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Abstract. The article is devoted to the study of global attractors of quasi-linear
non-autonomous difference equations. The results obtained are applied to the study of
a triangular economic growth model T : R2

+ → R2
+ recently developed in S. Brianzoni,

C.Mammana and E.Michetti [1].
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1 Introduction

Global attractors play a very important role in the qualitative study of difference
equations (both autonomous and non-autonomous). The present work is dedicated
to the study of global attractors of quasi-linear non-autonomous difference equations

un+1 = A(σnω)uk + F (uk, σ
nω), (1)

where Ω is a metric space (generally speaking non-compact), (Ω,Z+, σ) is a dynami-
cal system with discrete time Z+, A ∈ C(Ω, [E]) and the function F ∈ C(E ×Ω, E)
satisfies ”the condition of smallness”. An analogous problem has been studied in
D.Cheban and C. Mammana [5] when the space Ω is compact.

The results obtained are applied to the study of a class of triangular maps
T = (T1, T2) describing an economic growth model in capital accumulation and
population growth rate as recently proposed by S. Brianzoni, C. Mammana and
E.Michetti [1] 1.

2 Global attractors of dynamical systems

2.1 Triangular maps and non-autonomous dynamical systems

Let W and Ω be two complete metric spaces and denote by X := W × Ω its
Cartesian product. Recall that a continuous map F : X → X is called triangular if

c© D.Cheban, C.Mammana, E.Michetti, 2009
1The authors consider the neoclassical one–sector growth model with differential savings as in

V.Bohm and L.Kaas [3], while assuming CES production function and the labour force dynamic
described by the Beverton–Holt equation (see [2]), that has been largely studied in [7] and [8].
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there are two continuous maps f : W ×Ω → W and g : Ω → Ω such that F = (f, g),
i.e. F (x) = F (u, ω) = (f(u, ω), g(ω)) for all x =: (u, ω) ∈ X.

Consider a system of difference equations
{

un+1 = f(un, ωn),
ωn+1 = g(ωn)

(2)

for all n ∈ Z+, where Z+ is the set of all non-negative integer numbers.
Along with system (2) we consider the family of equations

un+1 = f(un, gnω) (ω ∈ Ω), (3)

which is equivalent to system (2). Let ϕ(n, u, ω) be a solution of equation (3)
passing through the point u ∈ W for n = 0. It is easy to verify that the map
ϕ : Z+ ×W × Ω → W ((n, u, ω) 7→ ϕ(n, u, ω) ) satisfies the following conditions:

(i) ϕ(0, u, ω) = u for all u ∈ W and ω ∈ Ω;

(ii) ϕ(n+m,u, ω) = ϕ(n, ϕ(m,u, ω), σ(m,ω)) for all n,m ∈ Z+, u ∈ W and ω ∈ Ω,
where σ(n, ω) := gnω;

(iii) the map ϕ : Z+ ×W × Ω → W is continuous.

Denote by (Ω,Z+, σ) the semi-group dynamical system generated by the positive
powers of map g : Ω → Ω, i.e. σ(n, ω) := gnω for all n ∈ Z+ and ω ∈ Ω.

Recall [4, 9] that a triple 〈W,ϕ, (Ω,Z+, σ)〉 (or briefly ϕ) is called a cocycle over
the dynamical system (Ω,Z+, σ) with fiber W if the mapping ϕ : Z+ ×W ×Ω → Ω
possesses the properties (i)-(iii).

Let X := W and (X,Z+, π) be a dynamical system on X, where π(n, (u, ω)) :=
(ϕ(n, u, ω), σ(n, ω)) for all u ∈ W and ω ∈ Ω, then (X,Z+, π) is called [9] a skew-
product dynamical system, generated by the cocycle 〈W,ϕ, (Ω,Z+, σ)〉.

Taking into consideration this fact, we can study triangular maps in the frame-
work of cocycles with discrete time.

2.2 Global attractors of autonomous dynamical systems

A dynamical system (X,T, π) is called compact dissipative if there exists a
nonempty compact subset K ⊆ X such that

lim
t→+∞ ρ(xt,K) = 0; (4)

for all x ∈ X and the equality (4) takes place uniformly w.r.t. x on the compact
subsets from X.

