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Abstract. The paper is dedicated to the study of the problem of existence of
compact global attractors of control systems and to description of its structure.
In particular, sufficient conditions of the existence of chaotic attractor for some
classes of switching systems are given. We study this problem in the framework
of non-autonomous dynamical systems (cocyles).
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1. Introduction

The aim of this paper is the study of the problem of existence of compact global
attractors of control systems (see, for example, Bobylev, Emel’yanov and Korovin
[1], Bobylev, Zalozhnev and Klykov [2], Cheban and Mammana [8, 9], Emel’yanov,
Korovin and Bobylev [12], Kloeden [16] and the references therein).

Let E and F be two finite dimensional Hilbert spaces and U ⊂ F be a compact
subset. Denote by U := {u : R 7→ U, measurable} ⊂ L∞(R, F ), equipped with the
weak∗ topology of L∞(R, F ) = (L1(R, F ))∗. This space is compact and metrizable
[11, Ch.4]. On the space U is defined shift dynamical system (U ,R, σ) [11, Ch.4],
where σ(t, ϕ)(s) := ϕ(s + t) for all t, s ∈ R and ϕ ∈ U .

Let S be a closed and invariant (with respect to translations) subset of U . Consider
a control dynamical system governed by the differential equation

(1) x′ = f(x; u(t)) (x ∈ E, u ∈ S).

The control system (1) is called regular on S, if for all u ∈ S and x ∈ E the
equation (1) has a unique solution ϕ(t, x, u) defined on R+ with initial condition
ϕ(0, x, u) = x and the mapping ϕ : R+ × E × U 7→ E is continuous.

In the book [11] there is the condition of regularity control affine systems of the
form

x′(t) = X0(x(t)) +
m∑

i=1

ui(t)Xi(x(t)), u ∈ U .
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It easy to see that the regular control system (1) generates a cocycle 〈E, ϕ, (S,R, σ)〉.
Thus the system (1) can be studied in the framework of non-autonomous (cocycle)
dynamical system. In particular, we can apply some of our general results to the
study of global attractors of control system (1). Below we give some results of this
type.

The appearance of this paper was stimulated by the works of Cheban and Mammana
[8, 9] and Kloeden [16].

The work of Cheban and Mammana [8, 9] is dedicated to the study of compact
global attractors of difference inclusions [17] and description of its structure. Let
W be a metric space, M := {fi : i ∈ I} be a family of continuous mappings of W
into itself and (W, fi)i∈I be the family of discrete dynamical systems, where (W, f)
is a discrete dynamical system generated by positive powers of a continuous map
f : W → W . On the space W we consider a discrete inclusion

ut+1 ∈ F (ut)

associated to M := {fi : i ∈ I} (DI(M)), where F (u) = {f(u) : f ∈ M} for all
u ∈ W.

A solution of the difference inclusion DI(M) is (see, for example, [13]) a sequence
{{xj} | j ≥ 0} ⊂ W such that

xj = fij xj−1

for some fij ∈M (trajectory of DI(M)), i.e.

xj = fij fij−1 ...fi1x0 all fik
∈M.

We can consider that it is a discrete control problem, where at each moment of
time j we can apply a control from the set M, and DI(M) is the set of possible
trajectories of the system.

Let m ∈ N (m ≥ 2), C := {c1, c2, . . . , cm} ⊆ U and S(R, C) denote the set of
piecewise constant functions u(t) defined on R that assume values of set C (i.e.
u ∈ S(R, C) if and only if there is a increasing sequence {tk(u)}k∈Z such that
u(t) = cik

for all t ∈ (tk(u), tk+1(u))), continuous from the right and with the limit
from the left on R. Consider the set of control dynamical systems (1) with control
of class S(R, C). These systems constitute a continual set. Particularly important
among all systems of this set are m system

(2) x′ = f(x; ci) (x ∈ E, i = 1, 2, . . . ,m).

Let τ > 0 , R = R or R+ and Z = R⋂
Z. By Sτ (R,C) we denote the subset

of S(R,C) consisting from the functions u ∈ S(R, C) with the set {tk(u)}k∈Z of
points of discontinuity satisfying the condition tk+1(u)− tk(u) ≥ τ for all k ∈ Z.

Remark 1.1. Below, without loss of generality, we can suppose that t0(u) =
inf{tk(u) | such that tk(u) ≥ 0}.

Denote by

(3) d(u1, u2) :=
+∞∑
n=1

1
2n

dn(u1, u2)
1 + dn(u1, u2)
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for all u1, u2 ∈ S(R, C), where dn(u1, u2) :=
∫ bn

an
|u1(t) − u2(t)|dt for all n ∈ N,

where [an, bn] = [−n, n]
⋂R. By (3) is defined a distance on the space S(R, C). In

the work of Kloeden [16] is studied the problem of existence of compact pullback
attractors of switching systems (1) with S = Sτ (R,C).

