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Abstract. We give sufficient conditions of the existence of a compact in-

variant manifold, almost periodic (quasi-periodic, almost automorphic, quasi-
recurrent) solutions and chaotic sets of the second-order differential equation

x′′ = f(t, x) on an arbitrary Hilbert space with the uniform monotone right

hand side f .

1. Introduction

The problem of the almost periodicity of solutions of non-linear almost periodic
second-order differential equations

(1) x′′ = f(t, x)

with the monotone (with respect to the spacial variable x) right hand side f was
studied by many authors (see, for example, [3]-[15], [17, 18], [22, 23], [24], [33] and
the bibliography therein).

In the present paper we consider a special class of equations (1), where the function
f : R × H → H (H is a Hilbert space) is uniformly monotone with respect to
(w.r.t.) x ∈ H, i.e. f ′x(t, x) ≥ mI, where fx(t, x) is a self-adjoint operator and I is
a unit operator on H and m > 0. We also study a more general equation

(2) x′′ = f(ωt, x) (ω ∈ Ω),

with the uniform monotone (with respect to the spacial variable x) right hand side
f, where Ω is a compact metric space, (Ω,R, σ) is a dynamical system on Ω and
ωt := σ(t, ω). We give sufficient conditions for the existence of a compact invariant
manifold of equation (2). Almost periodic, quasi-periodic, almost automorphic,
pseudo recurrent solutions and chaotic sets of equation (2) are studied too.

The problem of almost periodicity of solutions of equation (1) (with a monotone,
but not strictly monotone, function f) was studied by Cieutat [22] and by Cheban
[18] (with a uniform monotone function f).
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A special class of such equations is the class of the Lagrangian system

(3) x′′ = ∇xV (t, x).

In [24] Corduneanu studied the existence of almost periodic solutions of (3) with a
uniform monotone function ∇xV (i.e. ∇xxV (t, x) ≥ mI). Zakharin and Parasyuk
[33] studied the problem of the existence of quasi-periodic solutions of the equation

x′′ = ∇xV (ωt, x) (ω ∈ Ω)

when Ω is an m-dimensional torus T m, (Ω,R, σ) is an irrational winding of the
torus T m and the right hand side ∇xV is uniformly monotone.

For the equation
x′′ = ∇xV (x) + f(t)

Carminati [17] gives sufficient conditions of the existence and uniqueness of a
bounded solution and its almost periodicity (see also [3]-[15] and the bibliography
therein).

This paper is organized as follows.

Section 2 contains the notions of different types of motions (almost periodic, almost
automorphic, recurrent etc) and some properties of these classes of motions. We
also give certain examples of shift dynamical systems which play a very important
role in the study of the recurrence property (almost periodicity, almost automorphy,
recurrence etc) of continuous functions and solutions of non-autonomous differential
equations. Finally, in this section we present notions of cocycle, skew-product
dynamical systems, non-autonomous dynamical systems and continuous invariant
sections of non-autonomous dynamical systems which play a crucial role in our
paper.

Section 3 is devoted to the study of invariant manifolds (invariant continuous sec-
tions) of the second order differential equation (2) with uniform monotone (with
respect to spacial variable x) right hand side f . The main result of this paper
is Theorem 3.5 which contains the sufficient conditions of the existence of com-
pact invariant manifold of equation (2). Here, we study also the almost periodic,
quasi-periodic, almost automorphic, pseudo recurrent solutions (Corollary 3.8 and
Theorem 3.13) and chaotic sets (Theorem 3.20) of equation (2).

In section 4 we give sufficient conditions of the existence of at least one almost au-
tomorphic solution of differential equation (1) with almost authomorphic monotone
right hand side (Theorem 4.6).

2. Almost Periodic and Almost Automorphic Motions of Dynamical
Systems

2.1. Recurrent, Almost Periodic and Almost Automorphic Motions. Let
X be a complete metric space, R (Z) be a group of real (integer) numbers, R+ (Z+)
be a semi-group of nonnegative real (integer) numbers, S be one of the two sets R
or Z and T ⊆ S (S+ ⊆ T) be a sub-semigroup of the additive group S.

Let (X,T, π) be a dynamical system.
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Definition 2.1. A number τ ∈ T is called an ε > 0 shift (respectively, almost
period), if ρ(xτ, x) < ε (respectively, ρ(x(τ + t), xt) < ε for all t ∈ T).

Definition 2.2. A point x ∈ X is called almost recurrent (respectively, Bohr almost
periodic), if for any ε > 0 there exists a positive number l such that at any segment
of length l there is an ε shift (respectively, almost period) of point x ∈ X.

Definition 2.3. If the point x ∈ X is almost recurrent and the set H(x) :=
{xt | t ∈ T} is compact, then x is called recurrent.

Denote Nx := {{tn} ⊂ T : such that {π(tn, x)} is convergent and {tn} → ∞}.
Definition 2.4. A point x ∈ X of the dynamical system (X,T, π) is called Levitan
almost periodic [27], if there exists a dynamical system (Y,T, σ) and a Bohr almost
periodic point y ∈ Y such that Ny ⊆ Nx.

Lemma 2.5. Let xi ∈ Xi (i = 1, 2, . . . ,m) be a Levitan almost periodic point of
the dynamical system (Xi,T, πi). Then the point x := (x1, x2, . . . , xm)) ∈ X :=
X1 × X2 × . . . × Xm is also Levitan almost periodic in the product dynamical
system (X,T, π), where π : T × X → X is defined by the equality π(t, x) :=
(π1(t, x1), π2(t, x2), . . . , πm(t, xm)) for all t ∈ T and x := (x1, x2, . . . , xm) ∈ X.

Proof. Let xi ∈ Xi (i = 1, 2, . . . ,m) be a Levitan almost periodic point of the
dynamical system (Xi,T, πi). Then there exists a dynamical system (Yi,T, σi) and
a Bohr almost periodic point yi ∈ Yi such that Nyi

⊆ Nxi
. Let us consider the point

y := (y1, y2, . . . , ym) ∈ Y := Y1 × Y2 × . . .× Ym. It is clear that the point y is Bohr
almost periodic in the product dynamical system (Y,T, σ) (σ := (σ1, σ2, . . . , σm)).
Note that Ny =

⋂m
i=1 Nyi

⊆
⋂m

i=1 Nxi
= Nx, because Nyi

⊆ Nxi
for all i =

1, 2, . . . ,m. �

Definition 2.6. A point x ∈ X is called stable in the sense of Lagrange (st.L), if
its trajectory {π(t, x) : t ∈ T} is relatively compact.

Definition 2.7. A point x ∈ X is called almost automorphic in the dynamical
system (X,T, π), if the following conditions hold:

(i) x is st.L;
(ii) there exists a dynamical system (Y,T, σ), a homomorphism h from (X,T, π)

onto (Y,T, σ) and an almost periodic in the sense of Bohr point y ∈ Y such
that h−1(y) = {x}.