For compact dissipative dynamical system (X,T, π) we denote by

J := Ω(K) =
⋂

t≥0

⋃

τ≥t

πτK,
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then the set J does not depend on the choice of the attractor K and is characterized
by the properties of the dynamical system (X,T, π) . The set J is called a Levinson
center of the dynamical system (X,T, π).

Let E be a finite-dimensional Banach space and 〈E, ϕ, (Ω,Z+, σ)〉 be a cocycle
over (Ω,Z+, σ) with the fiber E (or shortly ϕ).

A cocycle ϕ is called:

– dissipative, if there exists a number r > 0 such that

lim sup
t→+∞

|ϕ(t, u, ω)| ≤ r (5)

for all ω ∈ Ω and u ∈ E;

– uniform dissipative, if there exists a number r > 0 such that

lim sup
t→+∞

sup
ω∈Ω′ ,|u|≤R

|ϕ(t, u, ω)| ≤ r

for all compact subsets Ω
′ ⊆ Ω and R > 0.

Let (X,T, π) be a dynamical system and x ∈ X. Denote by ωx := ∩t≥0∪τ≥tπ(τ, x)
the ω-limit set of point x.

Theorem 1 ([6]). If the dynamical system (Ω,Z+, σ) is compact dissipative and the
cocycle ϕ is uniform dissipative, then the skew-product dynamical system (X,Z+, π)
is compact dissipative.

2.3 Global attractors of quasi-linear triangular systems

Consider a difference equation

un+1 = f(un, σnω) (ω ∈ Ω). (6)

Denote by ϕ(n, u, ω) a unique solution of equation (6) with the initial condition
ϕ(0, u, ω) = u.

Equation (6) is said to be dissipative (respectively, uniformly dissipative), if a
cocycle ϕ, generated by equation (6), is dissipative (respectively, uniformly dissipa-
tive), i.e. there exists a positive number r such that

lim sup
n→+∞

|ϕ(n, u, ω)| ≤ r (respectively, lim sup
n→+∞

sup
ω∈Ω′ ,|u|≤R

|ϕ(n, u, ω)| ≤ r)

for all u ∈ E and ω ∈ Ω (respectively, for all R > 0 and Ω
′ ∈ C(Ω)).

Consider a quasi-linear equation

un+1 = A(σnω)uk + F (uk, σ
nω), (7)

where A ∈ C(Ω, [E]) and the function F ∈ C(E × Ω, E) satisfies ”the condition of
smallness”.

Denote by U(k, ω) the Cauchy matrix for the linear equation

un+1 = A(σnω)uk.
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Theorem 2. Suppose that the following conditions hold:

1. there are positive numbers N and q < 1 such that

‖U(n, ω)‖ ≤ Nqn (n ∈ Z+); (8)

2. |F (u, ω)| ≤ C + D|u| (C ≥ 0, 0 ≤ D < (1− q)N−1) for all u ∈ E and ω ∈ Ω.

Then equation (7) is uniform dissipative and

|ϕ(n, u, ω)| ≤ (q + DN)n−1qN |u|+ CN

q − 1
(qn−1 − 1). (9)

Proof. This statement can be proved using the same type of arguments as in the
proof of Theorem 5.2 from [5] (see also [6]) and we omit the details.

Theorem 3. Let (Ω,Z+, σ) be a compact dissipative dynamical system and ϕ be
a cocycle generated by equation (7). Under the conditions of Theorem 2 the skew-
product dynamical system (X,Z+, π), generates by cocycle ϕ admits a compact global
attractor.

Proof. This statement follows directly from Theorems 1 and 2.

Theorem 4 ([6]). Let A ∈ C(Ω, [E]) and F ∈ C(E × Ω, E) and the following
conditions be fulfilled:

1. the dynamical system (Ω,Z+, σ) is compact dissipative and JΩ its Levinson
center;

2. positive numbers N and q < 1 exist such that inequality (8) holds;

3. C > 0 exists such that |F (0, ω)| ≤ C for all ω ∈ Ω;

4. |F (u1, ω) − F (u2, ω)| ≤ L|u1 − u2| (0 ≤ L < N−1(1 − q)) for all ω ∈ Ω and
u1, u2 ∈ E.