Theorem 1.2. [16] (Sτ (T, C), d) is a compact metric space.

This paper is organized as follows.

In Section 2 we give some notions and facts from the theory of set-valued dynamical
systems which we use in our paper.

Section 3 is dedicated to the study of upper semi-continuous (generally speaking
set-valued) invariant sections of non-autonomous dynamical systems. They play
a very important role in the study of non-autonomous dynamical systems. We
give the sufficient conditions which guarantee the existence of a unique globally
asymptotically (but, generally speaking, not exponentially) stable invariant section
(Theorem 3.3 - main result of paper). This theorem generalizes the main results
from the work [8, 9]. Analogous statements for non-autonomous dynamical systems,
when the base dynamical system (Y,T2, σ) is invertible, are known (see, for example,
[6, Ch.2] and [21]).

In Section 4 we apply our main result to the study the compact global attractors of
switching systems. We give also the description the structure of global attractors for
this type of control systems. In particular, we indicate the conditions of existence
of chaotic attractor of switching systems.

2. Set-Valued Dynamical Systems and Their Compact Global
Attractors

Let (X, ρ) be a complete metric space, S be a group of real (R) or integer (Z)
numbers, T (S+ ⊆ T) be a semi-group of additive group S. If A ⊆ X and x ∈ X,
then we denote by ρ(x,A) the distance from the point x to the set A, i.e. ρ(x,A) :=
inf{ρ(x, a) : a ∈ A}. We note note by B(A, ε) an ε-neighborhood of the set A, i.e.
B(A, ε) := {x ∈ X : ρ(x,A) < ε}, by K(X) we denote the family of all non-empty
compact subsets of X. To every point x ∈ X and number t ∈ T we associate a closed
compact subset π(t, x) ∈ K(X). So, if π(P,A) =

⋃{π(t, x) : t ∈ P, x ∈ A}(P ⊆ T),
then

(i) π(0, x) = x for all x ∈ X ;
(ii) π(t2, π(t1, x)) = π(t1 + t2, x) for all x ∈ X;
(iii) lim

x→x0,t→t0
β(π(t, x), π(t0, x0)) = 0 for all x0 ∈ X and t0 ∈ T, where

β(A, B) = sup{ρ(a, B) : a ∈ A} is a semi-deviation of the set A ⊆ X
from the set B ⊆ X.

In this case it is said [20] that there is defined a set-valued semi-group dynamical
system.

Let T = S and be fulfilled the next condition:

(i) if p ∈ π(t, x), then x ∈ π(−t, p) for all x, p ∈ X and t ∈ T.
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Then it is said that there is defined a set-valued group dynamical system (X,T, π)
or a bilateral (two-sided) dynamical system.

Let T′ ⊂ S (T ⊂ T′). A continuous mapping γx : T → X is called a motion of the
set-valued dynamical system (X,T, π) issuing from the point x ∈ X at the initial
moment t = 0 and defined on T′, if

a. γx(0) = x;
b. γx(t2) ∈ π(t2 − t1, γx(t1)) for all t1, t2 ∈ T′ (t2 > t1).

The set of all motions of (X,T, π), passing through the point x at the initial moment
t = 0 is denoted by Fx(π) and F(π) :=

⋃{Fx(π) | x ∈ X} (or simply F).

The trajectory γ ∈ F(π) defined on S is called a full (entire) trajectory of the
dynamical system (X,T, π).

Denote by Φ(π) the set of all full trajectories of the dynamical system (X,T, π) and
Φx(π) := Fx(π)

⋂
Φ(π).

Theorem 2.1. [20] Let (X,T, π) be a semi-group dynamical system and X be a
compact and invariant set (i.e. πtX = X for all t ∈ T, where πt := π(t, ·)). Then

(i) F(π) = Φ(π), i.e. every motion γ ∈ Fx(π) can be extended on S (this
means that there exists γ̃ ∈ Φx(π) such that γ̃(t) = γ(t) for all t ∈ T);

(ii) there exists a group (generally speaking set-valued) dynamical system (X, S, π̃)
such that π̃|T×X = π.

A system (X,T, π) is called [5, 6] compactly dissipative, if there exists a nonempty
compact K ⊆ X such that

lim
t→+∞

β(πtM,K) = 0;

for all M ∈ K(X).

Let (X,T, π) be compactly dissipative and K be a compact set attracting every
compact subset of X. Let us set

(4) J := ω(K) :=
⋂

t≥0

⋃

τ≥t

πτK.

The set J is called a center of Levinson of the compact dissipative system (X,T, π).

