynamical Systems

We recall in this section some concepts about dynamical systems and some results
from [5] which will be useful for our investigation in this paper.

2.1. Bohr/Levitan Almost Periodic and Almost Automorphic Motions.
Let X be a complete metric space, R (Z) be the group of real (integer) numbers, T
be one of the two sets R or Z.

Let S ⊆ T be a sub-semigroup of the group T and 0 ∈ S. Denote by (X, S, π) a
dynamical system, i.e. π : S × X 7→ X is a continuous mapping with π(0, x) = x
and π(t1 + t2, x) = π(t2, π(t1, x)) for all x ∈ X and t1, t2 ∈ S.
Given ε > 0, a number τ ∈ T is called an ε−shift (respectively, an ε−almost period)
of the point x ∈ X, if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ + t, x), π(t, x)) < ε for
all t ∈ T).

A point x ∈ X is called almost recurrent (respectively, Bohr almost periodic), if
for any ε > 0 there exists a positive number l such that in any segment of length l
there is an ε−shift (respectively, ε−almost period) of the point x ∈ X.

If the point x ∈ X is almost recurrent and the set H(x) := {π(t, x) | t ∈ T} is
compact, then x is called recurrent, where by bar we denote the closure in X.

Denote by Nx := {{tn} ⊂ T : such that {π(tn, x)} → x and {tn} → ∞}.
A point x ∈ X of the dynamical system (X,T, π) is called Levitan almost periodic
[13], if there exists a dynamical system (Y,T, λ) and a Bohr almost periodic point
y ∈ Y such that Ny ⊆ Nx.

A point x ∈ X is called stable in the sense of Lagrange (st.L for short), if its
trajectory {π(t, x) : t ∈ T} is relatively compact.

A point x ∈ X is called almost automorphic [13, 20] for the dynamical system
(X,T, π), if the following conditions hold:

(i) x is st.L;
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(ii) there exists a dynamical system (Y,T, λ), a homomorphism h from (X,T, π)
onto (Y,T, λ), and an almost periodic (in the sense of Bohr) point y ∈ Y
such that h−1(y) = {x}.

Remark 2.1. 1. Every almost automorphic point x ∈ X is also Levitan almost
periodic.

2. A Levitan almost periodic point x with relatively compact trajectory {π(t, x) : t ∈
T} is also almost automorphic (see [1]–[4],[8], [10],[14] and [20]). In other words, a
Levitan almost periodic point x is almost automorphic, if and only if its trajectory
{π(t, x) : t ∈ T} is relatively compact.

3. Let (X, T, π) and (Y, T, λ) be two dynamical systems, x ∈ X and the following
conditions be fulfilled:

(i) a point y ∈ Y is Levitan almost periodic;
(ii) Ny ⊆ Nx.

Then, the point x is also Levitan almost periodic.

4. Let x ∈ X be a st.L point, y ∈ Y be an almost automorphic point and Ny ⊆ Nx.
Then, the point x is almost automorphic too.

2.2. Shift Dynamical Systems, Almost Periodic and Almost Automorphic
Functions. Let us recall now a general method to construct dynamical systems
on the space of continuous functions. This fact will be important in order to
obtain a two-sided dynamical system from a one-sided one, as we explained in the
Introduction.

Let (X,T, π) be a dynamical system on X, Y a complete pseudo metric space, and P
a family of pseudo metrics on Y . We denote by C(X, Y ) the family of all continuous
functions f : X → Y equipped with the compact-open topology. This topology is
given by the following family of pseudo metrics {dp

K} (p ∈ P, K ∈ K(X)), where

dp
K(f, g) := max

x∈K
p(f(x), g(x))

and K(X) denotes the family of all compact subsets of X. For all τ ∈ T we define a
mapping στ : C(X, Y ) → C(X,Y ) by the following equality: (στf)(x) := f(π(τ, x))
(x ∈ X). We note that the family of mappings {στ : τ ∈ T} possesses the next
properties:

a. σ0 = idC(X,Y );
b. στ1 ◦ στ2 = στ1+τ2 , ∀τ1, τ2 ∈ T,
c. στ is continuous ∀τ ∈ T.

Lemma 2.2. [7] The mapping σ : T×C(X,Y ) → C(X, Y ), defined by the equality
σ(τ, f) := στf (f ∈ C(X, Y ), τ ∈ T), is continuous and, consequently, the triple
(C(X, Y ),T, σ) is a dynamical system on C(X, Y ).

Consider now a useful example of dynamical system of the form (C(X, Y ),T, σ).

Example 2.3. Let X = T, and denote by (X,T, π) a dynamical system on T,
where π(t, x) := x + t. The dynamical system (C(T, Y ),T, σ) is called Bebutov’s
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dynamical system [17] (a dynamical system of translations, or shifts dynamical
system). For example, the equality

d(f, g) := sup
L>0

max{dL(f, g), L−1},

where dL(f, g) := max
|t|≤L

ρ(f(t), g(t)), defines a complete metric (Bebutov’s metric) on

the space C(T, Y ) which is compatible with the compact open topology on C(T, Y ).

Remark 2.4. It is known [17, 19] that d(f, g) < ε (respectively, d(f, g) > ε or
d(f, g) = ε) is equivalent to the inequality d 1

ε
(f, g) < ε (respectively, d 1

ε
(f, g) > ε

or d 1
ε
(f, g) = ε).

It is said that the function ϕ ∈ C(T, Y ) possesses a property (A) if the motion
σ(·, ϕ) : T → C(T, Y ), generated by the function ϕ, possesses this property in the
Bebutov dynamical system (C(T, Y ),T, σ). As property (A) we can take periodicity,
almost periodicity, almost automorphy, recurrence, etc.

2.3. Cocycles, Skew-Product Dynamical Systems, and Non-Autonomous
Dynamical Systems. Let Ti (i=1,2) be a sub-semigroup of T and 0 ∈ T1 ⊆ T2 ⊆
T. A triplet 〈(X,T1, π), (Y,T2, λ), h〉, where h is a homomorphism from (X,T1, π)
onto (Y,T2, λ), is called a non-autonomous dynamical system.

Let (Y,T2, λ) be a dynamical system on Y , W a complete metric space, and ϕ a
continuous mapping from T1 ×W × Y in W , possessing the following properties:

a. ϕ(0, u, y) = u (u ∈ W,y ∈ Y );
b. ϕ(t + τ, u, y) = ϕ(τ, ϕ(t, u, y), λ(t, y)) (t, τ ∈ T1, u ∈ W, y ∈ Y ).

Then the triplet 〈W,ϕ, (Y,T2, λ)〉 (or shortly ϕ) is called [16] a cocycle on (Y,T2, λ)
with the fiber W .

Let 〈W,ϕ, (Y,T2, λ)〉 be a given cocycle, let X := W × Y, and define a mapping
π : T1 × X → X as follows: π(t, (u, y)) := (ϕ(t, u, y), λ(t, y)) (i.e. π = (ϕ, λ)).
Then it is easy to see that (X,T1, π) is a dynamical system on X, which is called a
skew-product dynamical system [16], and h = pr2 : X → Y is a homomorphism from
(X,T1, π) onto (Y,T2, λ) and, hence, 〈(X,T1, π), (Y,T2, λ), h〉 is a non-autonomous
dynamical system.

Thus, if we have a cocycle 〈W,ϕ, (Y,T2, λ)〉 on the dynamical system (Y,T2, λ) with
the fiber W , then it generates a non-autonomous dynamical system 〈(X,T1, π),
(Y,T2, λ), h〉 (X := W × Y ), called a non-autonomous dynamical system generated
by the cocycle 〈W,ϕ, (Y,T2, λ)〉 on (Y,T2, λ).

Notice that non-autonomous dynamical systems (cocycles) play a very important
role in the study of non-autonomous evolutionary differential/difference equations
since, under appropriate assumptions, every non-autonomous differential equation
generates a cocycle (a non-autonomous dynamical system).

2.4. Comparability and Uniform Comparability of Motions by the Char-
acter of Recurrence in the Sense of Shcherbakov. Let (Ω,T, λ) be a dynam-
ical system. A point ω ∈ Ω is called (see, for example, [19] and [21]) positively
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(negatively) stable in the sense of Poisson, if there exists a sequence tn → +∞
(respectively, tn → −∞) such that λ(tn, ω) → ω. If the point ω is Poisson stable in
both directions, it is called Poisson stable.

Let (X, h, Ω) be a fiber space, i.e. X and Ω be two metric spaces and h : X → Ω
is a homomorphism from X into Ω. The subset M ⊆ X is said to be conditionally
relatively compact [6, 7], if the pre-image h−1(Ω′)

⋂
M of every relatively compact

subset Ω′ ⊆ Ω is a relatively compact subset of X, in particular Mω := h−1(ω)
⋂

M
is relatively compact for every ω. The set M is called conditionally compact if it is
closed and conditionally relatively compact.

Now we recall some results proved in [5] for a group non-autonomous dynamical
systems, and which will be useful for the analysis in this paper.

Lemma 2.5. [5] Let 〈W,ϕ, (Ω,T, λ)〉 be a cocycle, and 〈(X,T, π), (Ω,T, λ), h〉 a
non-autonomous dynamical system associated to the cocycle ϕ. Suppose that x0 :=
(u0, ω0) ∈ X := W × Ω and the set Q(u0,ω0) := {ϕ(t, u0, ω0) | t ∈ T} (respectively,
Q+

(u0,ω0)
:= {ϕ(t, u0, ω0) | t ∈ T+}, where T+ := {t ∈ T | t ≥ 0}) is compact.