Then

1. the equation (7) (the cocycle ϕ generated by this equation) admits a compact
global attractor;

2. there are two positive constants N and ν < 1 such that

|ϕ(n, u1, ω)− ϕ(n, u2, ω)| ≤ Nνn|u1 − u2| (10)

for all u1, u2 ∈ E and n ∈ Z+.
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3 Non-Autonomous Dynamical Systems with Convergence

〈(X,T1,π),(Y,T2,σ),h〉 is said to be convergent if the following conditions are
valid:

1. the dynamical systems (X,T1, π) and (Y,T2, σ) are compactly dissipative;

2. the set JX
⋂

Xy contains at most one point for all y ∈ JY , where Xy :=
h−1(y) := {x|x ∈ X,h(x) = y} and JX (respectively, JY ) is the Levinson
center of the dynamical system (X,T1, π) (respectively, (Y,T2, σ)).

Theorem 5 ([4, Ch.II]). Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dyna-
mical system and the following conditions be fulfilled:

1. the dynamical system (Y,T2, σ) is compact dissipative and JY its Levinson
center;

2. there exists a homomorphism γ from (Y,T2, σ) to (X,T1, π) such that
h ◦ γ = IdY ;

3. lim
t→+∞ ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ X (h(x1) = h(x2)).

Then

1. the dynamical system (X,T1, π) is compactly dissipative and γ(JY ) = JX ;

2. Jy consists a single point γ(y) for all y ∈ JY .

Theorem 6. Let A ∈ C(Ω, [E]) and F ∈ C(E ×Ω, E) and the following conditions
be fulfilled:

1. the dynamical system (Ω,Z, σ) is compact dissipative and JΩ its Levinson
center;

2. there exist positive numbers N and q < 1 such that inequality (8) holds;

3. there exists C > 0 such that |F (0, ω)| ≤ C for all ω ∈ Ω;

4. |F (u1, ω) − F (u2, ω)| ≤ L|u1 − u2| (0 ≤ L < N−1(1 − q)) for all ω ∈ Ω and
u1, u2 ∈ E.

Then

1. the equation (7) (the cocycle ϕ generated by this equation) admits a com-
pact global attractor {Iω | ω ∈ JΩ} and Iω consists of a single point uω (i.e.
Iω = {uω}) for all ω ∈ JΩ;

2. the mapping ω 7→ uω is continuous and ϕ(t, uω, ω) = uσ(t,ω) for all ω ∈ JΩ and
t ∈ Z;
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3. there are two positive constants N and ν < 1 such that

|ϕ(n, u1, ω)− ϕ(n, u2, ω)| ≤ Nνn|u1 − u2| (11)

for all u1, u2 ∈ E and n ∈ Z+;

4.
|ϕ(n, u, ω)− uσnω| ≤ Nνn|u− uω| (12)

for all u ∈ E, ω ∈ JΩ and n ∈ Z+.

Proof. Let 〈E, ϕ, (Ω,Z, σ)〉 be the cocycle generated by equation (7) and Cb(Ω, E)
be the space of all continuous and bounded functions µ : Ω 7→ E equipped with the
sup-norm. For every n ∈ Z+ we define the mapping Sn : Cb(Ω, E) 7→ Cb(Ω, E) by
equality (Snµ)(ω) := ϕ(n, µ(σ(−n, ω)), σ(−n, ω)) for all ω ∈ Ω. It easy to verify
that the family of mappings {Sn | n ∈ Z+} forms a commutative semigroup. From
the inequality (9) it follows that Snµ ∈ Cb(Ω, E) for every µ ∈ Cb(Ω, E) and n ∈ Z+.
On the other hand from the inequality (10) we have

‖Snµ1 − Snµ2‖ ≤ Nνn‖µ1 − µ2‖

for all µ1, µ2 ∈ Cb(Ω, E) and n ∈ Z+, where N := qN
q+LN and ν := q+LN. Under the

conditions of Theorem ν = q+LN < q+1−q = 1 and, consequently, the semi-group
{Sn | n ∈ Z+} is contracting. Thus there exists a unique fixed point µ ∈ Cb(Ω, E)
of the semi-group {Sn | n ∈ Z+} and hence