3. Upper Semi-Continuous Invariant Sections of Non-Autonomous
Dynamical Systems

This section is dedicated to the study of upper semi-continuous (generally speaking
set-valued) invariant sections of non-autonomous dynamical systems. We give the
sufficient conditions which guaranty the existence a unique globally asymptotically
stable invariant section.

Let X be a metric space and Y be a topological space. The set-valued map-
ping γ : Y → K(X) is said to be upper semi-continuous (or β-continuous), if
lim

y→y0
β(γ(y), γ(y0)) = 0 for all y0 ∈ Y.
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Let (X,h, Y ) be a fibre bundle [3, 14]. The mapping γ : Y → K(X) is called a
section (selector) of the fibre bundle (X, h, Y ), if h(γ(y)) = y for all y ∈ Y.

Remark 3.1. Let X := W × Y . Then γ : Y → X is a section of the fibre bundle
(X, h, Y ) (h := pr2 : X → Y ), if and only if γ = (ψ, IdY ) where ψ : W → K(W ).

Let (X,T1, π) and (Y,T2, σ) (S+ ⊆ T1 ⊆ T2 ⊆ S) be two dynamical systems.
The mapping h : X → Y is called a homomorphism (respectively isomorphism)
of the dynamical system (X,T1, π) on (Y,T2, σ), if the mapping h is continuous
(respectively homeomorphic) and h(π(x, t)) = σ(h(x), t) ( t ∈ T1, x ∈ X).

A triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism of (X,T1, π) on
(Y,T2, σ) and (X, h, Y ) is a fibre bundle [3, 14], is called a non-autonomous dy-
namical system.

A mapping γ : Y → X is called an invariant section of the non-autonomous dynam-
ical system 〈(X,T1, π), (Y,T2, σ), h〉, if it is a section of the fibre bundle (X,h, Y )
and γ(Y ) is an invariant subset of the dynamical system (X,T1, π) (or, equivalently,

⋃
{πtγ(q) : q ∈ (σt)−1(σty)} = γ(σty)

for all t ∈ T1 nd y ∈ Y ).

Lemma 3.2. [10] Let ω : T+×R+ → R+ and there exists a positive number t0 ∈ S+

such that

a. ω(t0, ·) : R+ 7→ R+ is monotone increasing;
b. ω(t0, r) < r for all r > 0;
c. the mapping ω(t0, ·) is continuous on R+;
d. ω(t + τ, r) ≤ ω(t, ω(τ, r)) for all t, τ ∈ T+ and r ∈ R+;
e. for every r ∈ R+ the mapping ω(·, r) : T+ → R+ is continuous.

Then the following statements hold:

(i) the equality

(5) lim
t→+∞

ω(t, r) = 0

takes place for all r ∈ R+;
(ii) if the mapping ω : T+ × R+ → R+ is continuous, then the equality (5)

holds uniformly with respect to r on every compact subset from R+.

Theorem 3.3. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical sys-
tem and the following conditions be fulfilled:

(i) the space Y is compact;
(ii) Y is invariant, i.e. σtY = Y for all t ∈ T2;
(iii) the non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is con-

tracting in the extended sense, i.e. there exists a continuous function
ω : T+ × R+ → R+ such that

(6) ρ(π(t, x1), π(t, x2)) ≤ ω(t, ρ(x1, x2))

for all x1, x2 ∈ X (h(x1) = h(x2)) and t ∈ T1 and the following conditions
hold:
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a. ω(t, ·) : R+ 7→ R+ is monotone increasing for all t > 0;
b. there exists some positive t0 ∈ S+ such that ω(t0, r) < r for all r > 0;
c. ω(t + τ, r) ≤ ω(t, ω(τ, r)) for all t, τ ∈ T+ and r ∈ R+.

Then

(i) there exists a unique invariant section γ ∈ Γ(Y, X) of the non-autonomous
dynamical system 〈(X,T1, π), (Y,T2, σ), h〉;

(ii) the non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is com-
pactly dissipative and its Levinson center J = γ(Y );

(iii) the set J is invariant with respect to dynamical system (X,T1, π), i.e.⋃{πtJq : q ∈ (σt)−1(σty)} = Jσ(t,y) for all t ∈ T1 and y ∈ Y ;
(iv) if (Y,T2, σ) is a group-dynamical system (i.e. T2 = S), then the unique

invariant section γ of the non-autonomous dynamical system 〈(X,T1, π),
(Y,T2, σ), h〉 is one-valued (i.e. γ(y) consists a single point for any y ∈ Y )
and

(7) ρ(π(t, x), π(t, γ(h(x)))) ≤ ω(t, ρ(x, γ(h(x))))

for all x ∈ X and t ∈ T.

Proof. Since the space Y is compact and invariant, then according to Theorem 2.1
the semi-group dynamical system (Y,T, σ) can be prolonged to a group set-valued
dynamical system (Y, S, σ̃) (this means that σ̃(s, y) = σ(s, y) for all (s, y) ∈ T×Y ).