Then the set H(x0) := {π(t, x0) | t ∈ T} (respectively, {π(t, x0) | t ∈ T+} :=
H+(x0)) is conditionally compact.

Let 〈(X,T, π), (Ω,T, λ), h〉 be a two-sided (a group) non-autonomous dynamical
system, and ω ∈ Ω be a Poisson stable point. Denote by

Eω := {ξ| ∃{tn} ∈ Nω such that π(tn, ·)|Xω → ξ},
where Xω := {x ∈ X| h(x) = ω} and → means the pointwise convergence.

Theorem 2.6. [5] Let X be a conditionally compact metric space and 〈(X,T, π),
(Ω,T, λ), h〉 be a non-autonomous dynamical system. Suppose that the following
conditions are fulfilled:

(i) there exists a Poisson stable point ω ∈ Ω;
(ii) lim

|t|→+∞
ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ Xω := h−1(ω) = {x ∈ X :

h(x) = ω}.
Then, there exists a unique point xω ∈ Xω such that ξ(xω) = xω for all ξ ∈ Eω.

A point x ∈ X is called [17]–[19] comparable with ω ∈ Ω by the character of recur-
rence if Nω ⊆ Nx.

Remark 2.7. If a point x ∈ X is comparable with ω ∈ Ω by the character of re-
currence, and if ω is stationary (respectively, τ -periodic, recurrent, Poisson stable),
then so is the point x (see [19]).

Corollary 2.8. [5] Let X be a conditionally compact metric space and 〈(X,T, π),
(Ω,T, λ), h〉 a non-autonomous dynamical system. Suppose that the following con-
ditions are fulfilled:

(i) there exists a Poisson stable point ω ∈ Ω;
(ii) lim

|t|→+∞
ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ Xω := h−1(ω) = {x ∈ X :

h(x) = ω}.
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Then, there exists a unique point xω ∈ Xω, which is comparable with ω ∈ Ω by the
character of recurrence, and such that

(7) lim
|t|→+∞

ρ(π(t, x), π(t, xω)) = 0

for all x ∈ Xω.

Corollary 2.9. [5] Let ω ∈ Ω be a stationary (respectively, τ -periodic, almost
automorphic, recurrent, Levitan almost periodic, Poisson stable) point. Then under
the conditions of Corollary 2.8 there exists a unique stationary (respectively, τ -
periodic, almost automorphic, recurrent, Levitan almost periodic, Poisson stable)
point xω ∈ Xω such that the equality (7) holds for all x ∈ Xω.

Denote by Mω := {{tn} ⊂ T | the sequence {λ(tn, ω)} is convergent }.
A point x ∈ X is called uniformly comparable with ω ∈ Ω by the character of
recurrence (see [17]–[19]) if Mω ⊆ Mx.

Remark 2.10. If a point x ∈ X is uniformly comparable with ω ∈ Ω by the
character of recurrence, and ω is stationary (respectively, τ -periodic, Bohr almost
periodic, almost automorphic, recurrent, Poisson stable), then, so is the point x
(see [17]–[19]).

Theorem 2.11. [5] Let X be a compact metric space, and 〈(X,T, π), (Ω,T, λ), h〉
a non-autonomous dynamical system. Suppose that the following conditions are
fulfilled:

(i) there exists a Poisson stable point ω ∈ Ω;
(ii) lim

|t|→+∞
ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ X such that h(x1) = h(x2).

Then, there exists a unique point xω ∈ Xω, which is uniformly comparable with
ω ∈ Ω by the character of recurrence, and such that (7) takes place for all x ∈ Xω.

Corollary 2.12. [5] Let ω ∈ Ω be a stationary (respectively, τ -periodic, Bohr
almost periodic, recurrent, Poisson stable) point. Then, under the conditions of
Theorem 2.11, there exists a unique stationary (respectively, τ -periodic, Bohr almost
periodic, recurrent, Poisson stable) point xω ∈ Xω such that (7) is fulfilled for all
x ∈ Xω.

3. Semi-group Dynamical Systems

Now we prove similar results to the ones in [5] (and which have been stated in
Section 2), but for one-sided (semi-group) non-autonomous dynamical systems. The
reason is that the applications to be analysed in Section 4 only generate semigroups
rather than groups.

Let 〈(X,T+, π), (Ω,T, λ), h〉 (respectively, 〈W,ϕ, (Ω,T, λ)〉, where ϕ : T+×W×Ω 7→
W ) be a semi-group non-autonomous dynamical system (respectively, a semi-group
cocycle), where T+ := {t ∈ T | t ≥ 0}.
A continuous mapping γ : T 7→ X (respectively, ν : T 7→ W ) is called an entire
trajectory of the semi-group dynamical system (X,T+, π) (respectively, semi-group
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cocycle 〈W,ϕ, (Ω,T, λ)〉 or shortly ϕ) passing through the point x (respectively,
(u, ω)), if γ(0) = x (respectively, ν(0) = u) and π(t, γ(s)) = γ(t + s) (respectively,
ϕ(t, ν(s), λ(s, ω)) = ν(t + s)) for all t ∈ T+ and s ∈ T.

Remark 3.1. Let (X,T+, π) be a skew-product dynamical system generated by
semi-group cocycle 〈W,ϕ, (Ω,T, λ)〉 (X := W×Ω and π := (ϕ, λ), i.e. π(t, (u, ω)) :=
(ϕ(t, u, ω), λ(t, ω))), then γ is an entire trajectory of the semi-group dynamical sys-
tem (X,T+, π) passing through the point x = (u, ω) if and only if γ = (ν, IdΩ),
where ν is an entire trajectory of the semi-group cocycle 〈W,ϕ, (Ω,T, λ)〉 passing
through the point (u, ω) and IdΩ is the identity mapping acting onto Ω.

Lemma 3.2. Consider a semi-group cocycle 〈W,ϕ, (Ω,T, λ)〉 and suppose that the
following conditions hold:

(i) the positive semi-trajectory ϕ(T+, u0, ω0) of the cocycle ϕ is relatively com-
pact, i.e. the set Q := ϕ(T+, u0, ω0) is compact;

(ii) the point ω0 ∈ Ω is Poisson stable in the positive direction.

Then, there exist a point u ∈ Q and an entire trajectory ν of the semi-group cocycle
ϕ passing through the point x := (u, ω0) such that ν(T) ⊆ Q.

Proof. Since the point ω0 ∈ Ω is Poisson stable in the positive direction, then there
is a sequence {τn} → +∞ such that λ(τn, ω0) → ω0. Denote by νn the function
from C(T,W ) defined by the equality νn(t) = ϕ(t + τn, u0, ω0) for all t ≥ −τn

and νn(t) = u0 for all t ≤ −τn. We will show that the sequence {νn} is relatively
compact in C(T,W ). To this end it is sufficient to show that the sequence {νn} is
equi-continuous on every interval [−l, l] (l > 0), because νn(T) ⊆ Q by definition of
νn, and Q is a compact subset of W . If we suppose that it is not true, then there
exist l0, ε0 > 0, δn → 0 and t1n, t2n ∈ [−l0, l0] such that

(8) |t1n − t2n| < δn and ρ(νn(t1n), νn(t2n)) ≥ ε0

for all n ∈ N. Without loss of generality we can assume that τn ≥ l0 and, conse-
quently, νn(t) = ϕ(t+ τn, u0, ω0) for all t ∈ [−l0, l0]. From the last equality and (8)
we have

ε0 ≤ ρ(ϕ(t1n + τn, u0, ω0), ϕ(t2n + τn, u0, ω0)) =(9)

ρ(ϕ(t1n + l0, ϕ(τn − l0, u0, ω0), λ(τn − l0, ω0)),

ϕ(t2n + l0, ϕ(τn − l0, u0, ω0), λ(τn − l0, ω0)).

Due to our assumptions, {σ(τn − l0, ω0)} → σ(−l0, ω0) and the sequence {ϕ(τn −
l0, u0, ω0)} can be considered convergent. Let ū := lim

n→∞
ϕ(τn − l0, u0, ω0) and

t̄ := lim
n→∞

t1n = lim
n→∞

t2n. Then, taking limits in (9) as n →∞, we obtain

ε0 ≤ ρ(ϕ(l0 + t̄, ū, λ(−l0, ω0)), ϕ(l0 + t̄, ū, λ(−l0, ω0))) = 0.

This contradiction proves our statement.

Thus, the sequence {νn} is relatively compact in C(T, W ) and, consequently, with-
out loss of generality we can suppose that it is convergent. Denote by ν its limit.
Then, it is easy to see that ν(0) = u := lim

n→∞
ϕ(τn, u0, ω0) and ν(t+s) = lim

n→∞
ϕ(t+
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s + τn, u0, ω0) = lim
n→∞

ϕ(t, ϕ(s + τn, u0, ω0), λ(s + τn, ω0)) = ϕ(t, ν(s), λ(s, ω0)) for
all t ∈ T+ and s ∈ T. ¤

Remark 3.3. 1. Consider a semi-group cocycle 〈W,ϕ, (Ω,T, λ)〉 and suppose that
the positive semi-trajectory ϕ(T+, u0, ω0) of the cocycle ϕ is relatively compact.
Let x0 := (u0, ω0), then the subset H+(x0) := {π(t, x0) | t ∈ T+} is conditionally
compact in the bundle fiber space (X,h, Ω) (X := W × Ω and h := pr2 : X 7→ Ω),
because H+(x0) ⊆ Q× Ω (Q := ϕ(T+, u0, ω0)).