µ(σ(n, ω)) = ϕ(n, µ(ω), ω)

for all n ∈ Z+ and ω ∈ Ω.
Let 〈(X,Z+, π), (Ω,Z, σ), h〉 be the non-autonomous dynamical system associ-

ated by cocycle ϕ (i.e. X := E × Ω, π := (ϕ, σ) and h := pr2 : X 7→ Ω). Under
the conditions of Theorem by Theorem 4 we have ρ(x1t, x2t) ≤ N e−νtρ(x1, x2) for
all x1, x2 ∈ X (h(x1) = h(x2)). Since γ := (µ, IdΩ) is an invariant section of
the non-autonomous dynamical system 〈(X,Z+, π), (Ω,Z, σ), h〉, then according to
Theorem 5 the dynamical system (X,Z+, π) is compactly dissipative, its Levinson
center JX = γ(JΩ) and Jω := J ∩Xω (Xω := h−1(ω)) consists a single point γ(ω),
i.e. Jω = {γ(ω)} for all ω ∈ Ω. Taking into consideration that the skew-product
dynamical system (X,Z+, π) is compact dissipative, Jω = Iω × ω and γ = (µ, IdΩ)
we obtain Iω = µ(ω) for all ω ∈ JΩ.

4 Economic Application

4.1 The model

Dynamic economic growth models have often considered the standard, one-sector
neoclassical Solow model (see S.R. Solow [10]). V. Bohm and L. Kaas [3] considered
the role of differential savings behavior between workers and shareholders and its
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effects with regard to the stability of stationary steady states within the framework
of the discrete-time Solow growth model. More recently, S. Brianzoni, C. Mammana
and E. Michetti [1] have proposed a discrete-time version of the Solow growth model
with differential savings as formalized by V.Bohm and L.Kaas [3] while consider-
ing two different assumptions. Firstly they assume the CES production function.
Secondly they assume the labor force growth rate not being constant, in particular
they consider a model for density dependent population growth described by the
Beverton-Holt equation (see [2]).

The resulting system (T,R2
+) describing capital accumulation k and population

n dynamics of the model studied in S. Brianzoni, C. Mammana and E.Michetti [1],
where T = (T1, T2), is given by

T1(k, n) =
(1− δ)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)
1 + n

and

T2(n) =
rhn

h + (r − 1)n

for all (k, n) ∈ R2
+. In the model, δ ∈ (0, 1) is the depreciation rate of capital,

sw ∈ (0, 1) and sr ∈ (0, 1) are the constant saving rates for workers and shareholders
respectively2, ρ ∈ (−∞, 1), ρ 6= 0 is a parameter related to the elasticity of sub-
stitution between the production factors given by 1/(1 − ρ), h > 0 is the carrying
capacity (for example resource availability) and r > 1 is the inherent growth rate
(such a rate is determined by life cycle and demographic properties such as birth
rates etc.). The Beverton-Holt T2 have been studied extensively in J. V. Cushing
and S. V. Henson [7, 8].

4.2 Existence of an attractor for ρ ∈ (−∞, 0)

Theorem 7. If ρ < 0, then the dynamical system (R2
+, T ) admits a compact global

attractor.

Proof. Assume ρ ∈ (−∞, 0) and let λ = −ρ, then λ ∈ (0, +∞). We write T1 in
terms of λ

T1(k, n) =
1

1 + n

[
(1− δ)k + (k−λ + 1)

1+λ
−λ (sw + srk

−λ)
]

=
1

1 + n

[
(1− δ)k +

k

(1 + kλ)
1
λ

sr + swkλ

1 + kλ

]
. (13)

2The authors also assume sw 6= sr since the standard growth model of R.V. Solow [10] is obtained
if the two savings propensities are equal.
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Note that
k

(1 + kλ)
1
λ

−→ 1 as k −→ +∞,
sr + swkλ

1 + kλ
−→ sw as k −→ +∞ and,

consequently, there exists M > 0 such that
∣∣∣∣∣

k

(1 + kλ)
1
λ

sr + swkλ

1 + kλ

∣∣∣∣∣ ≤ M, (14)

for all k ∈ [0, +∞).

Since 0 ≤ 1
1 + n

≤ 1 for all n ∈ R+, then from (13) and (14) we obtain

0 ≤ T1(k, n) ≤ αk + M (15)

for all n, k ∈ R+, where α := 1− δ > 0.
Since the map T is triangular, to prove this theorem it is sufficient to apply

Theorem 3. Theorem is proved.