Lemma 2.8. Every almost automorphic point x ∈ X is also Levitan almost peri-
odic.

Proof. Let x ∈ X be an almost automorphic point of the dynamical system (X,T, π).
Then it is st.L and there exists a dynamical system (Y,T, σ), a homomorphism h
from (X,T, π) onto (Y,T, σ) and a Bohr almost periodic point y ∈ Y such that
h−1(y) = {x}. We will show that the inclusion Ny ⊆ Nx takes place. In fact, if
{tn} ∈ Ny, then the sequence {π(tn, x)} is relatively compact because the point
x is st.L. Let x′ be an arbitrary limiting point of {π(tn, x)}. Then h(x′) = y,
i.e. x′ ∈ h−1(y). Since h−1(y) = {x}, then x′ = x and, consequently, the sequence
{π(tn, x)} is convergent. �



4 DAVID CHEBAN AND CRISTIANA MAMMANA

Remark 2.9. A Levitan almost periodic point x with relatively compact trajectory
{π(t, x) t ∈ T} is also almost automorphic (see [1, 2], [16], [27], [30] and also [25]
and [28]). In other words, an Levitan almost periodic point x is almost periodic if
and only if its trajectory {π(t, x) t ∈ T} is relatively compact.

Lemma 2.10. Let (X,T, π) and (Y,T, σ) be two dynamical systems, x ∈ X and
the following conditions be fulfilled:

(i) a point y ∈ Y is Levitan almost periodic;
(ii) Ny ⊆ Nx.

Then the point x is Levitan almost periodic, too.

Proof. If the point y ∈ Y is Levitan almost periodic, then there exists a dynamical
system (Z,T, µ) and a Bohr almost periodic point z ∈ Z such that Nz ⊆ Ny. Under
the conditions of the lemma, Ny ⊆ Nx and, hence, Nz ⊆ Nx. �

Corollary 2.11. Let x ∈ X be a st.L point, y ∈ Y be an almost automorphic point
and Ny ⊆ Nx. Then the point x is almost automorphic too.

Proof. Let y be an almost automorphic point, then by Lemma 2.10 the point x ∈
X is Levitan almost periodic. Since x is st.L, then by Remark 2.9 it is almost
automorphic. �

Remark 2.12. We note (see, for example, [27] and [32]) that if y ∈ Y is a station-
ary (τ -periodic, almost periodic, quasi periodic, recurrent) point of the dynamical
system (Y,T2, σ) and h : Y → X is a homomorphism of the dynamical system
(Y,T2, σ) onto (X,T1, π), then the point x = h(y) is a stationary (τ -periodic, al-
most periodic, quasi periodic, recurrent) point of the system (X,T1, π).

Lemma 2.13. If y ∈ Y is an almost automorphic point of the dynamical system
(Y,T, σ) and h : Y → X is a homomorphism of the dynamical system (Y,S, σ) onto
(X,T, π), then the point x = h(y) is an almost automorphic point of the system
(X,T, π).

Proof. Let y ∈ Y be an almost automorphic point of the dynamical system (Y,T, σ).
Then it is st.L and, consequently, so is the point x = h(y). Since every almost
automorphic point is Levitan almost periodic, then the point y is Levitan almost
periodic and by Remark 2.12 the point x = h(y) is also Levitan almost periodic.
Thus, the point x is Levitan almost periodic and its trajectory is relatively compact
and by Remark 2.9 it is almost automorphic. �

2.2. Shift Dynamical Systems, Almost Periodic and Almost Automorphic
Functions. Below we indicate one general method of construction of dynamical
systems on the space of continuous functions. In this way we will get many well
known dynamical systems on the functional spaces (see, for example, [16, 31]).

Let (X,T, π) be a dynamical system on X, Y be a complete pseudo metric space
and P be a family of pseudo metrics on Y . We denote by C(X,Y ) the family of
all continuous functions f : X → Y equipped with a compact-open topology. This
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topology is given by the following family of pseudo metrics {dp
K} (p ∈ P, K ∈

C(X)), where

dp
K(f, g) := sup

x∈K
p(f(x), g(x))

and C(X) a family of all compact subsets of X. For all τ ∈ T we define a mapping
στ : C(X,Y ) → C(X,Y ) by the following equality: (στf)(x) := f(π(τ, x)) (x ∈
X). We note that the family of mappings {στ : τ ∈ T} possesses the next properties:

a. σ0 = idC(X,Y );
b. ∀τ1, τ2 ∈ T στ1 ◦ στ2 = στ1+τ2 ;
c. ∀τ ∈ T στ is continuous.

Lemma 2.14. [20] The mapping σ : T × C(X,Y ) → C(X,Y ), defined by the
equality σ(τ, f) := στf (f ∈ C(X,Y ), τ ∈ T), is continuous.

Corollary 2.15. The triple (C(X,Y ),T, σ) is a dynamical system on C(X,Y ).

Consider now some examples of dynamical systems of the form (C(X,Y ),T, σ),
useful in the applications.

Example 2.16. Let X = T and we denote by (X,T, π) a dynamical system on T,
where π(t, x) := x + t. The dynamical system (C(T, Y ),T, σ) is called Bebutov’s
dynamical system [31] (a dynamical system of translations, or shifts dynamical
system).

Definition 2.17. We will say that the function ϕ ∈ C(T, Y ) possesses a property
(A), if the motion σ(·, ϕ) : T → C(T, Y ) possesses this property in the dynamical
system of Bebutov (C(T, Y ),T, σ), generated by the function ϕ. As property (A)
we can take periodicity, quasi-periodicity, almost periodicity, almost automorphy,
recurrence etc.

Example 2.18. Let X := T×W , where W is some metric space and by (X,T, π)
we denote a dynamical system on X defined in the following way: π(t, (s, w)) :=
(s+ t, w). Using the general method proposed above we can define on C(T×W,Y )
a dynamical system of translations (C(T×W,Y ),T, σ).

Definition 2.19. The function f ∈ C(T ×W,Y ) is called almost periodic (quasi-
periodic, recurrent, almost automorphic, etc) with respect to t ∈ T uniform on w
on every compact from W , if the motion σ(·, f) is almost periodic (quasi-periodic,
recurrent, almost automorphic, etc.) in the dynamical system (C(T×W,Y ),T, σ).

Remark 2.20. Let W be a compact metric space, then the topology on C(W,Y ) is
metrizable. For example by the equality

d(f, g) :=
∞∑

k=1

1
2k

dk(f, g)
1 + dk(f, g)

there is defined a complete metric on the space C(W,X) which is compatible with the
compact-open topology on C(W,X), where dk(f, g) := max

|t|≤k, x∈W
ρ(f(t, x), g(t, x)).