2. Under the conditions of Lemma 3.2 the non-autonomous dynamical system
〈(X,T+, π), (Ω,T, λ), h〉, generated by the cocycle ϕ, has at least one entire tra-
jectory γ with h(γ(0)) = ω0 such that γ(T) ⊆ H+(x0).

Lemma 3.4. Consider a semi-group dynamical system 〈(X,T+, π), (Ω,T, λ), h〉
and suppose that the following conditions hold:

(i) the subset H+(x0) ⊆ X is conditionally compact;
(ii) the point ω0 := h(x0) ∈ Ω is Poisson stable in the positive direction.

Then, there exist a point x ∈ H+(x0) and an entire trajectory γ of the semi-group
dynamical system (X,T+, π)) passing through the point x such that γ(T) ⊆ H+(x0).

Proof. Since the point ω0 ∈ Ω is Poisson stable in the positive direction, then
there is a sequence {τn} → +∞ such that λ(τn, ω0) → ω0. Denote by γn the
function from C(T, X) defined by equality γn(t) = π(t + τn, x0) for all t ≥ −τn

and γn(t) = x0 for all t ≤ −τn. We will show that the sequence {γn} is relatively
compact in C(T, X). Let l > 0, and Ω

′ ⊆ Ω be a compact subset containing the
sequence {ωn} (ωn := λ(τn, ω0)) and its limit ω0). Since the set λ([−l, l],Ω

′
) is

compact, then the set M ∩ h−1(λ([−l, l], Ω
′
)) is compact as well. In particular,

the set ∪∞n=1γn([−l, l]) ⊆ M ∩ h−1(λ([−l, l], Ω
′
)) is relatively compact. Now we

will verify that the sequence {γn} is equi-continuous on the interval [−l, l]. If we
suppose that it is not true, then there exist ε0 > 0, δn → and t1n, t2n ∈ [−l, l] such
that

(10) |t1n − t2n| < δn and ρ(γn(t1n), γn(t2n)) ≥ ε0

for all n ∈ N. Without loss of generality, we may consider that the sequence
{γn(−l)} is convergent, and denote its limit by x̄. From inequality (10) we have

(11) ε0 ≤ ρ(γn(t1n), γn(t1n)) = ρ(π(l + t1n, γn(−l)), π(l + t2n, γn(−l))).

Passing to the limit in equation (11) as n →∞, and taking into consideration (13),
we obtain ε0 ≤ ρ(π(l + t̄, x̄), π(l + t̄, x̄)) = 0, where t̄ := lim

n→∞
t1n = lim

n→∞
t2n. This

contradiction proves our statement. Thus, the sequence {γn} is equi-continuous
on [−l, l], and the set ∪∞n=1γn([−l, l]) is relatively compact. Taking into account
that the number l > 0 is arbitrary we conclude that the sequence {γn} is relatively
compact in C(T, X). We may suppose that the sequence {γn} is convergent. Denote
by γ := lim

n→∞
γn, then g(0) = x := lim

n→∞
π(τn, x0) and γ is an entire trajectory of

(X,T+, π) such that γ(T) ⊆ H+(x0), because by construction γn(T) ⊆ H+(x0) for
all n ∈ N. ¤
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This result will allow us to construct below a group non-autonomous dynamical
system on the space of entire trajectories which is induced by a semigroup non-
autonomous dynamical system.

The entire trajectory γ of the semigroup dynamical system (X,T+, π) is said to
be comparable with ω ∈ Ω by the character of recurrence ((Ω,T, λ) is a two-sided
dynamical system) if Nω ⊆ Nγ , where Nγ := {{tn} ⊂ R | such that the sequence
{γ(t + tn)} converges uniformly with respect to t on every compact from T, i.e. it
converges in the space C(T, X).

Remark 3.5. Let 〈(X,T+, π), (Ω,T, λ), h〉 be a semi-group non-autonomous dy-
namical system, and M a subset of X. Denote by M̃ := {x ∈ M | there exists at
least one entire trajectory γ of (X,T+, π) passing through the point x with condition
γ(T) ⊆ M}. It is easy to see that the set M̃ is invariant, i.e. π(t, M̃) = M̃ for all
t ∈ T+. Moreover, M̃ is the maximal invariant set which is contained in M .

Denote by Φ(M) the family of all entire trajectories γ of a semi-group dynamical
system (X,T+, π) with condition γ(T) ⊆ M .

Lemma 3.6. Assume that 〈(X,T+, π), (Ω,T, λ), h〉 is a semi-group non-autonomous
dynamical system, M a conditionally compact subset of X, and M̃ 6= ∅. Then, the
following statements hold:

(i) the set M̃ is closed;
(ii) Ω̃ := h(M̃) is a closed and invariant subset of (Ω,T, λ);
(iii) Φ(M) is a closed and shift invariant subset of C(T,M) and, consequently,

a shift dynamical system (Φ(M),T, σ) is induced on Φ(M) by the Bebutov
dynamical system (C(T,M),T, σ);

(iv) the mapping H : Φ(M) 7→ Ω̃ defined by the equality H(γ) := h(γ(0)) is a
homomorphism of the dynamical system (Φ(M),T, σ) onto (Ω̃,T, λ), i.e.
the map H is continuous and

(12) H(σ(t, γ)) = λ(t,H(γ))

for all γ ∈ Φ(M) and t ∈ T;
(v) the set Φ(M) is conditionally compact with respect to (Φ(M), Ω̃,H);
(vi) if γ1, γ2 ∈ Φ(M) and h(γ1(0)) = h(γ2(0)), then the following conditions

are equivalent:
a. lim

|t|→+∞
ρ(γ1(t), γ2(t)) = 0, where ρ is the distance on X;

b. lim
|t|→+∞

d(σ(t, γ1), σ(t, γ2)) = 0, where d is the Bebutov distance on

Φ(M).

Proof. (i) Let x := lim
n→∞

xn with xn ∈ M̃ . Then, for each n ∈ N, there exists

γn ∈ Φ(M) such that γn(0) = xn. We will show that the sequence {γn} is relatively
compact in C(T,M), i.e. with respect to the compact-open topology. Let l > 0,
and Ω

′ ⊆ Ω be a compact subset containing the sequence {ωn} (ωn := h(xn))
and its limit ω := h(x). Since the set λ([−l, l], Ω

′
) is compact, then the set M ∩

h−1(λ([−l, l],Ω
′
)) is also compact. In particular, the set ∪∞n=1γn([−l, l]) ⊆ M ∩

h−1(λ([−l, l],Ω
′
)) is relatively compact. Now we will check that the sequence {γn}
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is equi-continuous on the interval [−l, l]. If we suppose that it is not true, then
there exist ε0 > 0, δn → and t1n, t2n ∈ [−l, l] such that

(13) |t1n − t2n| < δn and ρ(γn(t1n), γn(t2n)) ≥ ε0

for all n ∈ N. Without loss of generality, we may consider that the sequence
{γn(−l)} is convergent and denote its limit by x̄. From inequality (13) we have

(14) ε0 ≤ ρ(γn(t1n), γn(t1n)) = ρ(π(l + t1n, γn(−l)), π(l + t2n, γn(−l))).

Passing to the limit in (14) as n →∞, and taking into account (13), we obtain ε0 ≤
ρ(π(l + t̄, x̄), π(l + t̄, x̄)) = 0, where t̄ := lim

n→∞
t1n = lim

n→∞
t2n. This is a contradiction

which proves our statement. Thus the sequence {γn} is equi-continuous on [−l, l]
and the set ∪∞n=1γn([−l, l]) is relatively compact. Noticing that the number l > 0
is arbitrary, we conclude that the sequence {γn} is relatively compact in C(T,M).
We may suppose that the sequence {γn} is convergent. Denote by γ := lim

n→∞
γn,

then g(0) = x and γ is an entire trajectory of (X,T+, π) such that γ(T) ⊆ M . This
means that the point x belongs to M̃, i.e. M̃ is closed.

(ii) Let us now prove that the set Ω̃ = h(M̃) is closed. Indeed, let ω := lim
n→∞

ωn,

where ωn ∈ Ω̃ and Ω
′ ⊆ Ω is a compact subset such that ω, ωn ∈ Ω

′
for all n ∈ N.

Since ωn ∈ Ω̃ = h(M̃), then there exists xn ∈ M̃ such that ωn = h(xn). On the
other hand, {xn} ⊂ M ∩ h−1(Ω

′
) and, consequently, it is relatively compact. We

may suppose that the sequence {xn} is convergent, and denote by x its limit. It is
clear that x ∈ M̃ , because M̃ is closed. It is now sufficient to note that h(x) = ω

and, consequently, ω ∈ Ω̃. From the equality

λ(t, Ω̃) = λ(t, h(M̃)) = h(π(t, M̃)) = h(M̃) = Ω̃, for all t ∈ T+,

the invariance of the set Ω̃ follows.