Let us denote by α : K(X) × K(X) → R+ the Hausdorff distance on K(X) and
d : Γ(Y, X)× Γ(Y, X) → R+ is the function defined by the equality

(8) d(γ1, γ2) := sup
y∈Y

α(γ(y), γ2(y)).

It is easy to verify that by equality (8) there is defined a distance on Γ(Y,X). Then
(see [8]) the metric space (Γ(Y, X), d) is complete.

Let t ∈ T1, by St we denote the mapping of Γ(Y, X) in itself defined by the equality
(Stγ)(y) = π(t, γ((σt)−1y)) for all t ∈ T1, y ∈ Y and γ ∈ Γ(Y, X). It is easy to
see that Stγ ∈ Γ(Y, X), St ◦ Sτ = St+τ for all t, τ ∈ T1 and γ ∈ Γ(Y, X) and,
hence, {St}t∈T1 forms a commutative semi-group. Besides, from inequality (6) and
the definition of the metric d, under the conditions of Theorem, the next inequality
follows:

(9) d(Stγ1, S
tγ2) ≤ ω(t, d(γ1, γ2))

for all t ∈ T1 and γi ∈ Γ(Y, X) (i = 1, 2). To prove the inequality (9) it is sufficient
to show that

α(πtγ1(σ−ty), πtγ2(σ−ty) ≤ ω(t, d(γ1, γ2))

for all y ∈ Y, where σ−ty := {q ∈ Y | σ(t, q) = y}.
Let v ∈ πtγ2(σ−ty) be an arbitrary element, then there is q ∈ σ−ty and x2(y) ∈
γ2(q) so that v = πtx2(y). We choose x1(y) ∈ γ1(q) such that

ρ(x1(y), x2(y)) ≤ α(γ1(q), γ2(q)) ≤ d(γ1, γ2)
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(by compactness of γi(q) (i = 1, 2) obviously an such x1(y) there exists and addi-
tionally h(x1(y)) = h(x2(y)) = q). Then we have

ρ(πtx1(y), πtx2(y)) ≤ ω(t, ρ(x1(y), x2(y))) ≤ ω(t, d(γ1, γ2)),

i.e. for all v ∈ πtγ2(σ−ty) there exists u := πtx1(y) ∈ πtγ1(σ−ty) so that ρ(u, v) ≤
ω(t, d(γ1, γ2)). This means that β(πtγ1(σ−ty), πtγ2(σ−ty)) ≤ ω(t, d(γ1, γ2)). Analo-
gously, can be established the inequality β(πtγ2(σ−ty), πtγ1(σ−ty)) ≤ ω(t, d(γ1, γ2))
and, consequently, α(πtγ1(σ−ty), πtγ2(σ−ty)) ≤ ω(t, d(γ1, γ2)) for all y ∈ Y and
t ∈ T1. Thus, we have

(10) d(Stγ1, S
tγ2) ≤ ω(t, d(γ1, γ2))

for all t ∈ T1 and γ1, γ2 ∈ Γ(Y,X). From the inequality (10) it follows that the
mapping St0 of the space Γ(Y, X) to itself satisfy all the conditions of Theorem 3.7
from [10] and, hence, it has a unique fixed point. Since {St}t∈T1 is commutative,
then there exists a unique common stationary point γ which is an invariant section
of non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉, i.e. γ(Y ) ⊂ X is
an invariant set of the dynamical system (X,T1, π).

Let us denote by K := γ(Y ), then K is a nonempty compact and invariant set of
the dynamical system (X,T1, π). From the inequality (6) and Lemma 3.2 it follows
that

(11) lim
t→+∞

ρ(πtM,K) = 0

for all M ∈ K(X) and, consequently, the dynamical system (X,T1, π) is compactly
dissipative and its Levinson center J ⊆ K. On the other hand, K ⊆ J , because the
set K = γ(Y ) is compact and invariant, but J is a maximal compact invariant set
of (X,T1, π). Thus we have J = γ(Y ).

Let now T2 = S. Then we will show that the set γ(y) contains a single point for any
y ∈ Y . If we suppose that it is not true, then there are y0 ∈ Y and x1, x2 ∈ γ(y0)
(x1 6= x2). Let φi ∈ Φxi (i = 1, 2) be such that φi(S) ⊆ J . Then we have

(12) πt(φi(−t)) = xi (i = 1, 2)

for all t ∈ T1. Note that from the inequality (6) and the equality (12) it follows
that

ρ(x1, x2) = ρ(πt(φ1(−t)), πt(φ2(−t))) ≤
ω(t, ρ(φ1(−t), φ2(−t))) ≤ ω(t, C)(13)

for all t ∈ T, where C := sup{ρ(φ1(s), φ2(s)) : s ∈ S}. Passing to the limit in (13)
as t → +∞ we obtain x1 = x2. The obtained contradiction proves our statement.