The space C(T×W,Y ) is topologically isomorphic to C(T, C(W,Y )) [31], and also
the shifts dynamical systems (C(T×W,Y ),T, σ) and (C(T, C(W,Y )),T, σ) are dy-
namically isomorphic.
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2.3. Cocycles, Skew-Product Dynamical Systems and Non-Autonomous
Dynamical Systems. Let T1 ⊆ T2 be two sub-semigroups of the group S (S+ ⊆
T+).
Definition 2.21. A triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism
from (X,T1, π) onto (Y,T2, σ), is called a non-autonomous dynamical system.
Definition 2.22. Let (Y,T2, σ) be a dynamical system on Y , W be a complete
metric space and ϕ be a continuous mapping from T1 ×W × Y in W , possessing
the following properties:

a. ϕ(0, u, y) = u (u ∈W, y ∈ Y );
b. ϕ(t+ τ, u, y) = ϕ(τ, ϕ(t, u, y), σ(t, y)) (t, τ ∈ T1, u ∈W, y ∈ Y ).

Then the triplet 〈W,ϕ, (Y,T2, σ)〉 (or shortly ϕ) is called [29] a cocycle on (Y,T2, σ)
with the fiber W .
Definition 2.23. Let X := W × Y and let us define a mapping π : X × T1 → X
as follows: π((u, y), t) := (ϕ(t, u, y), σ(t, y)) (i.e. π = (ϕ, σ)). Then it is easy
to see that (X,T1, π) is a dynamical system on X, which is called a skew-product
dynamical system [29] and h = pr2 : X → Y is a homomorphism from (X,T1, π)
onto (Y,T2, σ) and, hence, 〈(X,T1, π), (Y,T2, σ), h〉 is a non-autonomous dynami-
cal system.

Thus, if we have a cocycle 〈W,ϕ, (Y,T2, σ)〉 on the dynamical system (Y,T2, σ) with
the fiber W , then it generates a non-autonomous dynamical system 〈(X,T1, π),
(Y,T2, σ), h〉 (X := W ×Y ), called a non-autonomous dynamical system generated
by the cocycle 〈W,ϕ, (Y,T2, σ)〉 on (Y,T2, σ).

Non-autonomous dynamical systems (cocycles) play a very important role in the
study of non-autonomous evolutionary differential equations. Under appropriate
assumptions every non-autonomous differential equation generates a cocycle (a non-
autonomous dynamical system). Below we give some examples of this type.
Example 2.24. Consider the system of differential equations

(4)
{
u′ = F (y, u)
y′ = G(y),

where Y ⊆ Em, G ∈ C(Y,En) and F ∈ C(Y × En, En). Suppose that for the
system (4) the conditions of the existence, uniqueness and extendability on R+ are
fulfilled. Denote by (Y,R+, σ) a dynamical system on Y generated by the second
equation of the system (4) and by ϕ(t, u, y) we denote the solution of the equation

u′ = F (σ(t, y), u)

passing through the point u ∈ En for t = 0. Then the mapping ϕ : R+×En×Y →
En satisfies the conditions a. and b. from Definition 2.22 and, consequently, sys-
tem (4) generates a non-autonomous dynamical system 〈(X,R+, π), (Y,R+, σ), h〉
(where X := En × Y , π := (ϕ, σ) and h := pr2 : X → Y ).
Example 2.25. Let E be a Banach space and (Y,R, σ) be a dynamical system on
the metric space Y . We consider the system

(5)
{
u′ = F (σ(y, t), u)
y ∈ Y,
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where F ∈ C(Y × E,E). Suppose that for equation (5) the conditions of the exis-
tence, uniqueness and extendability on R+ are fulfilled. The non-autonomous dy-
namical system 〈(X,R+, π), (Y,R, σ), h〉 (respectively, the cocycle 〈E,ϕ, (Y,R, σ)〉 ),
where X := E×Y , π := (ϕ, σ), ϕ(·, x, y) is the solution of (5) and h := pr2 : X → Y
is generated by equation (5).
Example 2.26. Let E be a real or complex Banach space. Let us consider a
differential equation

(6) u′ = f(t, u),

where f ∈ C(R× E,E). Along with equation (6) we consider its H-class [16],[27],
[29], [32], i.e. the family of equations

(7) v′ = g(t, v),

where g ∈ H(f) = {fτ : τ ∈ R}, fτ (t, u) = f(t+ τ, u) for all (t, u) ∈ R× E and by
bar we denote the closure in C(R× E,E). We will suppose also that the function
f is regular, i.e. for every equation (7) the conditions of the existence, uniqueness
and extendability on R+ are fulfilled. Denote by ϕ(·, v, g) the solution of equation
(7) passing through the point v ∈ E at the initial moment t = 0. Then there
is a correctly defined mapping ϕ : R+ × E × H(f) → E satisfying the following
conditions (see, for example, [16], [29]):

1) ϕ(0, v, g) = v for all v ∈ E and g ∈ H(f);
2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t+ τ, v, g) for every v ∈ E, g ∈ H(f) and t, τ ∈ R+;
3) the mapping ϕ : R+ × E ×H(f) → E is continuous.

Denote by Y := H(f) and (Y,R+, σ) a dynamical system of translations (a semi-
group system) on Y , induced by the dynamical system of translations (C(R ×
En, En),R, σ). The triplet 〈E,ϕ, (Y,R+, σ)〉 is a cocycle on (Y,R+, σ) with the fiber
E. Thus, equation (6) generates a cocycle 〈E,ϕ, (Y,R+, σ)〉 and a non-autonomous
dynamical system 〈(X,R+, π), (Y,R+, σ), h〉, where X := En × Y , π := (ϕ, σ) and
h := pr2 : X → Y .
Remark 2.27. Note that the family of equations (7) can by written in the form
(5). In fact, let Ω := H(f) and (Ω,R, σ) be a shift dynamical system on H(f). We
define now a mapping F ∈ C(Ω × E,E) by the equality F (g, x) := g(0, x) for all
g ∈ H(f) and x ∈ E. It is easy to see that F (ωt, x) = g(t, x) (ω = g, ωs = gs,
where gs is an s-sift of the function g with respect to time).

2.4. Invariant Sections of Non-Autonomous Dynamical Systems. Let 〈(X,
S+, π), (Y, S, σ), h)〉 be a non-autonomous dynamical system.
Definition 2.28. A mapping γ : Y → X is called a section (selector) of a homo-
morphism h, if h(γ(y)) = y for all y ∈ Y . The section γ of the homomorphism h
is called invariant, if γ(σ(t, y)) = π(t, γ(y)) for all y ∈ Y and t ∈ S.
Remark 2.29. Note that (γ(Y ),S, π) is a group subsystem of the semigroup dy-
namical system (X,S+, π), if γ is a continuous section of the homomorphism h
from (X,S+, π) onto (Y,S, σ).