(iii) Let {γn} ⊂ Φ(M) and γ := lim
n→∞

γn. Then π(t, γ(s)) = lim
n→∞

π(t, γn(s)) =

lim
n→∞

γn(t+ s) = γ(t+ s) for all t ∈ T+ and s ∈ T, i.e. γ ∈ Φ(M) which means that

Φ(M) is closed in the space C(T,M). To establish the shift invariance of Φ(M) it is
sufficient to note that π(t, σ(τ, γ)(s)) = π(t, γ(τ +s)) = γ(t+ τ +s) = σ(τ, γ)(t+s)
for all t ∈ T+ and s ∈ T and, consequently, σ(τ, γ) ∈ Φ(M) for all γ ∈ Φ(M) and
τ ∈ T.

(iv) The continuity of the mapping H follows from its definition, because H =
Ev ◦ h is the composition of two continuous mappings: h : X 7→ Ω and Ev :
C(T, X) 7→ X, defined by equality Ev(γ) := γ(0). To finish the proof of this fourth
statement we note that λ(t,H(γ)) = λ(t, h(γ(0))) = h(π(t, γ(0))) = h(γ(t)) =
h(σ(t, γ)(0)) = H(σ(t, γ)) for all t ∈ T and γ ∈ Φ(M).

(v) We will prove now that the set Φ(M) is conditionally compact with respect
to (Φ(M), Ω̃, H). Let Ω

′ ⊆ Ω̃ be a compact subset, and {γn} a sequence in
Φ(M) ∩ h−1(Ω

′
). Reasoning as in the proof of the first statement, we can prove

that the sequence {γn} is relatively compact.

(vi) Finally, we will establish the last statement. The implication b.⇒ a. is
evident. Now, we prove that a. ⇒ b. If we suppose that it is not true, then there
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exist ε0 > 0 and |tn| → +∞ such that

(15) d(σ(tn, γ1), σ(tn, γ2)) ≥ ε0, ∀n ≥ 1.

Thanks to Remark 2.4, the inequality (15) is equivalent to

max
|t|≤ 1

ε0

ρ(γ1(t + tn), γ2(t + tn)) ≥ ε0.

Since the mappings γ1 and γ2 are continuous on T, then there exists a sequence
{τn} ⊂ [− 1

ε0
, 1

ε0
] such that

(16) ε0 ≤ max
|t|≤ 1

ε0

ρ(γ1(t + tn), γ2(t + tn)) = ρ(γ1(τn + tn), γ2(τn + tn)).

It is clear that |τn + tn| → +∞ as n → ∞, and passing to the limit in (16) as
n →∞, and taking into account condition a., we obtain ε0 ≤ 0. This contradiction
proves our statement, and the lemma is completely proved. ¤

Corollary 3.7. Under the conditions of Lemma 3.6, if the set M is compact, then
Φ(M) is also compact.

Theorem 3.8. Let 〈(X,T+, π), (Ω,T, λ), h〉 be a semi-group non-autonomous dy-
namical system. Suppose that the following conditions are fulfilled:

a. there exists a point x0 ∈ X such that H+(x0) is conditionally compact;
b. the point ω0 := h(x0) ∈ Ω is Poisson stable;
c.

lim
|t|→+∞

ρ(γ1(t), γ2(t)) = 0

for all entire trajectories γ1 and γ2 of the semi-group dynamical sys-
tem (X,T+, π) with the conditions: γi(T) ⊆ H+(x0) and h(g1(0)) =
h(g2(0)) = ω0.

Then, there exists a unique entire trajectory γ of (X,T+, π) possessing the following
properties:

(i) γ(T) ⊆ H+(x0);
(ii) h(γ(0)) = ω0;
(iii) γ is comparable with ω0 ∈ Ω by the character of recurrence.

Proof. Let M := H+(x0). Then, by Lemma 3.4, we have Φ(M) 6= ∅. Consider the
group non-autonomous dynamical system 〈(Φ(M),T, σ), (Ω̃,T, λ),H〉 constructed
in the proof of Lemma 3.6. By Lemma 3.4 the point ω0 belongs to Ω̃. According to
Lemma 3.6 all conditions of Corollary 2.8 are fulfilled and, consequently, we obtain
the existence of at least one entire trajectory γ of the dynamical system (X,T+, π)
possessing the properties listed in the theorem. To finish the proof of the theorem
it is sufficient to show that there exists at most one entire trajectory of (X,T+, π)
with the properties listed in the theorem. Let γ1 and γ2 be two entire trajectories
with necessary properties. In particular, γi(T) ⊆ H+(x0) and Nω0 ⊆ Nγi (i = 1, 2).
Under the conditions of the theorem we have

lim
|t|→+∞

d(σ(t, γ1), σ(t, γ2)) = 0.
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On the other hand, there exists a sequence {tn} ∈ Nω0 ⊆ Nγi (i = 1, 2) such that
|tn| → +∞ and, consequently, we have

d(γ1, γ2) = lim
n→+∞

d(σ(tn, γ1), σ(tn, γ2)) = 0,

i.e. γ1 = γ2, and the theorem is therefore proved. ¤

Corollary 3.9. Assume the Hypotheses of Theorem 3.8, as well as

lim
|t|→+∞

ρ(γ1(t), γ2(t)) = 0

for all entire trajectories γ1 and γ2 of the semi-group dynamical system (X,T+, π)
with the conditions: γi(T) (i=1,2) is conditionally compact and h(g1(0)) = h(g2(0)) =
ω0.

Then, there exists a unique entire trajectory γ of (X,T+, π), which is compara-
ble with ω0 ∈ Ω by the character of recurrence, and which satisfies the following
properties:

(i) γ(T) is conditionally compact;
(ii) h(γ(0)) = ω0.

Proof. This statement can be proved by a slight modification of the arguments in
the proof of Theorem 3.8. ¤

Corollary 3.10. Let ω0 ∈ Ω be a stationary (τ -periodic, almost automorphic, re-
current, Levitan almost periodic, Poisson stable) point. Then, under the conditions
of Theorem 3.8 there exists a unique stationary (τ -periodic, almost automorphic,
recurrent, Levitan almost periodic, Poisson stable) entire trajectory γ of the dynam-
ical system (X,T+, π) such that γ(T) ⊆ H+(x0).

Proof. This statement follows directly from Theorem 3.8 and Remark 2.7. ¤

The entire trajectory γ of the semi-group dynamical system (X,T+, π) is said to be
uniformly comparable with the point ω of the group dynamical system (Ω,T, λ) by
the character of recurrence, if Mω ⊆ Mγ , where Mγ := {{tn} ⊂ T | the sequence
σ(tn, γ) converges in the space C(T, X)}.
Theorem 3.11. Let 〈(X,T+, π), (Ω,T, λ), h〉 be a semi-group non-autonomous
dynamical system. Suppose that the following conditions are fulfilled:

a) there exists x0 ∈ X such that H+(x0) is compact;
b) the point ω0 := h(x0) ∈ Ω is recurrent;
c)

lim
|t|→+∞

ρ(γ1(t), γ2(t)) = 0

for all entire trajectories γ1 and γ2 of the semi-group dynamical system
(X,T+, π) with the conditions: γi(T) ⊆ H+(x0) and h(g1(0)) = h(g2(0)).

Then, there exists a unique entire trajectory γ of (X,T+, π) possessing the following
properties:

(i) γ(T) ⊆ H+(x0);
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(ii) h(γ(0)) = ω0;
(iii) γ is uniformly comparable by the character of recurrence with ω0 ∈ Ω.

Proof. Let M := H+(x0). Then, by Lemma 3.4 we have that Φ(M) 6= ∅. Con-
sider the group non-autonomous dynamical system 〈(Φ(M),T, σ), (Ω̃,T, λ), H〉 (see
Lemma 3.6 and its proof). By Lemma 3.4 the point ω0 belongs to Ω̃. According to
Lemma 3.6, all conditions of Theorem 2.11 are fulfilled and, consequently, we obtain
the existence of at least one entire trajectory γ of the dynamical system (X,T+, π)
which is uniformly comparable with ω0 ∈ Ω by the character of recurrence, and
γ(T) ⊆ H+(x0). To finish the proof it is sufficient to show that there exists at
most one entire trajectory of (X,T+, π) with the properties (i)-(iii). Let γ1 and
γ2 be two entire trajectories satisfying (i)-(iii). In particular, γi(T) ⊆ H+(x0) and
Mω0 ⊆ Mγi

(i = 1, 2). Then we also have Nω0 ⊆ Nγi
(i = 1, 2). From assumption

c) we obtain

lim
|t|→+∞

d(σ(t, γ1), σ(t, γ2)) = 0.

On the other hand, there exists a sequence {tn} ∈ Nω0 ⊆ Nγi (i = 1, 2) such that
|tn| → +∞ and, consequently,

d(γ1, γ2) = lim
n→+∞

d(σ(tn, γ1), σ(tn, γ2)) = 0,

i.e. γ1 = γ2, and proof is complete. ¤

Corollary 3.12. In addition to assumptions in Theorem 3.11, suppose that

lim
|t|→+∞

ρ(γ1(t), γ2(t)) = 0

for all entire trajectories γ1 and γ2 of the semi-group dynamical system (X,T+, π)
with the conditions: γi(T) (i=1,2) is conditionally compact and h(g1(0)) = h(g2(0)).

Then, there exists a unique entire trajectory γ of (X,T+, π), which is uniformly
comparable with ω0 ∈ Ω by the character of recurrence, and such that γ(T) is
relatively compact.