Thus, if T2 = S, the unique fix point γ ∈ Γ(Y,X) of the semi-group of operators
{St}t∈T1 is a single-valued function and, consequently, it is continuous. Finally,
inequality (7) follows from (6), because h(γ(h(x))) = (h ◦ γ)(h(x)) = h(x) for all
x ∈ X. The theorem is completely proved. ¤

Remark 3.4. 1. In the particular case, when ω(t, r) = N e−νtr, Theorem 3.3 was
proved by Cheban D. and Mammana C. [8].

2. If (Y,T2, σ) is a semi-group dynamical system (i.e. T2 = R+ or Z+), then the
unique invariant section γ of the non-autonomous dynamical system 〈(X,T1, π),
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(Y,T2, σ), h〉 is multi-valued (i.e. γ(y) contains, generally speaking, more than one
point [8]).

4. Applications

Below we apply our main result to the study of the compact global attractors of
different classes of switching systems. We give also the description of the structure
of global attractors for this type of control systems. In particular, we indicate the
conditions of existence of chaotic global attractor of switching systems.

4.1. Switching Systems on R. Consider a control dynamical system governed
by the differential equation

(14) x′ = f(x; u) (x ∈ E, u ∈ U ⊂ F ).

Let m ∈ N (m ≥ 2), C := {c1, c2, . . . , cm} ⊆ F and S(R, C) denote the set of
piecewise constant functions u(t) defined on R that assume values of set C. Consider
the set of control dynamical systems (14) with control of class S(R, C).

Let τ > 0. By Sτ (R,C) we denote the subset of S(R,C) consisting from the func-
tions u ∈ S(R, C) with the set {tk(u)}k∈Z of points of discontinuity satisfying the
condition tk+1(u)− tk(u) ≥ τ for all k ∈ Z.

Let σ be a mapping fromR×Sτ (R,C) into Sτ (R, C) defined by equality σ(t, u) := ut

for all t ∈ R and u ∈ Sτ (R,C), where ut is the t-shift of the function u, i.e. ut(s) :=
u(t+s) for all s ∈ R. It easy to verify that: σ(0, u) = u, σ(t1+t2, u) = σ(t2, σ(t1, u))
and {tk(ut)} = {tk(u)}−t := {tk(u)−t | k ∈ Z} for all t1, t2 ∈ R and u ∈ Sτ (R,C).

Theorem 4.1. [4, 16, 19] The mapping σ : R×Sτ (R, C) 7→ Sτ (R,C) is continuous
and, consequently, (Sτ (R, C),R, σ) is a dynamical system on Sτ (R, C).

Denote by ϕ(t, x, u) the solution of the equation (14) with initial condition ϕ(0, x, u) =
x, assuming that a unique solution exists for all t ≥ 0. Then the mapping ϕ :
R × E × Sτ (R,C) possesses the semi-group (cocycle) property: ϕ(t + s, x, u) =
ϕ(s, ϕ(t, x, u), σ(t, u)) for all t, s ∈ R, x ∈ E and u ∈ Sτ (R,C).

Theorem 4.2. [16] The mapping ϕ : R× E × Sτ (R, C) 7→ E is continuous.

Thus the triple 〈E, ϕ, (Sτ (R, C),R, σ)〉 is a cocycle under dynamical system (Sτ (R,
C), σ) with fiber E and, consequently, we can apply the results established in
Section 3 to the study of switching system (14).

Lemma 4.3. Let θ ∈ C(R,R) and it possesses the following properties:

a. θ is regular, i.e. the equation

(15) x′ = θ(x)

defines a semi-group dynamical system (R,R+, ω) on R;
b. there exists r0 > 0 such that xθ(x) < 0 for all |x| > r0.

Then
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(i) the dynamical system (R,R+, ω) is dissipative, i. e. there exists a positive
number r such that

(16) lim sup
t→+∞

|ω(t, x)| < r

for all x ∈ R and (16) takes place uniformly with respect to x on every
bounded subset from R;

(ii) the mapping ω(t, ·) : R 7→ R is monotone decreasing for every t ≥ 0.

Proof. To prove the first statement we note that the derivative of the function
V (x) = x2 along of the trajectories of (R,R+, ω) is negative for all |x| > r0. Now
it is sufficient to apply Theorem 5.5 and Remark 5.4 (item d.) from [6, Ch.5].

The second statement is a general property of scalar differential equations. ¤

Theorem 4.4. Suppose that there exists a function θ ∈ C(R,R) with the properties
a. and b. from Lemma 4.3 such that

(17) 〈x, fi(x)〉 ≤ θ(|x|2)
for all i = 1, 2, . . . , m and x ∈ E, where fi(·) := f(·, ci) (i = 1, 2, . . . , m) and 〈·, ·〉
is the scalar product on E.