Denote by Γ = Γ(Y,X) the family of all continuous sections of h, i.e. Γ(Y,X) =
{γ ∈ C(Y,X) : h ◦ γ = IdY }. We will suppose that Γ(Y,X) 6= ∅. For applications
this condition is fulfilled in many important cases.
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Remark 2.30. A continuous section γ ∈ Γ is invariant, if and only if γ ∈ Γ is a
stationary point of the semigroup {St | t ∈ S+}, where St : Γ(Y,X) → Γ(Y,X) is
defined by the equality (Stγ)(y) := π(t, γ(σ(−t, y))) for all y ∈ Y and t ∈ S+.

We consider a special case of the foregoing construction. Let 〈W,ϕ, (Y,S, σ)〉 be
a cocycle over (Y,S, σ) with the fiber W and 〈(X,S+, π), (Y,S, σ), h〉 be the non-
autonomous dynamical system generated by this cocycle. Then h ◦ γ = IdY , and
since h = pr2, then γ = (ψ, IdY ), where γ ∈ Γ(Y,X) and ψ : Y → W . Hence,
to each section γ a mapping ψ : Y → W corresponds, and vice versa. There is a
one-on-one relation between Γ(Y,W ×Y ) and C(Y,W ), where C(Y,W ) is the space
of continuous functions ψ : Y → W, we identify these two objects from now on.
The semigroup {St | t ∈ S+} naturally induces a semigroup {Qt | t ∈ S+} of the
mappings of C(Y,W ). Namely,

(Stγ)(y) = πtγ(σ−ty) = πt(ψ, IdY )(σ−ty) =

πt(ψ(σ−ty), σ−ty) = (U(t, σ−ty)ψ(σ−ty), y) = ((Qtψ)(y), y),
where U(t, y) := ϕ(t, ·, y).

Hence, St(ψ, IdY ) = (Qtψ, IdY ) with (Qtψ)(y) = U(t, σ−ty)ψ(σ−ty) (y ∈ Y ). We
have the next properties:

a. Q0 = IdC(Y,W );
b. QtQτ = Qt+τ ( t, τ ∈ S+).

Definition 2.31. A continuous function ψ : Y → W is called an invariant sec-
tion of the cocycle 〈W,ϕ, (Y,T, σ)〉 (or an invariant manifold of the cocycle ϕ), if
ψ(σ(t, y)) = ϕ(t, ψ(y), y) for all t ∈ T and y ∈ Y.
Remark 2.32. Let X := E × Y and π := (ϕ, σ). Then the mapping h : Y → X is
a homomorphism of the dynamical system (Y,T2, σ) onto (X,T1, π), if and only if
h(y) = (γ(y), y) for all y ∈ Y , where γ : Y → E is a continuous mapping with the
condition that γ(yt) = ϕ(t, γ(y), y) for all y ∈ Y and t ∈ T2.

3. Invariant Manifolds of Second Order Differential Equations

3.1. Invariant manifolds. Let Ω be a compact metric space and (Ω,R, σ) be an
autonomous dynamical system on Ω. Let E be a Banach space. Denote by [E] the
space of all linear continuous operators acting on E and endowed with an operator
norm.

Denote by H a Hilbert space with the scalar product 〈·, ·〉 and the norm |·|2 := 〈·, ·〉,
by C(Ω, E) we denote the Banach space of all continuous function ϕ : Ω → E
equipped with the norm ‖ϕ‖C(Ω,E) := max

ω∈Ω
|ϕ(ω)|E .

Definition 3.1. A function ϕ ∈ C(Ω, E) is called:

- differentiable in the point ω0 along the flow (Ω,T, σ), if there exists a limit

ϕ̇σ(ω0) := lim
s→0

ϕ(σ(s, ω0))− ϕ(ω0)
s

;

In this case ϕ̇σ(ω0) is called a derivative of the function ϕ ∈ C(Ω, E) at
the point ω0 ∈ Ω along the flow (Ω,T, σ) (shortly, σ).
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- differentiable on Ω along the flow σ, if it is differentiable at every point
ω ∈ Ω;

- continuously differentiable on Ω along the flow σ, if it is differentiable at
Ω and ϕ̇σ ∈ C(Ω, E).

Denote by Ċ1(Ω, E) a Banach space of all continuously differentiable (on Ω along
the flow σ) functions ϕ ∈ C(Ω, E) endowed with the norm

‖ϕ‖Ċ1(Ω,E) := ‖ϕ‖C(Ω,E) + ‖ϕ̇‖C(Ω,E).

Let us consider a differential equation of the second order

(8) x′′ = f(ωt, x), (ω ∈ Ω)

where f ∈ C(Ω×H,H), and give a criterion of the existence of an invariant manifold
for this equation. Below we will suppose that the function f is regular, i.e. for all
x.y ∈ H the equation (8) admits a unique solution ϕ(t, x, y, ω) defined on R+ with
the initial conditions ϕ(0, x, y, ω) = x and ϕ′(0, x, y, ω) = y.

As we know, we can reduce the equation (8) to the equivalent system{
x′ = y
y′ = f(ωt, x)

(ω ∈ Ω) or to the equation

(9) z′ = F (ωt, z)

on the product space H2 := H × H, where z := (x, y) and F ∈ C(Ω × H2,H2)
is the function defined by the equality F (ω, z) := (y, f(ω, x)) for all ω ∈ Ω and
z := (x, y) ∈ H2.

Remark 3.2. 1. Since (ϕ(t, x, y, ω), ϕ′(t, x, y, ω)) is a cocycle, generated by equa-
tion (9), then we have the following equality

(10) ϕ(t+ τ, x, y, ω) = ϕ(t, ϕ(τ, x, y, ω), ϕ′(τ, x, y, ω), ωτ)

for all t, τ ∈ R+, x, y ∈ H and ω ∈ Ω.

2. The function µ := (γ, δ) ∈ C(Ω,H2) (γ, δ ∈ C(Ω,H)) is a continuous invariant
section of the cocycle (ϕ(t, x, y, ω), ϕ′(t, x, y, ω)), generated by equation (9), if and
only if the following conditions are fulfilled:

(i) γ ∈ Ċ1(Ω,H);
(ii) γ̇σ = δ;
(iii) γ(ωt) = ϕ(t, γ(ω), γ̇σ(ω), ω) for all t ∈ R and ω ∈ Ω.

Cheban [18] and Cieutat [22] have studied the existence of almost periodic and
asymptotically almost periodic solutions of (8) (in the case, when Ω = H(f) and
(Ω,R, σ) is a shift dynamical system).

A special class of such systems is the class of the following Lagrangian system:

(11) x′′ = ∇xV (ωt, x), (ω ∈ Ω),

where V ∈ C(Ω × H,R) and V (ω, ·) is differentiable for each ω ∈ Ω (∇xV (ω, ·)
denotes the gradient of the function V (ω, ·)). Corduneanu [24] and Zakharin and
Parasyuk [33] have studied the existence of almost periodic solutions of (11).
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A particular case of equation (11) is the following equation:

(12) x′′ = ∇xV (x) + f(ωt), (ω ∈ Ω),

where f ∈ C(Ω,H). Carminati [17] gives sufficient conditions for the existence and
uniqueness of bounded or almost periodic solutions of (12).