Remark 1. 1. It is easy to see that the previous theorem is true also for δ = 1
because in this case α = 1− δ = 0 and from (15) we have T1(k, n) ≤ M , ∀k, n ∈ R+.
Now it is sufficient to refer to Theorem 1.

2. If δ = 0 the problem is open.

According to Theorem 7, it is possible to conclude that if the elasticity of substi-
tution between the two production factors (capital and labor) is positive and lesser
than one (that is ρ < 0), capital and population dynamics cannot be explosive so
economic patterns are bounded.

4.3 Existence of an attractor for ρ ∈ (0, 1) and sr < δ

The dynamical system (X,T, π) we will call:

– locally completely continuous if for every point p ∈ X there exist δ = δ(p) > 0
and l = l(p) > 0 such that πlB(p, δ) is relatively compact;

– weakly dissipative if a nonempty compact K ⊆ X exists such that for every
ε > 0 and x ∈ X there is τ = τ(ε, x) > 0 for which xτ ∈ B(K, ε). In this case
we will call K a weak attractor.

Note that every dynamical system (X,T, π) defined on the locally compact metric
space X is locally completely continuous.

Theorem 8 ([4]). For the locally completely continuous dynamical systems the weak
and compact dissipativity are equivalent.

Theorem 9. If ρ ∈ (0, 1) and sr < δ, then the mapping T admits a compact global
attractor.
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Proof. If ρ ∈ (0, 1) and k > 0 we have

T1(k, n) =
1

1 + n

[
(1− δ)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)
]

=
1

1 + n
[(1− δ)k + srk + θ(k)k] (16)

where θ(k) :=
(kρ + 1)

1
ρ

k(1 + kρ)
(sw + srk

ρ)− sr → 0 as k → +∞. In fact
(kρ + 1)

1
ρ

k
→ 1

as k → +∞ while
(sw + srk

ρ)
1 + kρ

→ sr as k → +∞ and, consequently,

(kρ + 1)
1
ρ

1 + kρ
(sw + srk

ρ)

srk
=

(kρ + 1)
1
ρ

k

(sw + srk
ρ)

sr(kρ + 1)
→ 1

as k → +∞, i.e.
(kρ + 1)

1
ρ

1 + kρ
(sw + srk

ρ) = srk + θ(k)k. From (16) we have

T1(k, n) =
1

1 + n
[(1− δ + sr)k + θ(k)k]

for all (k, n) ∈ R2
+ with k > 0.

Since sr < δ then α := 1 − δ + sr < 1. Let R0 > 0 be a positive number such
that

|θ(k)| < 1− α

2
, (17)

for all k > R0. Note that for every (k0, n0) ∈ R2
+, with k0 > R0, the trajectory

{T t(k, n) | t ∈ Z+} starting from point (k0, n0) at the initial moment t = 0, at least
one time intersects the compact K0 := [0, h0] × [0, R0], (h0 > h). In fact, if we
suppose that this statement is false, then exists a point (k0, n0) ∈ R2

+ \ K0 exists
such that

(kt, nt) := T t(k0, n0) ∈ R2
+ \K0 (18)

for all t ∈ Z+. Taking into consideration that nt → h (or 0) as t → +∞, we obtain
from (18) that kt > R0 for all t ≥ t0, where t0 is a sufficiently large number from
Z+. Without loss of generality, we may suppose that t0 = 0 (if t0 > 0 then we start
from the initial point (nt0 , kt0) := T t0(n0, k0), where T t0 := T ◦T t0−1 for all t0 ≥ 2).
Thus we have

kt > R0 (19)

for all t ≥ 0 and

kt+1 =
1

1 + n
[αkt + θ(kt)kt] (20)

From (17) and (20) we obtain

kt+1 ≤ αkt +
1− α

2
kt =

1 + α

2
kt (21)
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since
1

1 + n
≤ 1 for all t ≥ 0. From (21) we have

kt ≤
(

1 + α

2

)t

k0 → 0 as t → +∞, (22)

but (19) and (22) are contradictory. The obtained contradiction proves the state-
ment. Let (k0, n0) ∈ R2

+ now be an arbitrary point.

(a) If k0 < R0 and kt ≤ R0 for all t ∈ N, then lim sup
t→+∞

kt ≤ R0;

(b) If there exists t0 ∈ N such that kt0 > R0, then there exists τ0 ∈ N (τ0 > t0)
such that (kτ0 , nτ0) ∈ K0 (see the proof above).