Then the switching system (14) is dissipative, namely for all R > o there exists
a constant L(R) > 0 such that |ϕ(t, x, u)| < r for all |x| ≤ R, t ≥ L(R) and
u ∈ Sτ (R, C).

Proof. Denote by (E,R+, πi) (i = 1, 2, . . . , m) the dynamical system generated by
equation (2). Let now u ∈ Sτ (R,C), {tk(u)}k∈Z the set of points of discontinuity
of u and t ∈ R+. Then there exists k ∈ Z+ such that tk(u) ≤ t < tk+1(u) and
u(t) = cik

(for all t ∈ [tk, tk+1)), hence, we have the equality

(18) ϕ(t, x, u) = πik
(t− tk, ϕ(tk, x, u)).

According to the condition (17) we obtain

d|πik
(t, x)|2
dt

≤ θ(|πik
(t, x)|2)

and, consequently,

(19) |πik
(t, x)|2 ≤ ω(t, |x|2)

for all t ≥ 0 and x ∈ E, where ω(t, x) is the solution of equation (15) with initial
condition ω(0, x) = x.

From (18) and (19) we have

(20) |ϕ(t, x, u)|2 = |πik
(t− tk, ϕ(tk, x, u))|2 ≤ ω(t− tk, |ϕ(tk, x, u)|2)

for all t ∈ (tk, tk+1), x ∈ E and u ∈ Sτ (R,C). Denote by ak(x, u) := |ϕ(tk(u), x, u)|2
(for all k ∈ Z+), then by inequality (20) we obtain

ak+1(x, u) ≤ ω(tk+1(u)− tk(u), ak(x, u))
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for all k ∈ N and (x, u) ∈ E × Sτ (R,C). We note that

a0(x, u) = |ϕ(t0(u), x, u)|2 ≤ ω(t0(u), |x|2)(21)
a1(x, u) ≤ ω(t1(u)− t0(u), |ϕ(t0, x, u)|2)
≤ ω(t1(u)− t0(u), ω(t0(u), |x|2)) = ω(t1(u), |x|2)
. . .

ak+1(x, u) ≤ ω(tk+1(u)− tk(u), ak(x, u))
≤ ω(tk+1(u)− tk(u), ω(tk(u), |x|2)) = ω(tk+1(u), |x|2).

Now, using the (18), (20) and (21) we receive

|ϕ(t, x, u)|2 ≤ ω(t− tk(u), |ϕ(tk(u), x, u)|2) ≤ ω(t− tk(u), ak(x, u))(22)
≤ ω(t− tk(u), ω(tk(u), |x|2)) = ω(t, |x|2)

for all t ≥ 0 and (x, u) ∈ E × Sτ (R,C). From the inequality (22) and Lemma 4.3 it
follows that for all R > 0there exists a constant L(R) > 0 such that |ϕ(t, x, u)| < r
for all |x| ≤ R, t ≥ L(R) and u ∈ Sτ (R, C). ¤

As an example of Theorem 4.4 we consider the switching of nonlinear equations

(23) x′ = −|x|x + ci (i = 1, 2, . . . , m)

which satisfy of condition (17) with θ(x) := −x3/2 + Cx1/2 (x ∈ R+), where C :=
max1≤i≤m |ci|.
A cocycle ϕ over (Y, S, σ) with the fiber W is said to be compactly dissipative, if
there exits a nonempty compact K ⊆ W such that

(24) lim
t→+∞

sup{β(U(t, y)M,K) | y ∈ Y } = 0

for any M ∈ C(W ).

Theorem 4.5. [6] Let Y be compact, 〈W,ϕ, (Y, S, σ)〉 be compactly dissipative and
K be the nonempty compact subset of W appearing in the equality (24), then:

1. Iy = ωy(K) 6= ∅, is compact, Iy ⊆ K and

lim
t→+∞

β(U(t, y−t)K, Iy) = 0

for every y ∈ Y ;
2. U(t, y)Iy = Iyt for all y ∈ Y and t ∈ S+;
3.

lim
t→+∞

β(U(t, y−t)M, Iy) = 0

for all M ∈ C(W ) and y ∈ Y ;
4.

lim
t→+∞

sup{β(U(t, y−t)M, I) | y ∈ Y } = 0

for any M ∈ C(W ), where I := ∪{Iy | y ∈ Y };
5. Iy = pr1Jy for all y ∈ Y , where J is the Levinson center of (X,T+, π),

and hence I = pr1J ;
6. the set I is compact.
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Remark 4.6. The theorem 4.5 is true also, when (Y, S+, σ) is a semi-group dy-
namical system, but Y is invariant, i.e. σ(t, Y ) = Y for all t ∈ S+ (see [7] and also
[15]).