Lemma 3.3. Let M > 0 and f ∈ C(Ω,H). By the formula

(13) γ(ω) =
1

2
√
M

{ +∞∫
0

e−
√

Mτf(ωτ)dτ +

0∫
−∞

e
√

Mτf(ωτ)dτ
}

there is defined a continuous function on Ω possessing the following properties:

1.

γ(ωt) =
1

2
√
M

{
e
√

Mt

+∞∫
t

e−
√

Mτf(ωτ)dτ + e−
√

Mτ

t∫
−∞

e
√

Mτf(ωτ)dτ
}

for all ω ∈ Ω and t ∈ R;
2.

γ̇σ(ω) =
1
2

{ +∞∫
0

e−
√

Mτf(ωτ)dτ −
0∫

−∞

e
√

Mτf(ωτ)dτ
}

for all ω ∈ Ω;
3. γ(ωt) = ϕ(t, γ(ω), γ̇σ(ω), ω) for all t ∈ R and ω ∈ Ω, where ϕ(t, x, y, ω)

is a unique solution of the equation x′′ = Mx + f(ωt) (ω ∈ Ω) with the
initial conditions ϕ(0, x, y, ω) = x and ϕ′(0, x, y, ω) = y.

Proof. Since the integrals figuring in the equality (13) are convergent (uniformly in
ω ∈ Ω), then by (13) there is correctly defined a continuous function γ on Ω. The
fact that the function γ defined by equality (13) possess properties 1.–3. can be
proved by a simple calculation. �

Corollary 3.4. Let γ : Ω → H be the function defined by (13), then the following
statements hold:

(i) γ ∈ Ċ1(Ω,H);
(ii) ||γ||C(Ω,H) ≤ 1

M ||f ||C(Ω,H);
(iii) ||γ̇||C(Ω,H) ≤ 1√

M
||f ||C(Ω,H);

(iv) ||γ||Ċ1(Ω,H) ≤ ( 1
M + 1√

M
)||f ||C(Ω,H).

Theorem 3.5. Let f ∈ C(Ω × H,H) be continuously differentiable w.r.t. x ∈ H
and let exist r0 > 0 such that

(i) |f(ω, x)| ≤ A(r) < +∞ for all (ω, x) ∈ Ω×B[0, r] and 0 ≤ r ≤ r0;
(ii) there exists positive numbers m and M(r) such that for all (ω, x) ∈ Ω ×

B[0, r], 0 ≤ r ≤ r0, mI ≤ f ′x(ω, x) ≤ M(r)I (I is a unit operator from
[H]) and the operator f ′x(ω, x) is self-adjoint;

(iii) A(0) ≤ mr0.
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Then for an arbitrary A(0)m−1 ≤ r ≤ r0 there exist a unique function γ ∈
Ċ1(Ω, B[0, r]) such that γ(ωt) = ϕ(t, γ(ω), γ̇(ω), ω) for all ω ∈ Ω and t ∈ R,
where ϕ(t, u, v, ω) is a unique solution of equation (8) with the initial conditions
ϕ(0, u, v) = u and ϕ′(0, u, v) = v.

Proof. LetA(0)m−1 ≤ r ≤ r0. AssumeBr(Ω) := {ϕ|ϕ ∈ C(Ω,H), ||ϕ||C(Ω,H) ≤ r}.
Further, define an operator Φ from Br(Ω) to Br(Ω) by the equality

(Φϕ)(ω) =
1

2
√
M

{ +∞∫
0

e−
√

MτF (ωτ, ϕ(ωτ))dτ +

0∫
−∞

e
√

MτF (ωτ, ϕ(ωτ)dτ
}
,

where F (ω, x) = f(ω, x)−Mx. Let ϕ ∈ Br(Ω). We consider a differential equation

d2x

dt2
= Mx+ f(ωt, ϕ(ωt))−Mϕ(ωt).

Note that F ′x(ω, x) = f ′x(ω, x)−MI, and since f ′x(ω, x) is self-adjoint, we have

(14)
||F ′x(ω, x)|| = sup

|ξ|=1

|(F ′x(ω, x)ξ, ξ)| = sup
|ξ|=1

|(f ′x(ω, x)ξ, ξ)−M | =

= sup
|ξ|=1

|M − (f ′x(ω, x)ξ, ξ)| ≤M(r)−m

for all ω ∈ Ω and x ∈ B[0, r]. From inequality (14) it follows that

|F (ω, x1)− F (ω, x2)| ≤ (M −m)|x1 − x2|

for all ω ∈ Ω and x1, x2 ∈ B[0, r].

Note that g ∈ C(Ω,H), where g(ω) := F (ω, ϕ(ω)). According to Lemma 3.3
ψ := Φ(ϕ) ∈ C(Ω,H) and

(15)

||ψ|| ≤ 1
M
||g|| = 1

M
max
ω∈Ω

|F (ω, ϕ(ω))| ≤
1
M

max
ω∈Ω

|F (ω, ϕ(ω))− F (ω, 0)|+ 1
M

max
ω∈Ω

|F (ω, 0)| ≤
1
M

(M −m)||ϕ||C(Ω,H) +
A(0)
M

≤ M −m

M
r +

A(0)
M

.

From inequality (15) it follows that ψ ∈ Br(Ω), because r ≥ A(0)m−1. From
the above said it follows that ΦBr(Ω) ⊆ Br(Ω). In addition, Br(Ω) is a closed
subspace of the full metric space C(Ω,H). Let us show that Φ : Br(Ω) → Br(Ω) is
a contracting mapping. Let ϕ1, ϕ2 ∈ Br(Ω), ψi := Φϕi (i = 1, 2) and ψ := ψ1−ψ2.
Then the function ψ(ωt) (ω ∈ Ω) satisfies the equation

d2x

dt2
= Mx+ F (ωt, ϕ1(ωt))− F (ωt, ϕ2(ωt))

and can be estimated like this:

||ψ||C(Ω,H) = ||ψ1 − ψ2||C(Ω,H) ≤M−1 max
ω∈Ω

|F (ω, ϕ1(ω))−

F (ω, ϕ2(ω))| ≤ M −m

M
||ϕ1 − ϕ2||C(Ω,H),

i.e.
||Φϕ1 − Φϕ2||C(Ω,H) ≤ α||ϕ1 − ϕ2||C(Ω,H)
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for all ϕ1, ϕ2 ∈ Br(Ω), where α = M−1(M −m) < 1. Consequently, there exists a
unique fixed point of the operator Φ that, obviously, is the desired function. The
theorem is proved. �

3.2. Linear case.

Corollary 3.6. Let A ∈ C(Ω, [H]) be a self-adjoint operator-function. If there
exist positive numbers m and M such that for all ω ∈ Ω

(16) mI ≤ A(ω) ≤MI,

then for any function f ∈ C(Ω,H) there exists a unique function γ ∈ Ċ1(Ω,H)
such that

(i) γ(ωt) = ϕ(t, γ(ω), γ̇(ω), ω) for all ω ∈ Ω and t ∈ R, where ϕ(t, u, v, ω) is a
unique solution of the equation

(17) x′′ = A(ωt)x+ f(ωt)

with the initial conditions ϕ(0, u, v, ω) = u and ϕ′(0, u, v, ω) = v;
(ii)

‖γ‖C(Ω,H) ≤
‖f‖C(Ω,H)

m
.