Proof. This statement follows by a slight modification of the proof of Theorem
3.11. ¤

Corollary 3.13. Let ω0 ∈ Ω be a stationary (respectively, τ -periodic, Bohr almost
periodic, almost automorphic, recurrent) point. Then, under the conditions of The-
orem 3.11, there exists a unique stationary (respectively, τ -periodic, Bohr almost
periodic, almost automorphic, recurrent) entire trajectory γ of the dynamical system
(X,T+, π) such that γ(T) ⊆ H+(x0).

Proof. This statement follows easily from Theorem 3.11, and Remarks 2.7 and
2.10. ¤
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4. Compatible and Uniformly Compatible Solutions of Linear
Functional Differential/Difference Equations

In this section we will establish interesting dynamical properties for some classes of
linear differential/difference systems with delays, as well as for some linear partial
differential equations.

4.1. Linear Functional-Differential Equations with Finite Delay. Let r >
0, and denote by C([a, b],Rn) the Banach space of all continuous functions ϕ :
[a, b] → Rn with the sup-norm. For [a, b] := [−r, 0] we put C := C([−r, 0],Rn). Let
c ∈ R, a ≥ 0, and u ∈ C([c−r, c+a],Rn). We define ut ∈ C for any t ∈ [c, c+a] by the
relation ut(θ) := u(t+ θ),−r ≥ θ ≥ 0. Let A = A(C,Rn) be the Banach space of all
linear operators that act from C into Rn and equipped with the operator norm, let
C(R, A) be the space of all operator-valued functions A : R→ A with the compact-
open topology, and let (C(R, A),R, σ) be the group dynamical system of shifts on
C(R, A). Let H(A) := {Aτ | τ ∈ R}, where Aτ is the shift of the operator-valued
function A by τ and the bar denotes the closure in C(R, A).

Example 4.1. Consider the non-homogeneous linear functional-differential equa-
tion with finite delay

(17) u′ = A(t)ut + f(t),

and its corresponding homogeneous linear equation

(18) u′ = A(t)ut,

where A ∈ C(R, A) and f ∈ C(R,Rn).

Denote by ϕ(t, u, (A, f)) the solution of equation (17) defined on R+ (respectively,
on R) with the initial condition ϕ(0, u, (A, f)) = u ∈ C, i.e. ϕ(s, u, (A, f)) =
u(s) for all s ∈ [−r, 0]. By ϕ̃(t, u, (A, f)) we will denote below the trajectory of
equation (17), corresponding to the solution ϕ(t, u, (A, f)), i.e. the mapping from
R+ (respectively, R) into C, defined by ϕ̃(t, u, (A, f))(s) := ϕ(t+ s, u, (A, f)) for all
t ∈ R+ (respectively, t ∈ R) and s ∈ [−r, 0].

Let ϕ(t, ui, (A, f)) (i = 1, 2) be two solutions of equation (17), then

lim
|t|→∞

|ϕ(t, u1, (A, f))− ϕ(t, u2, (A, f))| = lim
|t|→∞

|ϕ̃(t, u1, (A, f))− ϕ̃(t, u2, (A, f))|C ,

where | · |C (respectively, | · |) is the norm on the space C (respectively, Rn).

Along with equation (17) (respectively, (18)) we consider the family of equations

(19) v′ = B(t)vt + g(t)

(respectively,

(20) v′ = B(t)vt ),

where (B, g) ∈ H(A, f) := {(Bτ , fτ ) | τ ∈ R}. (respectively, B ∈ {Bτ | τ ∈ R} :=
H(A)). Let ϕ̃(t, v, (B, g)) (respectively, ϕ̃(t, v, B) be the trajectory of equation
(19) (respectively, (20)) satisfying the condition ϕ̃(0, v, (B, g)) = v (respectively,
ϕ̃(0, v, B) = v), and defined for all t ≥ 0. Let Y := H(A, f) and denote the
group dynamical system of shifts on H(A, f) by (Y,R, σ). Let X := C × Y , and let
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π := (ϕ̃, σ) be the dynamical system on X defined by the equality π(τ, (v, (B, g))) :=
(ϕ̃(τ, v, (B, g)), Bτ ). The semi-group non-autonomous system 〈(X,R+, π), (Y, R, σ),
h〉 (h := pr2 : X → Y ) is generated by equation (17).

Then we can prove the following result.

Lemma 4.2. Let ϕ(t, u, (A, f)) be a solution of equation (17), which is bounded
on R+, and let 〈(X,R+, π), (Y,R, ), h〉 be a non-autonomous dynamical system
generated by equation (17). Then, the set {(ϕ̃(t, u, (A, f)), (At, ft)) | t ≥ 0} :=
H(u, (A, f)) is conditionally compact with respect to (X,h, Y ).

Proof. Let K be an arbitrary compact subset of Y := H(A, f) and {xk} :=
{(uk, (Ak, fk))} be a subsequence from h−1(K) ∩H(u, (A, f)). Since {(Ak, fk)} ⊆
K ⊆ H(A, f) and the subset K is compact, then we can suppose that the sequence
{(Ak, fk)} is convergent in C(R,A)×C(R,Rn). On the other hand, for every k ∈ N,
there exists tk ∈ R+ such that

(21) |uk − ϕ̃(tk, u, (A, f))|C ≤ 1/k

and

(22) ρ((Atk
, ftk

), (Ak, fk)) ≤ 1/k.

Denote by

(23) ψk(t) := ϕ(t + tk, u, (A, f)) = ϕ(t, ϕ̃(tk, u, (A, f)), (Atk
, ftk

))

for all t ∈ R+. By the inequality (22) we may suppose that the sequence {(Atk
, ftk

)}
is convergent. Since the solution ϕ(t, u, (A, f)) is bounded on R+, from the equal-
ity (23) it follows that the sequence {ψk} is bounded and equi-continuous on ev-
ery compact [−r, l] (l > 0) subset of [−r,+∞). Thus, the sequence {ψ̃k(t)}:={ϕ̃
(t, ϕ̃(tk, u, (A, f)), (Atk

, ftk
))} is relatively compact in C(R+, C) and, consequently,

the sequence {ϕ̃(tk, u, (A, f))} = {ψ̃k(0)} ⊂ C is relatively compact too. From the
inequality (22) and the relatively compactness of the sequence {ϕ̃(tk, u, (A, f))}, it
follows that the sequence {uk} is also relatively compact. ¤

A solution ϕ ∈ C(R,Rn) of equation (17) is called compatible by the character of
recurrence, if N(A,f) ⊆ Nϕ, where N(A,f) := {{tn} ⊂ R | (Atn , ftn) → (A, f)}
(respectively, Nϕ := {{tn} ⊂ R | ϕtn → ϕ}).
Remark 4.3. 1. Note that the sequence {ϕtn} converges in C(R,Rn), if and only if
the sequence {ϕ̃tn} converges in C(R, C), where ϕ̃ : R 7→ C is defined by the equality
ϕ̃(t)(s) := ϕ(t + s) for all s ∈ [−r, 0] and t ∈ R.

2. As a consequence of the previous statement it holds that Nϕ = Nϕ̃.

Theorem 4.4. Let (A, f) ∈ C(R, A) × C(R,Rn) be Poisson stable. Suppose that
the following conditions hold:

(i) equation (17) admits a solution ϕ(t, u0, (A, f)) which is bounded on R+;
(ii) all the solutions of equation (18), which are bounded on R, tend to zero as

the time tends to ∞, i.e. lim
|t|→+∞

|ϕ(t, u,A)| = 0 if ϕ(t, u, A) is bounded on

R.
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Then, equation (17) possesses a unique compatible solution ϕ(t, ū, (A, f)) which is
bounded on R.

Proof. First of all, we prove that equation (17) admits at most one compatible
solution. Indeed, if we suppose that it is not true, then there are at least two
compatible solutions ϕ(t, ui, (A, f)) (i=1,2 and u1 6= u2) defined and bounded on
R. Since (A, f) is Poisson stable, then ψ(t) := ϕ(t, u1, (A, f)) − ϕ(t, u2, (A, f))
(t ∈ R) is also Poisson stable. On the other hand, ψ(t) = ϕ(t, u1 − u2, A) is a
solution of equation (18), bounded on R, and, consequently, lim

|t|→+∞
|ψ(t)| = 0.

This fact and the Poisson stability of ψ imply that ψ(t) = 0 for all t ∈ R. In
particular, u1 − u2 = ψ(0) = 0. This contradiction proves our statement.

Now we will prove that equation (17) admits at least one compatible solution.
Denote by 〈(X,R+, π), (Y,R, σ), h〉 the non-autonomous dynamical system gener-
ated by equation (17) (see Example 4.1). Then, by Lemma 4.2, the positively
invariant set H+(x0) ⊂ X (where x0 := (u0, (A, f)) ∈ X := C × H(A, f) and
H+(x0) := {π(t, x0) | t ∈ R+}) is conditionally compact. Consider now x1, x2 ∈
H+(x0) ∩ X(A,f), where X(A,f) := C × {(A, f)} (i.e. xi = (ui, (A, f)) and ui ∈ C
(i=1,2)). Then

lim
|t|→+∞

ρ(π(t, x1), π(t, x2)) = lim
|t|→+∞

|ϕ(t, u1, (A, f))− ϕ(y, u2, (A, f))|C = 0.