Theorem 4.7. Under the conditions of Theorem 4.4 the cocycle ϕ, generates by
control system (14), admits a compact global attractor.

Proof. This statement follows from Theorems 4.4 and 4.5. ¤

4.2. Singleton Global Attractors of Switching Systems.

Lemma 4.8. [10] Let f : R+ 7→ R+ be a function satisfying the following condi-
tions:

(H1) f(0) = 0;
(H2) f(t) > 0 for all t > 0;
(H3) f is locally Lipschitz;
(H4) f satisfies the condition of Osgud, i.e.

∫ ε

0
ds

f(s) = +∞ for all ε > 0.

Then the equation
u′ = −f(u)

admits a unique solution ω(t, r) with initial condition ω(0, r) = r and the mapping
ω : R2

+ 7→ R+ possesses the following properties:

(i) the mapping ω : R2
+ 7→ R+ is continuous;

(ii) ω(t, r) < r for all r > 0 and t > 0;
(iii) for all t ∈ R+ the mapping ω(t, ·) : R+ 7→ R+ is increasing;
(iv) ω(0, t) = 0 for all t ∈ R+;
(v) lim

t→+∞
sup

0≤r≤r0

ω(t, r) = 0 for all r0 > 0.

Theorem 4.9. Suppose that there exists a function θ ∈ C(R,R) with the properties
(H1)-(H4) from Lemma 4.8 such that

(25) 〈x1 − x2, fi(x1)− fi(x2)〉 ≤ −θ(|x1 − x2|2)
for all i = 1, 2, . . . ,m and x1, x2 ∈ E, where fi(·) := f(·, ci) (i = 1, 2, . . . , m).

Then the following statements hold:

(i)
|ϕ(t, x1, u)− ϕ(t, x1, u)|2 ≤ ω(t, |x1 − x2|2)

for all t ≥ 0 and (xi, u) ∈ E × Sτ (R, C) (i = 1, 2);
(ii) there exists a continuous function ν ∈ C(Sτ (R,C), E) such that ϕ(t, ν(u), u) =

ν(σ(t, u)) for all t ∈ R and u ∈ Sτ (R, C);
(iii) {Iu | u ∈ Sτ (R, C)}, where Iu := {ν(u)}, is a compact forward attractor of

switching system (14).

Proof. Denote by (E,R+, πi) (i = 1, 2, . . . , m) the dynamical system generated by
equation (2). Let now u ∈ Sτ (R,C), {tk(u)}k∈Z the set of points of discontinuity
of u and t ∈ R+. Then there exists k ∈ Z+ such that tk(u) ≤ t < tk+1(u) and
u(t) = cik

(for all t ∈ [tk, tk+1)), hence, we have the equality (18).
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According to the condition (25) we obtain

d|πik
(t, x1)− πik

(t, x2)|2
dt

≤ −θ(|πik
(t, x)− πik

(t, x2)|2)

and, consequently,

(26) |πik
(t, x1)− πik

(t, x2)|2 ≤ ω(t, |x1 − x2|2)
for all t ≥ 0 and x1, x2 ∈ E, where ω(t, x) is the solution of equation x′ = −θ(x)
with initial condition ω(0, x) = x.

From (18) and (26) we have

|ϕ(t, x1, u)− ϕ(t, x2, u)|2 = |πik
(t− tk, ϕ(tk, x1, u))−(27)

πik
(t− tk, ϕ(tk, x1, u))|2 ≤ ω(t− tk, |ϕ(tk, x1, u)− ϕ(tk, x2, u)|2)

for all t ∈ (tk, tk+1), x1, x2 ∈ E and u ∈ Sτ (R, C). Denote by bk(x1, x2, u) :=
|ϕ(tk(u), x1, u)−ϕ(tk(u), x1, u)|2 (for all k ∈ Z+), then by inequality (27) we obtain

bk+1(x1, x2, u) ≤ ω(tk+1(u)− tk(u), bk(x1, x2, u))

for all k ∈ Z+ and (xi, u) ∈ E × Sτ (R, C) (i = 1, 2). We note that

b0(x1, x2, u) = |ϕ(t0(u), x1, u)− ϕ(t0(u), x1, u)|2 ≤ ω(t0(u), |x1 − x2|2)(28)
b1(x1, x2, u) ≤ ω(t1(u)− t0(u), |ϕ(t0, x1, u)− ϕ(t0, x1, u)|2)
≤ ω(t1(u)− t0(u), ω(t0(u), |x1 − x2|2)) = ω(t1(u), |x1 − x2|2)
. . .

bk+1(x1, x2, u) ≤ ω(tk+1(u)− tk(u), bk(x1, x2, u))
≤ ω(tk+1(u)− tk(u), ω(tk(u), |x1 − x2|2)) = ω(tk+1(u), |x1 − x2|2).