Proof. Let F (ω, x) := A(ω)x + f(ω), A ∈ C(Ω, [H]) be a self-adjoint operator-
function, f ∈ C(Ω,H) and the condition (16) be held. Note that |F (ω, x)| ≤
A(r) := r‖A‖C(Ω,[H]) + ‖f‖C(Ω,H) for all ω ∈ Ω and x ∈ B[0, r], where r ∈
[m−1‖f‖C(Ω,H), r0] and r0 > ‖f‖C(Ω,H)m

−1. Now to finish the proof it is suffi-
cient to apply Theorem 3.5, because all its conditions are fulfilled. �

3.3. Quasi-Periodic Solutions. An m-dimensional torus is denoted by T m :=
Rm/2πZ. Let (T m,T, σ) be an irrational winding of T m.

Definition 3.7. A function ϕ : T → H is called quasi-periodic with the frequency
ω := (ω1, ω2, . . . , ωm) ∈ T m, if there exists a continuous function Φ : T m → H
such that ϕ(t) := Φ(ωt) for all t ∈ T, where ωt := σ(t, ω) and (T m,T, σ) is an
irrational winding of the torus T m.

Corollary 3.8. Let the conditions of Theorem 3.5 be fulfilled and the point ω ∈ Ω
be stationary (respectively, τ -periodic, quasi-periodic, Bohr almost periodic, almost
automorphic, recurrent). Then equation (8) has a unique stationary (respectively,
τ -periodic, quasi-periodic, Bohr almost periodic, almost automorphic, recurrent)
solution.

Remark 3.9. 1. For almost periodic equations (8) Corollary 3.8 was proved by
Cheban [18] and for finite-dimensional Lagrangian equation it was established by
Corduneanu [24].

2. For finite-dimensional quasi-periodic Lagrangian equations (11) Corollary 3.8
improves Theorem 4.3 of Zakharin and Parasyuk [33].
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3.4. Invariant Manifold of The Equation x′′ = ∇V (x)+f(ωt). Let us consider
now equation (12).
Corollary 3.10. Assume that the following conditions are held:

(i) the function V ∈ C(H,R) has a local minimum at x0 ∈ H, and let r0 be a
positive number such that V is bounded on B[x0, r0];

(ii) for all x ∈ B[x0, r0] := {x ∈ H : |x− x0| ≤ r0} the function V is of the
form

V (x) :=
1
2
〈Ax, x〉+ v(x),

where A ∈ [H] is a self-adjoint operator and

〈Ax, x〉 ≥ α|x|2

for all x ∈ H, and v ∈ C1(H,R) is a convex function on B[x0, r0], i.e
∇xxv(x) ≥ 0 for x ∈ B[x0, r0];

(iii) the function f ∈ C(Ω,H) satisfies the inequality

‖f‖C(Ω,H) ≤ αr0.

Then

(i) for an arbitrary r ∈ [‖f‖C(Ω,H)α
−1, r0] there exist a unique function γ ∈

Ċ1(Ω, B[0, r0]) such that

γ(ωt) = ϕ(t, γ(ω), γ̇(ω), ω)

for all ω ∈ Ω and t ∈ R, where ϕ(t, u, v, ω) is a unique solution of equation
(12) with the initial conditions ϕ(0, u, v) = u and ϕ′(0, u, v) = v;

(ii)
‖γ − x0‖C(Ω,H) ≤ α−1‖f‖C(Ω,H).

Proof. Making the change of variable x = x0 + y in equation (12) we obtain

y′′ = ∇yV (x0 + y) + f(ωt).

We denote by F (ω, y) := ∇yV (x0 + y) + f(ω) ((ω, y) ∈ Ω×B[0, r0]). Then

F ′y(ω, y) = ∇yyV (x0 + y) = A+∇yyv(x0 + y),

because

V (x0 + y) :=
1
2
〈A(x0 + y), x0 + y〉+ v(x0 + y).

Since v is convex on B[x0, r] (this means that ∇xxv(x) ≥ 0 on B[x0, r]), we obtain

α · I ≤ F ′y(ω, y) ≤M(r) · I

for all (ω, y) ∈ Ω×B[0, r] and r ∈ [0, r0]. As the function v is bounded on B[x0, r0],
then there exists a function A : [0, r0] → R+ such that |v(x0 + y)| ≤ A(r) for all
y ∈ B[0, r] (in our case, for example, we can take

A(r) := sup
y∈B[0,r]

|∇yV (x0 + y)|+ ‖f‖C(Ω,H)

and A(0) = ‖f‖C(Ω,H)). To finish the proof of Corollary 3.10 it is sufficient to apply
Theorem 3.5. �



14 DAVID CHEBAN AND CRISTIANA MAMMANA

3.5. Pseudo Recurrent Motions.

Definition 3.11. [19] A dynamical system (Ω,T, σ) is said to be pseudo recurrent,
if the following conditions are fulfilled:

a) Ω is compact;
b) (Ω,T, σ) is transitive, i.e. there exists a point ω0 ∈ Ω such that Ω =

{σ(t, ω0) | t ∈ T};
c) every point ω ∈ Ω is stable in the sense of Poisson, i.e. Nω =6= ∅.

Lemma 3.12. [21] Let 〈(X,T, π), (Ω,T, σ), h〉 be a non-autonomous dynamical sys-
tem and the following conditions be fulfilled:

1) (Ω,T, σ) is pseudo recurrent;
2) γ ∈ C(Ω, X) is an invariant section of the homomorphism h : X → Ω.

Then the autonomous dynamical system (γ(Ω),T, π) is pseudo recurrent too.

Lemma 3.12 implies that under the conditions of Theorem 3.5 (respectively, Corol-
laries 3.6 and 3.10) equation (8) (respectively, equation (17) or equation (12)) ad-
mits a pseudo recurrent invariant manifold.

Therefore, we have the following result.

Theorem 3.13. Assuming that the driving dynamical system (Ω,T, σ) is pseudo
recurrent, and assuming the conditions of Theorem 3.5 (respectively of Corollaries
3.6 or 3.10) are satisfied, we get that equation (8) (respectively, equation (17) or
equation (12)) admits a pseudo-recurrent invariant manifold.

3.6. Chaotic Motions. Let (X, ρ) be a metric space and (X,T, π) be a dynamical
system.

Definition 3.14. A subset M ⊆ X is called transitive, if there exists a point
x0 ∈ X such that H(x0) := {π(t, x0) | t ∈ T} = M.