Thus we have proved that for all (k0, n0) ∈ R2
+ there exists τ0 ∈ N such that

(kτ0 , nτ0) ∈ K0. According to Theorem 8 the dynamic system (R2
+, T ) admits a

compact global attractor. The theorem is proved.

4.4 Structure of the attractor

A fixed point p ∈ X of dynamical system (X,T, π) is called

– Lyapunov stable if for arbitrary positive number ε > 0 there exists δ = δ(ε) > 0
such that ρ(x, p) < δ implies ρ(π(t, x), p) < ε for all t ≥ 0;

– attracting if there exists δ0 > 0 such that lim
t→+∞ ρ(π(t, x), p) = 0 for all

x ∈ B(p, δ0) := {x ∈ X | ρ(x, p) < δ0};

– asymptotically stable if it is Lyapunov stable and attracting.

Theorem 10. Suppose that ρ < 0 and one of the following conditions hold:

1. sw < min{δ, sr} and 0 < λ < λ0, where λ0 is a positive root of the quadratic
equation (sr − sw)λ2 + (sr − 2δ)λ− δ = 0;

2. sr < sw < δ.

Then

1. the dynamic system (R2
+, T ) admits a compact global attractor J =

{(0, n) | 0 ≤ n ≤ h};

2. for all point x := (k, n) ∈ R2
+ with n > 0 the ω-limit set ωx of x consists a

single fixed point (0, h) of dynamical system (R2
+, T );

3. the fixed point (0, h) is asymptotically stable.
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Proof. Assume ρ ∈ (−∞, 0) and let λ = −ρ, then λ ∈ (0, +∞). We write T1 in
terms of λ (see the proof of Theorem 9)

T1(k, n) =
1

1 + n

[
(1− δ)k +

k

(1 + kλ)
1
λ

sw + srk
λ

1 + kλ

]
.

Denote by

f(k) :=
k

(1 + kλ)
1
λ

sw + srk
λ

1 + kλ
,

then

f ′(k) =
sw + (−swλ + (λ + 1)sr)kλ

(1 + kλ)2+1/λ
.

It easy to verify that under the conditions of Theorem f ′(k) < sw for all k ≥ 0.
Consider the non-autonomous difference equation

kt+1 = A(σ(t, n))kt + F (kt, σ(t, n)) (23)

corresponding to triangular map T = (T1, T2), where A(n) :=
1

n + 1
, F (k, n) :=

1
n + 1

f(k) and σ(t, n) := T t
2(n) for all t ∈ Z+ and n ∈ R+. Under the conditions

of the Theorem we can apply Theorem 6. By this Theorem the dynamical system
(R2

+, T ) is compact dissipative with Levinson center J and there exists a unique
continuous bounded function µ : R+ 7→ R+ such that J = {(µ(n), n) | n ∈ [0, h]}.
Since F (n, 0) = 0 for all n ∈ R+, then it easy to see that µ(n) = 0 for all n ∈ R+.

Let x = (k, n) ∈ R2
+ and n > 0. Since the dynamical system (R2

+, T ) is compactly
dissipative and its Levinson center J = ∪{Jn | 0 ≤ n ≤ h}, then ωx ⊆ J. Let
x̃ = (k̃, ñ) ∈ ωx, then there exists tm → +∞ (tm ∈ Z+) such that T tm(k, n) → (k̃, ñ).
It is evident that k̃ = 0. Since lim

t→+∞T t
2n = h for all n > 0 we obtain ñ = h, i.e.

x̃ = (0, h).
Now we will prove that the fixed point (0, h) is stable. If we suppose that it is

not true, then there are ε0 > 0, δl → 0, xl := (kl, nl) → (0, h) and tl → +∞ (as
l → +∞) such that ρ(xl, (0, h)) < δl and

ρ(T tlxl, (0, h)) ≥ ε0, (24)

where ρ(·, ·) is the distance in R2
+. Since T tlxl = (ϕ(tl, kl, nl), T

tl
2 nl), where ϕ(t, k, n)

is the solution of equation (23) with initial condition ϕ(0, k, n) = k, and nl → h by
asymptotic stability of fixed point h ∈ R+ of dynamical system (R+, T2) we have
T tl

2 nl → h as l → +∞. On the other hand by Theorem 6 we obtain

|ϕ(tl, kl, nl)− µ(T tl
2 )| ≤ Nνtl |kl − µ(nl)| = Nνtl |kl| → 0 (25)

because 0 < ν < 1, |kl| → 0 and tl → +∞. Taking into account that µ(n) = 0 for
all n ≥ 0 we obtain µ(T tl

2 ) = 0 for all l ∈ N and, consequently, |ϕ(tl, kl, nl)| → 0 as
l → +∞, i.e.