Now, to finish the proof, it is sufficient to refer to Theorem 3.8 and Corollary
3.9. ¤

Corollary 4.5. Under the conditions of Theorem 4.4, if (A, f) ∈ C(R, A) ×
C(R,Rn) is τ -periodic (respectively, Levitan almost periodic, almost recurrent, Pois-
son stable), then equation (17) admits a unique τ -periodic (respectively, Levitan
almost periodic, almost recurrent, Poisson stable) solution.

Proof. This statement follows from Theorem 4.4 and Corollary 3.10. ¤

Corollary 4.6. Under the conditions of Theorem 4.4, if (A, f) ∈ C(R, A) ×
C(R,Rn) is almost automorphic, then equation (17) admits a unique almost au-
tomorphic solution.

Proof. Since the function ϕ(t, ū, (A, f)) is bounded on R, and the functions A ∈
C(R, A) and f ∈ C(R,Rn) are bounded on R, then ϕ(t, ū, (A, f)) is uniformly
continuous on R. Thus ϕ̄ := ϕ(·, ū, (A, f)) ∈ C(R,Rn) is a Lagrange stable point
of the dynamical system (C(R,Rn),R, σ). On the other hand, by Corollary 4.5 the
function ϕ̄ is Levitan almost periodic and, consequently, it is almost automorphic.

¤

Corollary 4.7. Under the conditions of Theorem 4.4, if (A, f) ∈ C(R, A) ×
C(R,Rn) is Bohr almost periodic, then equation (17) admits a unique almost au-
tomorphic solution.

Proof. This statement follows from Corollary 4.6 because every Bohr almost peri-
odic function is almost automorphic. ¤
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A solution ϕ ∈ C(R,Rn) of equation (17) is called (see [17],[19]) uniformly compat-
ible by the character of recurrence if M(A,f) ⊆ Mϕ, where M(A,f) := {{tn} ⊂ R |
such that the sequence {(Atn

, ftn
)} is convergent} (respectively, Mϕ := {{tn} ⊂

R | such that the sequence {ϕtn} is convergent}).
Remark 4.8. Observe that the first item of Remark 4.3 implies Mϕ = Mϕ̃.

Theorem 4.9. Let (A, f) ∈ C(R, A) × C(R,Rn) be recurrent. Suppose that the
following conditions hold:

(i) equation (17) admits a solution ϕ(t, u0, (A, f)) which is bounded on R+;
(ii) for all B ∈ H(A) the solutions of equation (20), which are bounded on R,

tend to zero as the time tends to ∞, i.e. lim
|t|→+∞

|ϕ(t, u, B)| = 0 if ϕ(t, u,B)

is bounded on R.

Then, equation (17) has a unique uniformly compatible solution ϕ(t, ū, (A, f)).

Proof. Note that under the conditions of the theorem, equation (17) admits at most
one uniformly compatible solution. Indeed, every uniformly compatible solution is
compatible. On the other hand, by Theorem 4.4, equation (17) admits a unique
compatible solution.

Now we prove that equation (17) admits, at least, a uniformly compatible solution.
Indeed, since the function ϕ(t, u0, (A, f)) is bounded on R+, and the functions
A ∈ C(R, A) and f ∈ C(R,Rn) are bounded on R, then ϕ(t, u0, (A, f)) is uni-
formly continuous on R+. Thus, the trajectory ϕ̃(t, u0, (A, f)) of equation (17) is
relatively compact on R+. Denote by 〈(X,R+, π), (Y,R, σ), h〉 the semi-group non-
autonomous dynamical system generated by equation (17). Under the conditions of
the theorem, the positively invariant set H+(x0) ⊂ X (where x0 := (u0, (A, f)) ∈ X

and H+(x0) := {π(t, x0) | t ∈ R+}) is compact. Let now x1, x2 ∈ H+(x0)∩X(B,g),
where (B, g) ∈ H(A, f) and X(B,g) := C×{(B, g)} (i.e. xi = (ui, (B, g)) and ui ∈ C
(i=1,2)), then

lim
|t|→+∞

ρ(π(t, x1), π(t, x2)) = lim
|t|→+∞

|ϕ(t, u1, (B, g))− ϕ(y, u2, (B, g))|C = 0.

To finish the proof it is sufficient to refer to Theorem 3.11 and Corollary 3.12. ¤

Corollary 4.10. Under the conditions of Theorem 4.9, if (A, f) ∈ C(R, A) ×
C(R,Rn) is τ -periodic (respectively, Bohr almost periodic, almost automorphic,
recurrent), then equation (17) admits a unique τ -periodic (respectively, Bohr almost
periodic, almost automorphic, recurrent) solution.

Proof. This statement follows from Theorem 4.9 and Corollary 3.13. ¤

4.2. Neutral Linear Functional-Differential Equations.

Example 4.11. Now consider the neutral functional-differential equation

(24)
d

dt
Dut = A(t)ut + f(t)
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and its corresponding homogeneous linear equation

(25)
d

dt
Dut = A(t)ut,

where A ∈ C(R, A), and the operator D ∈ A is atomic at zero (see [11, p.67]).

Along with equation (24) (respectively, (25)), we consider the family of equations

(26)
d

dt
Dvt = B(t)vt + g(t)

(respectively,

(27)
d

dt
Dvt = B(t)vt ),

where (B, g) ∈ H(A, f) := {(Bτ , fτ ) | τ ∈ R} (respectively, B ∈ {Bτ | τ ∈ R} :=
H(A)). Let ϕ(t, v, (B, g)) (respectively, ϕ(t, v, B)) be the trajectory of equation
(26) (respectively, (27)) satisfying the condition ϕ(0, v, (B, g)) = v (respectively,
ϕ(0, v, B) = v) and defined for all t ≥ 0. Let Y := H(A, f), and denote by
(Y,R, σ) the group dynamical system of shifts on H(A, f). Let X := C ×Y , and let
π := (ϕ, σ) be the dynamical system on X defined by the equality π(τ, (v, (B, g))) :=
(ϕ(τ, v, (B, g)), Bτ , gτ ). The non-autonomous system 〈(X,R+, π), (Y, R, σ), h〉 (h :=
pr2 : X → Y ) is generated by equation (24).

Lemma 4.12. Let ϕ(t, u, (A, f)) be a (respectively, defined and bounded on R)
solution of equation (24) bounded on R+. Assume that the operator D is sta-
ble [11, p.287] and H(A, f) is a compact subset of C(R, A) × C(R,Rn). Then
ϕ̃(R+, u, (A, f)) (respectively, ϕ̃(R, u, (A, f)) ) is a relatively compact subset of C.

Proof. This statement can be proved by modifying slightly the proof of Theorem
6.1 from [11, p.293]. ¤

Theorem 4.13. Let (A, f) ∈ C(R, A) × C(R,Rn) be recurrent. Suppose that the
following conditions hold:

(i) equation (24) admits a solution ϕ(t, u0, (A, f)) bounded on R+;
(ii) for all B ∈ H(A), the bounded on R solutions of equation (25) tend to zero

as the time tends to ∞, i.e. lim
|t|→+∞

|ϕ(t, u, B)| = 0 if ϕ(t, u, B) is bounded

on R.

Then, equation (24) possesses a unique uniformly compatible solution ϕ(t, ū, (A, f)).

Proof. Let us first prove that equation (24) admits, at least, a uniformly compati-
ble solution. Indeed, since the function ϕ(t, u0, (A, f)) is bounded on R+, and the
functions A ∈ C(R, A) and f ∈ C(R,Rn) are bounded on R, then ϕ(t, u0, (A, f))
is uniformly continuous on R+. By Lemma 4.12, ϕ̃(R+, u0, (A, f)) is relatively
compact in C. Denote by 〈(X,R+, π), (Y,R, σ), h〉 the semi-group non-autonomous
dynamical system generated by equation (24). Under the conditions of the the-
orem, the positively invariant set H+(x0) ⊂ X (where x0 := (u0, (A, f)) ∈ X

and H+(x0) := {π(t, x0) | t ∈ R+}) is compact. Let now x1, x2 ∈ H(x0) ∩X(B,g),
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where (B, g) ∈ H(A, f) and X(B,g) := C×{(B, g)} (i.e. xi = (ui, (B, g)) and ui ∈ C
(i=1,2)), then

lim
|t|→+∞

ρ(π(t, x1), π(t, x2)) = lim
|t|→+∞

|ϕ̃(t, u1, (B, g))− ϕ̃(y, u2, (B, g))|C = 0.

Now to finish the proof it is sufficient to refer to Theorem 3.11 and Corollary
3.12. ¤

Corollary 4.14. Under the conditions of Theorem 4.13 if (A, f) ∈ C(R, A) ×
C(R,Rn) is τ -periodic (respectively, Bohr almost periodic, almost automorphic,
recurrent), then the equation (24) admits a unique τ -periodic (respectively, Bohr
almost periodic, almost automorphic, recurrent) solution.