Definition 3.15. {p, q} ⊆ X is called a Li-Yorke pair, if simultaneously

lim inf
t→+∞

ρ(π(t, p), π(t, q)) = 0 and lim sup
t→+∞

ρ(π(t, p), π(t, q)) > 0.

Definition 3.16. A set M ⊆ X is called scrambled, if any pair of distinct points
{p, q} ⊆M is a Li-Yorke pair.

Definition 3.17. A dynamical system (X,T, π) is said to be chaotic, if X contains
an uncountable subset M satisfying the next conditions:

(i) the set M is transitive;
(ii) M is scrambled;
(iii) P (M) = M, where P (M) := {x ∈ M | Nx 6= ∅} (i.e. x ∈ P (M), if and

only if x is contained in its omega limit set) and by bar we denote the
closure in X.

Theorem 3.18. [21] Let (X,T, π) and (Ω,T, σ) be two dynamical systems and
ν : X → Ω be a homeomorphism of (Ω,T, σ) onto (X,T, π). Assume that (Ω,T, σ)
is chaotic. Then the dynamical system (X,T, π) is chaotic too.
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Remark 3.19. Let 〈W,ϕ, (Ω,T, π)〉 be a cocycle over (Ω,T, π) with the fiber W
and w : Ω →W be a continuous function satisfying the condition w(σ(t, ω)) = ϕ(t,
w(ω), ω) for all t ∈ T and ω ∈ Ω. Then if the dynamical system (Ω,T, σ) is
chaotic ,the skew-product dynamical system (X,T, π) (X := W and π(t, (u, ω)) :=
(ϕ(t, u, ω), σ(t, ω)) for all (u, ω) ∈ X and t ∈ T) is chaotic too. In this case we say
that the cocycle ϕ is chaotic.

Using Theorem 3.18, Remark 3.19 and the results from sections 2-3 we obtain some
criteria of the existence of chaotic sets for the second-order differential equations.
For instance, the following statement holds.
Theorem 3.20. Let (Ω,T, π) be a chaotic dynamical system. Then under the
conditions of Theorem 3.5 the cocycle ϕ defined by equation (8) admits a compact
invariant chaotic set.

4. Almost Automorphic Solutions of Monotone Second-Order
Differential Equation

In this section we suppose that the space H is finite-dimensional. Let W be a
nonempty compact from H and (C(R×W,H),R, σ) be a shift dynamical system on
C(R×W,H). Recall, that C(R×W,H) is topologically isomorphic to C(R, C(W,H))
and the shift dynamical systems (C(R×W,H),R, σ) and (C(R, C(W,H)),R, σ) are
dynamically isomorphic.

Let K be a convex set of H.
Definition 4.1. The direction n ∈ H is called normal to K at the point x ∈ K, if
〈n, u− x〉 ≤ 0 for all u ∈ K. The set of all normal directions is called normal cone
to K at x and is denoted by N(K,x).

Recall [26, p.137] that N(K,x) 6= ∅ for each x ∈ ∂K and N(K,x) = {0} for each
x ∈ Int(K), where ∂K is the boundary of K and Int(K) is its interior.

Let K ⊂ H be nonempty, compact, convex subset of H and f ∈ C(R×K,H). We
formulate the following assumptions:

(C1) f is almost automorphic in t uniformly for x ∈ K, i.e. the motion σ(t, f)
is almost automorphic in the shift dynamical system (C(R×K,H),R, σ);

(C2) the function f is monotone in x ∈ K uniformly for t ∈ R, i.e. 〈f(t, x1) −
f(t, x2), x1 − x2〉 ≥ 0 for all x1, x2 ∈ K and t ∈ R;

(C3) there exists t0 ∈ R such that 〈f(t0, x1) − f(t0, x2), x1 − x2〉 ≥ 0 for all
x1, x2 ∈ K, such that x1 6= x2;

(C4) 〈f(t, x), n〉 ≥ 0 for each x ∈ ∂K, n ∈ N(K,x) and t ∈ R.
Lemma 4.2. Let W ⊂ H be a nonempty compact. The function f ∈ C(R×W,H)
is almost automorphic in t ∈ R uniformly for x ∈ W , if and only if the following
conditions hold:

(i) the function f is bounded, i.e. there exists a constant C ≥ 0 such that
|f(t, x)| ≤ C for all (t, x) ∈ R×W ;

(ii) the function f is uniformly continuous on R×W ;
(iii) the function f is Levitan almost periodic in t ∈ R uniformly for x ∈W .
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Proof. According to Remark 2.9, the motion σ(t, f) is almost automorphic, if and
only if it is Levitan almost periodic and stable in the sense of Lagrange. Now
to finish the proof of the lemma it is sufficient to note that, by Theorem 7 [29,
p.37], the motion σ(t, f) is stable in the sense of Lagrange in the shift dynamical
system (C(R×W,H),R, σ), if and only if the function f is bounded and uniformly
continuous on the set R×W . �

Theorem 4.3. [22] Let f ∈ C(×K,H) be a bounded on R×K function. Then the
following statements hold:

(i) if the assumption (C4) is fulfilled, then the equation

(18) x′′ = f(t, x)

has at lest one bounded on R solution;
(ii) if the assumptions (C2) and (C4) are fulfilled and equation (18) has two

solutions ϕ1 and ϕ2 defined on R with their values in K, then ϕ1(t) −
ϕ2(t) = costant for all t ∈ R;

(iii) if, in addition, the condition (C3) is fulfilled, then (18) has a unique solu-
tion defined and bounded on R.

Denote X0 := {(ϕ, f) | ϕ ∈ C(R,H), f ∈ C(R×H,H), and let ϕ be a solution of
equation (18)}.
Lemma 4.4. The set X0 is invariant and closed in the product dynamical system
(C(R,H)× C(R×H,H),R, σ).

Proof. Let ϕ ∈ C(R,H) be a solution of equation (18), then it is twice continuously
differentiable and

(19) ϕ′′(t) = f(t, ϕ(t))

for all t ∈ R. From (19) it follows that ϕ′′(t+ τ) = f(t+ τ, ϕ(t+ τ)) for all t, τ ∈ R,
i.e. σ(τ, (ϕ, f)) := (σ(τ, ϕ), σ(τ, f)) ∈ X0. We will show that the set X0 is closed
in the product space (C(R,H)× C(R×H,H). Let (ψ, g) ∈ X0 (X0 is the closure
of X0 in (C(R,H)× C(R×H,H)). Then there exists a sequence {(ϕn, fn)} ⊆ X0

such that:

(i) {ϕn} → ψ in C(R,H);
(ii) {fn} → g in C(R×H,H);
(iii) ϕn ∈ C(R,H) is twice differentiable and

(20) ϕ′′n(t) = fn(t, ϕn(t))

for all t ∈ R.