ρ(T tlxl, (0, h)) → 0 (26)
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as l → +∞. The relations (24) and (26) are contradictory. The contradiction
obtained proves our statement.

When considering Theorem 10 it is possible to conclude that if shareholders save
less than workers and the depreciation rate of capital is big enough or, if workers
save less than shareholders and the elasticity of substitution between the two factors
is close to zero, then the economic system will converge to the steady state (0, h)
which is characterized by no capital accumulation.

Let γ be a full trajectory of dynamical system (X,T, π). Denote by
∩t≥0∪τ≥tγ(τ) := ωγ (respectively, ∩t≤0∪τ≤tγ(τ) := αγ).

Theorem 11. Let ρ ∈ (0, 1), sr < δ and J be the Levinson center of dynamical
system (R2

+, T ). Then the following statements hold:

1. J is connected;

2. J = ∪{Jn | 0 ≤ n ≤ h}, where Jn := In×{n} and In := [an, bn] (an, bn ∈ R+);

3. dynamical systems (R+, T0) and (R+, Th) are compactly dissipative, where
T0(k) := T (k, 0) and Th(k) := T (k, h) for all k ∈ R+;

4. J0 = [a0, b0]×{0} (respectively, Jh := [ah, bh]×{h}) is the Levinson center of
dynamical system (R+, T0) (respectively, (R+, Th));

5. there exists at least one fixed point p0 ∈ J0 (respectively, ph ∈ Jh) of the
dynamical system (R+, T0) (respectively, (R+, Th));

6. for all point x0 := (k0, n0) ∈ J (with 0 < n0 < h) and γ ∈ Φx0 we have
ωγ ⊆ Jh and αγ ⊆ J0.

Proof. Let ρ ∈ (0, 1) and sr < δ, then by Theorem 9 the dynamical system (R2
+, T )

is compactly dissipative. Denote by J the Levinson center of (R2
+, T ), then by

Theorem 1.33 [4] the set J is connected. Note that J = ∪{Jn | 0 ≤ n ≤ h}, where
Jn = In×{n} and In is a compact subset of R+. According to Theorem 2.25 [4] the
set In is connected and, consequently, there are an, bn ∈ R+ such that In = [an, bn].

Since the set R+ × {0} (respectively, R+ × {h}) is invariant with respect to dy-
namical system (R2

+, T ), then on the set R+×{0} (respectively, on R+×{h}) is de-
fined as a compactly dissipative dynamical system (R+, T0) (respectively, (R+, Th))
and the set J0 (respectively, Jh) is its Levinson center. Taking into account that
T0 (respectively, Th) is a continuous mapping of J0 = [a0, b0] × {0} (respectively,
Jh = [ah, bh] × {h}) on itself, then there exists at least one fixed point p0 ∈ J0

(respectively, ph ∈ Jh) of dynamical system (R+, T0) (respectively, (R+, Th)).

Let x0 := (k0, n0) ∈ J (with 0 < n0 < h), γ ∈ Φx0 and x = (k, n) ∈ ωγ (re-
spectively, x ∈ αγ). Then there exists a sequence {tm} ⊆ Z such that tm → +∞
(respectively, tm → −∞) such that γ(tm) → x as m → +∞. Since x0 = (k0, n0),
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0 < n0 < h and pr2(γ(tm)) = T tm
2 (n0), then {T tm

1 (n0)} → h (respectively,
{T tm

2 (n0)} → 0) as m → +∞. On the other hand x ∈ J and, consequently,
p2(x) = h (respectively, pr2(x) = 0). Analogously we can prove that ωx0 ⊆ Jh for
all x0 = (k0, n0) ∈ R2

+ with n0 > 0, where ωx0 is the ω-limit set of point x0.
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