Proof. This statement follows from Theorem 4.13 and Corollary 3.13. ¤

4.3. Linear Functional-Difference Equations with Finite Delay. Let r ∈
Z+. We would like to point out that, although we will use the same notation used
in Subsection 4.1, we must be careful since here the intervals [a, b] are considered
as subsets of Z. Accordingly, we will denote by C([a, b], E) the Banach space of
all functions ϕ : [a, b] (⊂ Z) → E with the sup-norm. For [a, b] := [−r, 0] we put
C := C([−r, 0], E). Let c, a ∈ Z, a ≥ 0, and u ∈ C([c − r, c + a], E). We define
ut ∈ C for any t ∈ [c, c + a] by the relation ut(s) := u(t + s),−r ≤ s ≤ 0. Let
A = A(C, E) be the Banach space of all linear operators that act from C into E,
equipped with the operator norm. Let C(Z, A) be the space of all operator-valued
functions A : Z → A with the compact-open topology, and let (C(Z, A),Z, σ) be
the group dynamical system of shifts on C(Z,A). Let H(A) := {Aτ | τ ∈ Z}, where
Aτ is the shift of the operator-valued function A by τ and the bar denotes closure
in C(Z, A).

Example 4.15. Consider the non-homogeneous linear functional-difference equa-
tion with finite delay (see, for example, [15, 22])

(28) u(t + 1) = A(t)ut + f(t)

and corresponding homogeneous linear equation

(29) u(t + 1) = A(t + 1)ut,

where A ∈ C(Z, A) and f ∈ C(Z, E).

Remark 4.16. 1. Denote by ϕ(t, u, (A, f)) the solution of equation (28) defined
on Z+ (respectively, on Z) with initial condition ϕ(0, u, (A, f)) = u ∈ C. By
ϕ̃(t, u, (A, f)) we will denote below the trajectory of equation (28), corresponding
to the solution ϕ(t, u, (A, f)), i.e. the mapping from Z+ (respectively, Z) into C,
defined by equality ϕ̃(t, u, (A, f))(s) := ϕ(t+s, u, (A, f)) for all t ∈ Z+ (respectively,
t ∈ Z) and s ∈ [−r, 0].

2. Let ϕ(t, ui, (A, f)) (i = 1, 2) be two solutions of equation (28), then

lim
|t|→∞

|ϕ(t, u1, (A, f))− ϕ(t, u2, (A, f))| = lim
|t|→∞

|ϕ̃(t, u1, (A, f))− ϕ̃(t, u2, (A, f))|C .

Along with equation (28) (respectively, (29)) we consider the family of equations

(30) v(t + 1) = B(t)vt + g(t)
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(respectively,

(31) v(t + 1) = B(t)vt ),

where (B, g) ∈ H(A, f) := {(Bτ , fτ ) | τ ∈ Z}. (respectively, B ∈ {Bτ | τ ∈ Z}
:= H(A)). Let ϕ̃(t, v, (B, g)) (respectively, ϕ̃(t, v, B) be the solution of equation
(30) (respectively, (31)) satisfying the condition ϕ̃(0, v, (B, g)) = v (respectively,
ϕ̃(0, v, B) = v) and defined for all t ≥ 0. Let Y := H(A, f) and denote the group
dynamical system of shifts on H(A, f) by (Y,Z, σ). Let X := C × Y and let π :=
(ϕ, σ) be the dynamical system on X defined by the equality π(τ, (v, (B, g))) :=
(ϕ̃(τ, v, (B, g)), Bτ , gτ ). The semi-group non-autonomous system 〈(X,Z+, π), (Y,
Z, σ), h〉 (h := pr2 : X → Y ) is generated by equation (28).

Lemma 4.17. Let ϕ(n, u, (A, f)) be a solution of equation (28) which is relatively
compact on R+, and let 〈(X,Z+, π), (Y,Z, σ), h〉 be a non-autonomous dynamical
system generated by equation (28). Then, the set

H(u, (A, f)) := {(ϕ̃(τ, u, (A, f)), (Aτ , fτ )) | τ ≥ 0}
is conditionally compact with respect to (X, h, Y ).

Proof. This statement is obvious. ¤

A solution ϕ ∈ C(Z, E) of equation (28) is said to be compatible by the character
of recurrence if N(A,f) ⊆ Nϕ, where N(A,f) := {{tk} ⊂ Z | (Atk

, ftk
) → (A, f)}

(respectively, Nϕ := {{tk} ⊂ Z | ϕtk
→ ϕ}).

Theorem 4.18. Let (A, f) ∈ C(Z,A) × C(Z, E) be Poisson stable. Suppose that
the following conditions hold:

(i) equation (28) admits a relatively compact on Z+ solution ϕ(t, u0, (A, f));
(ii) all the relatively compact on Z solutions of equation (29) tends to zero as

the time tends to ∞, i.e. lim
|t|→+∞

|ϕ(t, u,A)| = 0 if ϕ(n, u, A) is relatively

compact on Z.

Then, equation (28) has a unique compatible solution ϕ(t, ū, (A, f)).

Proof. First of all, we will prove that under the conditions of the theorem, equa-
tion (28) admits, at most, a compatible solution. If we suppose that it is not
true, then there are at least two compatible solutions ϕ(t, ui, (A, f)) (i=1,2 and
u1 6= u2) defined and bounded on Z. Since (A, f) is Poisson stable, then ψ(t) :=
ϕ(t, u1, (A, f))− ϕ(t, u2, (A, f)) (t ∈ Z) is also Poisson stable. On the other hand,
ψ(t) = ϕ(t, u1 − u2, A) is a relatively compact on Z solution of equation (29) and,
consequently, lim

|t|→+∞
|ψ(t)| = 0. From the last equality and the Poisson stability

of ψ we obtain ψ(t) = 0 for all t ∈ Z. In particular, u1 − u2 = ψ(0) = 0. This
contradiction proves our statement.

Now we will prove that equation (28) admits at least one compatible solution. De-
note by 〈(X,Z+, π), (Y,Z, σ), h〉 the non-autonomous dynamical system generated
by equation (28) (see Example 4.15). By Lemma 4.17, under the conditions of the
theorem, the positively invariant set H+(x0) ⊂ X (where x0 := (u0, (A, f)) ∈ X :=
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C×H(A, f) and H+(x0) := {π(t, x0) | t ∈ Z+}) is conditionally compact. Let now
x1, x2 ∈ H+(x0) ∩X(A,f), where X(A,f) := C × {(A, f)} (i.e. xi = (ui, (A, f)) and
ui ∈ C (i=1,2)), then

lim
|t|→+∞

ρ(π(t, x1), π(t, x2)) = lim
|t|→+∞

|ϕ(t, u1, (A, f))− ϕ(t, u2, (A, f))|C = 0.

Now to finish the proof it is sufficient to refer to Theorem 3.8 and Corollary 3.9. ¤

Corollary 4.19. Under the conditions of Theorem 4.18, if (A, f) ∈ C(Z, A) ×
C(Z, E) is τ -periodic (respectively, Levitan almost periodic, almost recurrent, Pois-
son stable), then equation (28) admits a unique τ -periodic (respectively, Levitan
almost periodic, almost recurrent, Poisson stable) solution.

Proof. This statement follows from Theorem 4.18 and Corollary 3.10. ¤

Corollary 4.20. Under the conditions of Theorem 4.18, if (A, f) ∈ C(Z, A) ×
C(Z, E) is almost automorphic, then equation (28) admits a unique almost auto-
morphic solution.

Proof. Since the function ϕ(t, ū, (A, f)) is relatively compact on Z, then ϕ̄ :=
ϕ(·, ū, (A, f)) ∈ C(Z, E) is a Lagrange stable point of dynamical system (C(Z, ),Z, σ).
On the other hand, by Corollary 4.5 the function ϕ̄ is Levitan almost periodic and,
consequently, it is almost automorphic. ¤

Corollary 4.21. Under the conditions of Theorem 4.18, if (A, f) ∈ C(Z, A) ×
C(Z, E) is Bohr almost periodic, then equation (28) admits a unique almost auto-
morphic solution.

Proof. This statement follows from Corollary 4.20 because every Bohr almost pe-
riodic function is almost automorphic. ¤

A solution ϕ ∈ C(Z, E) of equation (28) is called (see [17], [19]) uniformly compatible
by the character of recurrence if M(A,f) ⊆ Mϕ, where M(A,f) := {{tk} ⊂ Z |
such that the sequence {(Atk

, ftk
)} is convergent} (respectively, Mϕ := {{tk} ⊂

Z | such that the sequence {ϕtk
} is convergent}).

Theorem 4.22. Let (A, f) ∈ C(Z, A) × C(Z, E) be recurrent. Suppose that the
following conditions hold:

(i) equation (28) admits a solution ϕ(t, u0, (A, f)) relatively compact on Z+;
(ii) for all B ∈ H(A), the relatively compact on Z solutions of equation (31)

tend to zero as the time goes to ∞, i.e. lim
|t|→+∞

|ϕ(t, u,B)| = 0 provided

that ϕ(t, u, B) is relatively compact on Z.

Then, equation (17) has a unique uniformly compatible solution ϕ(t, ū, (A, f)).