Let l > 0 be an arbitrary number. Since {ϕn} → ψ in C(R,H), then the set
Q(l) := ∪∞n=1ϕn([−l, l]) is a compact subset of H. Note that the sequence {θn} → θ
in C(R,H), where θn(t) := ϕ′′n(t) = fn(t, ϕn(t)) and θ(t) := g(t, ψ(t)) for all t ∈ R.
Really,

|θ(t)− θn(t)| ≤ |g(t, ψ(t))− g(t, ϕn(t))|+(21)
|g(t, ϕn(t))− fn(t, ϕn(t))| ≤ αn + βn
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for all t ∈ [−l, l], where

αn := max
|t|≤l

|g(t, ψ(t))− g(t, ϕn(t))| and βn := max
|t|≤l,x∈Q(l)

|g(t, x)− fn(t, x)|.

Since {fn} → g in C(R×H,H), then {βn} → 0 as n→ +∞. Note that {αn} also
converges to 0 as n→ +∞. If we suppose that it is not true, then there are ε0 > 0
and a sequence {tn} ⊂ [−l, l] such that

(22) |g(tn, ψ(tn))− g(tn, ϕn(tn))| ≥ ε0

for all n ∈ N. Without loss of generality we can suppose that the sequence {tn} is
convergent. Denote by t0 its limit. Then lim

n→+∞
ϕn(tn) = ϕ(t0), since

|ϕn(tn)− ϕ(t0)| ≤ |ϕn(tn)− ϕ(tn)|+ |ϕ(tn)− ϕ(t0)| ≤

max
|t|≤l

|ϕn(t)− ϕ(t)|+ |ϕ(tn)− ϕ(t0)|.

Passing into limit in inequality (22) as n → +∞, we get 0 ≥ ε0. The obtained
contradiction proves our statement. Now, passing into limit in inequality (21) as
n→ +∞ we obtain that θ = lim

n→+∞
θn in the space C(R,H).

We will show that the sequence {ϕ′n(0)} is convergent. Indeed, since

ϕn(t) = ϕn(0) + ϕ′n(0)t+
∫ t

0

∫ s

0

θn(τ)dτds

and the sequences {ϕn}, {θn} ⊂ C(R,H) are convergent, we obtain that the se-
quence {ϕ′n(0)} ⊂ H is convergent (in the space H) too. From this fact and the
equality

ϕ′n(t) = ϕ′n(0) +
∫ t

0

θn(s)ds

we receive the convergence of the sequence {ϕ′n} in the space C(R,H). Thus, the
sequences {ϕn}, {ϕ′n} and {ϕ′′n} are convergent in the space C(R,H) and, con-
sequently, the function ψ is twice continuously differentiable, ψ′(t) = lim

n→+∞
ϕ′n(t)

and ψ′′(t) := lim
n→+∞

ϕ′′n(t) for all t ∈ R. Finally, passing into limit in equality (20)

as n→ +∞, we obtain ψ′′(t) = g(t, ψ(t)) for all t ∈ R, i.e. (ψ, g) ∈ X0. �

Corollary 4.5. 1. X0 is a complete metric subspace of the product space C(R,H)×
C(R×H,H).

2. On the space X0 there is defined a shift dynamical system, induced by the product
dynamical system (C(R,H)× C(R×H,H),R, σ).

Theorem 4.6. Let the assumptions (C1), (C2) and (C4) be fulfilled. Then the
following statements hold:

(i) equation (18) admits at least one almost automorphic solution;
(ii) if the equation (18) has two solutions ϕ1 and ϕ defined on R with their

values in K, then ϕ1(t)− ϕ2(t) = costant for all t ∈ R;
(iii) if, in addition, we assume that (C3) is fulfilled, then equation (18) has a

unique almost automorphic solution.
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Proof. According to Lemma 4.2 and Theorem 4.3, to prove this theorem it is suf-
ficient to show that equation (18), under the conditions of the theorem, admits
at least one almost automorphic solution. Let ϕ be a bounded on R solution of
equation (18). By Landau’s inequality, we have

sup
t∈R

|ϕ′(t)| ≤ 2
√

sup
t∈R

|ϕ′′(t)|
√

sup
t∈R

|ϕ(t)|

and, consequently, |ϕ′(t)| ≤ 2ab for all t ∈ R, where

a := sup
t∈R

|f(t, ϕ(t))| ≤ sup
t∈R, x∈W

|f(t, x)| and b := sup
t∈R

|ϕ(t)|.

Thus, the function ϕ ∈ C(R,H) is bounded and uniformly continuous on R and by
Theorem 7 [29, p.37] the motion σ(t, ϕ) is stable in the sense of Lagrange in the shift
dynamical system (C(R,H),R, σ). Let us consider a non-autonomous dynamical
system 〈(X,R, π), (Y,R, σ), h〉, where Y := H(f̃) (f̃ is the restriction on R×W of
f , where W := ϕ(R) ) and (Y,R, σ) is the shift dynamical system on H(f̃) induced
by (C(R × H,H),R, σ), X := H(ϕ, f̃) ⊂ X0 and (X,R, π) is the shift dynamical
system induced by (X0,R, σ) and h := pr2 : X → Y is the second projection. Now
we will prove that Nf̃ ⊂ N(ϕ,f̃). In fact, let {tn} ∈ Nf̃ . Then {f̃tn

} → f̃ in the
space C(R ×W,H) (f̃τ := σ(τ, f̃)). Since ϕ ∈ C(R,H) is stable in the sense of
Lagrange, then H(ϕ) := {ϕτ | τ ∈ R} is a compact invariant set and the sequence
{ϕtn

} is relatively compact. Let {t′n} be a subsequence of the sequence {tn}, such
that {ϕt′n} converges and denote by P (ϕ) := lim

n→+∞
ϕt′n ∈ H(ϕ). By Lemma 4.4,

the function P (ϕ) is a solution of equation (18) defined on R. Since P (ϕ)(R) ⊆W,
then by Theorem 4.3 there exists c ∈ H such that

(23) P (ϕ)(t) = ϕ(t) + c

for all t ∈ R. From equality (23) we have P 2(ϕ) = P (ϕ)+ c = ϕ+2c, . . . , P k(ϕ) =
ϕ+ kc for all k ∈ N. On the other hand, {P k(ϕ)} ⊆ H(ϕ) and taking into account
the compactness of the set H(ϕ) we obtain c = 0, i.e. P (ϕ) = ϕ. Thus the sequence
{ϕtn

} is relatively compact and it has a unique limit point ϕ. This means that the
sequence {ϕtn

} is convergent, and consequently, {tn} ∈ N(ϕ,f̃). But f̃ , under the
conditions of Theorem, is almost automorphic in t ∈ R uniformly for x ∈ W , and,
hence, by Corollary 2.11 the function (ϕ, f̃) is also almost automorphic (and, in
particular, the function ϕ is too). �
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