Proof. Note that, under the conditions of Theorem, equation (28) admits, at most,
a uniformly compatible solution. Indeed, observe that every uniformly compatible
solution is compatible and, on the other hand, by Theorem 4.18, equation (28)
admits, at most, a compatible solution.
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We will now prove that, under the conditions of the theorem, equation (28) admits,
at least, a uniformly compatible solution. Indeed, since the function ϕ(t, u0, (A, f))
is relatively compact on Z+, then ϕ̃(Z+, u0, (A, f)) is relatively compact in C. De-
note by 〈(X,Z+, π), (Y,Z, σ), h〉 the semi-group non-autonomous dynamical sys-
tem generated by equation (28). Under the conditions of the theorem, the posi-
tively invariant set H+(x0) ⊂ X (where x0 := (u0, (A, f)) ∈ X and H+(x0) :=
{π(t, x0) | t ∈ Z+}) is compact. Let now x1, x2 ∈ H+(x0) ∩X(B,g), where (B, g) ∈
H(A, f) and X(B,g) := C × {(B, g)} (i.e. xi = (ui, (B, g)) and ui ∈ C (i=1,2)), then

lim
|t|→+∞

ρ(π(t, x1), π(t, x2)) = lim
|t|→+∞

|ϕ(t, u1, (B, g))− ϕ(t, u2, (B, g))|C = 0.

The proof follows from Theorem 3.11 and Corollary 3.12. ¤

Corollary 4.23. Under the conditions of Theorem 4.22, if (A, f) ∈ C(Z, A) ×
C(Z, E) is τ -periodic (respectively, Bohr almost periodic, almost automorphic, re-
current), then equation (28) admits a unique τ -periodic (respectively, Bohr almost
periodic, almost automorphic, recurrent) solution.

Proof. This statement follows from Theorem 4.22 and Corollary 3.13. ¤

Remark 4.24. 1. We point out that analogous results to Theorems 4.18 and 4.22
were established in our previous paper [5] for ordinary difference equations (i.e.
r = 0) under the following condition (C): the operator B(t) is invertible for all
B ∈ H(A) and t ∈ Z.
2. As a consequence of Theorems 4.18, 4.22 and Corollaries 4.19–4.21, 4.23 it fol-
lows that the results from Subsection 4.2 in [5] also hold without imposing condition
(C).

4.4. Linear partial differential equations. As our final application, let us con-
sider the differential equation

(32) x′ = A(t)x + f(t)

with unbounded coefficients. Let A ∈ C(R, Λ), where Λ is a complete metric
space of linear closed operators that act on the Banach space E (for example,
A := {A0 + B | B ∈ [E]}, where A0 is a closed operator that acts on E, and by [E]
we denote, as in [5], the Banach space of all bounded linear operators acting on the
Banach space E with the operator norm). Consider the H-class

(33) y′ = B(t)y + g(t)

of equation (32), where (B, g) ∈ H(A, f). We assume that the following conditions
are fulfilled for equation (32) and its H-class:

(i) for any u ∈ E and (B, g) ∈ H(A, f), equation (33) has precisely one
solution ϕ(0, u, B, g) which is defined on R+, and satisfies ϕ(0, u, (B, g)) =
u;

(ii) the map ϕ : (t, v, (B, g)) → ϕ(t, v, (B, g)) is continuous in the topology of
R+ × E × C(R,Λ)× C(R, E).

Below we consider a class of differential equation which satisfies conditions (i) and
(ii).
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Example 4.25. Consider the differential equation

(34) u′ = (A0 + A(t))u + f(t),

where A0 is the generator of a C0–semigroup {S(t)}t≥0, A ∈ C(R, [E]) and f ∈
C(R, E).

The results of [9, 12, 13] imply that equation (34) satisfies conditions (i) and (ii).

Consider the corresponding homogeneous equation

(35) u′ = (A0 + A(t))u,

where A ∈ C(R, [E]). Along with equations (34) and (35), we consider also the
H-class of equation (34) (respectively, (35)), that is, the family of equations

(36) v′ = (A0 + B(t))v + g(t),

(respectively,

(37) v′ = (A0 + B(t))v )

with (B, g) ∈ H(A, f) := {(Aτ , fτ ) | τ ∈ R} (respectively, B ∈ H(A)), Aτ (t) =
A(t+τ), fτ (t) := f(t+τ) and t ∈ R, where the bar denotes the closure in C(R, [E])×
C(R, E) (respectively, C(R, [E])). Let ϕ(t, v, (B, g)) (respectively, ϕ(t, v, B)) be
the solution of equation (36) (respectively, (37)) that satisfies the condition ϕ(0, v,
(B, g)) = v (respectively, ϕ(0, v, B) = v).

We put Y := H(A, f) and denote the dynamical system of shifts on H(A, f) by
(Y,R, σ). We put X := E × Y and define a dynamical system on X by setting
π(t, (v,B, g)) := (ϕ(t, v, (B, g)), Bt, gt) for all (v, (B, g)) ∈ E × Y and t ∈ R+.
Then 〈(X,R+, π), (Y,R, σ), h〉 is a semi-group non-autonomous dynamical system,
where h := pr2 : X → Y.

Applying the results of Sections 2–3 to this system, we obtain the following state-
ments.

Theorem 4.26. Let (A, f) ∈ C(R, [E])×C(R, E) be Poisson stable. Suppose that
the following conditions hold:

(i) ϕ(t, u0, (A0, A, f)) is a relatively compact on R+ solution of equation (34),
i.e. the set Q(u0,(A0,A,f)) := ϕ(R+, u0, (A0, A, f)) is compact in E;

(ii) all relatively compact on R solutions of equation (35) tends to zero as
the time tends to ∞, i.e. lim

|t|→+∞
|ϕ(t, u, A0, A)| = 0 if ϕ(t, u, A0, A) is

relatively compact on R (this means that the set ϕ(R, u, A0, A)) is relatively
compact in E).

Then, equation (34) has a unique compatible solution ϕ(t, ū, (A0, A, f)) with values
in the compact Q(u0,(A0,A,,f)).

Proof. Denote by 〈(X,R+, π), (Y,R, σ), h〉 the semi-group non-autonomous dynam-
ical system, generated by equation (34) (see Example 4.25). By Lemma 2.5,
the positively invariant set H+(x0) ⊂ X (where x0 := (u0, (A0, A, f)) ∈ X and
H+(x0) := {π(t, x0) | t ∈ R+}) is conditionally compact. Now, to finish the proof,
it is sufficient to apply Theorem 3.8. ¤
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Corollary 4.27. Under the conditions of Theorem 4.26, if (A, f) ∈ C(R, [E]) ×
C(R, E) is τ -periodic (respectively, Levitan almost periodic, almost recurrent, Pois-
son stable), then equation (34) admits a unique τ -periodic (respectively, Levitan
almost periodic, almost recurrent, Poisson stable) solution.

Proof. This statement follows from Theorem 4.26 and Corollary 3.10. ¤

Theorem 4.28. Let (A, f) ∈ C(R, [E]) × C(R, E) be recurrent. Suppose that the
following conditions hold:

(i) the equation (34) admits a relatively compact on R+ solution ϕ(t, u0, (A0,
A, f));

(ii) for all B ∈ H(A) the relatively compact on R solutions of equation (37)
tends to zero as the time tends to ∞, i.e. lim

|t|→+∞
|ϕ(t, u,A0, B)| = 0 if

ϕ(t, u, A0, B) is relatively compact on R .

Then, equation (34) has a unique uniformly compatible solution ϕ(t, ū, (A0, A, f))
with values in the compact Q(u0,(A0,A,f)).

Proof. Denote by 〈(X,R+, π), (Y,R, σ), h〉 the semi-group non-autonomous dynam-
ical system generated by equation (34). Under the conditions of the theorem, the
positive invariant set H+(x0) ⊂ X is compact. Now, it is sufficient to refer to
Theorem 3.11. ¤

Corollary 4.29. Under the conditions of Theorem 4.28, if (A, f) ∈ C(R, [E]) ×
C(R, E) is τ -periodic (respectively, Bohr almost periodic, almost automorphic, re-
current), then equation (34) admits a unique τ -periodic (respectively, Bohr almost
periodic, almost automorphic, recurrent) solution.

Proof. This statement follows from Theorem 4.28 and Corollary 3.13. ¤

Remark 4.30. It is well known (see, for example, [9, 12, 13]) that some classes
of partial differential equations (PDEs) can be written in the form (34) and, con-
sequently, Theorems 4.26 and 4.28 and Corollaries 4.27 and 4.29 are applicable to
these PDEs.

Remark 4.31. 1. Note that in [5] (Part I of our investigation in this field) one
can find two examples which illustrate some of our general results:

(i) a scalar Bohr almost periodic linear homogeneous equation for which all
solutions are bounded on R and converge to 0 as |t| → +∞ (see Example
4.8 [5]);

(ii) a bi-dimensional Levitan almost periodic linear homogeneous system for
which all solutions are bounded on R and converge to 0 as |t| → +∞ (see
Example 4.9 [5]).

2. It is easy to construct a bi-dimensional almost automorphic linear homogeneous
system for which all solutions are bounded on R and converge to 0 as |t| → +∞
with the slight modification of Example 4.9 from [5].



26 TOMÁS CARABALLO AND DAVID CHEBAN

Acknowledgments 1. The authors would like to thank the anonymous referee for
his/her comments and suggestions on a preliminary version of this article.

2. This paper was written while the second author was visiting the Department
of Differential Equations and Numerical Analysis, University of Seville (Spain), in
the winter of 2007/2008. He would like to thank people of this university for their
very kind hospitality. He also gratefully acknowledges the financial support of the
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References

[1] B.R. Basit, A connection between the almost periodic functions of Levitan and almost auto-
morphic functions, Vestnik Moskov. Univ. Ser. I Mat. Meh. 26 (1971), no. 4, 11–15.

[2] B. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de
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