Now, using the (18), (27) and (28) we receive

|ϕ(t, x1, u)− ϕ(t, x1, u)|2 ≤ ω(t− tk(u), |ϕ(tk(u), x1, u)(29)
−ϕ(tk(u), x1, u)|2) ≤ ω(t− tk(u), bk(x1, x2, u))
≤ ω(t− tk(u), ω(tk(u), |x1 − x2|2)) = ω(t, |x1 − x2|2)

for all t ≥ 0 and (xi, u) ∈ E × Sτ (R, C) (i = 1, 2).

From the inequality (29) and Lemma 4.8 it follows that all the conditions of The-
orem 3.3 are fulfilled. Now to finish the proof it is sufficient to apply Theorem
3.3. ¤

Remark 4.10. In the case when θ(x) = −x Theorem 4.9 improve the result of
P. Kloeden [16]. He proved the existence of singleton pullback attractor for the
switching systems. Note that every forward attractor is a pullback attractor, the
inverse is not true.

As an example of Theorem 4.9 we consider the switching of nonlinear equations
(23), which satisfy to the condition (25) with θ(x) := −x3/2 (x ∈ R+).
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4.3. Switching Systems on R+. Let S(R+, C) denote the set of piecewise con-
stant functions u(t) defined on R+ that assume values of set C := {c1, c2, . . . , cm} ⊆
F . Consider the set of control dynamical systems (14) with control of class S(R+,C).

Theorem 4.11. The following statements hold:

(i) Sτ (R+,C) = Per(σ), where Per(σ) is the set of all periodic points of
(Sτ (R+, C),R+, σ) (i.e. ϕ ∈ Per(σ), if there exists h > 0 such that σ(h +
t, ϕ) = σ(t, ϕ) for all t ∈ R+);

(ii) Sτ (R+,C) is invariant, i.e. σtSτ (R+, C) = Sτ (R+, C) for all t ∈ R+.

Proof. We denote by Per(σ) the set of all periodic points of the dynamical system
(Sτ (R+, C),R+, σ). We will prove that Per(σ) = Sτ (R+, C), i.e. the set of all
periodic points of Sτ (R+, C) is dense in Sτ (R+, C). In fact, if ϕ ∈ Sτ (R+,C), then
denote by ϕk the periodic point from Per(σ) such that ϕk(t) := ϕ(t) for all t ∈ [0, k]
(if k ∈ {tk(ϕ)}, then we put ϕk(k) := ϕ(k− 0)). It is easy to see that {ϕk} → ϕ in
Sτ (R+, C).

From the fact established above it follows that Sτ (R+, C) is invariant, i.e. σtSτ (R+,
C) = Sτ (R+,C). In fact, let ϕ ∈ Sτ (R+, C), t ∈ R+ and {ϕk} ⊂ Per(σ) be such
that {ϕk} → ϕ. Let hk > 0 be such that σ(hk, ϕk) = ϕk and hk → +∞. Then
there exists k0 = k0(t) such that hk ≥ t for all k ≥ k0 and, consequently, we have

(30) ϕk = σ(hk, ϕk) = σ(t, σ(hk − t, ϕk))

for all k ≥ k0. Since the space Sτ (R+,C) is compact we may suppose that the
sequence {σ(τk− t, ϕk)} is convergent. Let ϕ := lim

k→+∞
σ(hk− t, ϕk), then from the

equality (30) we obtain ϕ = σ(t, ϕ), i.e. σtSτ (R+, C) = Sτ (R+,C). ¤

Theorem 4.12. Suppose that there exists a function θ ∈ C(R,R) with the proper-
ties a. and b. from Lemma 4.3 such that

〈x, fi(x)〉 ≤ θ(|x|2)
for all i = 1, 2, . . . ,m and x ∈ E, where fi(·) := f(·, ci) (i = 1, 2, . . . ,m).

Then the switching system (14) is dissipative, namely for all R > 0 there exists
a constant L(R) > 0 such that |ϕ(t, x, u)| < r for all |x| ≤ R, t ≥ L(R) and
u ∈ Sτ (R+,C).

Proof. This statement can be proved with slight modification of the proof of The-
orem 4.4. ¤

Theorem 4.13. Under the conditions of Theorem 4.7 the cocycle ϕ, generated by
control system (14), admits a compact global attractor.

Proof. Consider the cocycle 〈E, ϕ, (Sτ (R+, C),R+, σ)〉 generated by control system
(14). According to Theorems 1.2 and 4.11 Sτ (R+, C) is compact and invariant. By
Theorem 4.7 the cocycle ϕ is dissipative and now to finish the proof it is sufficient
to apply Theorem 4.5 and Remark 4.6. ¤
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Theorem 4.14. Suppose that there exists a function θ ∈ C(R,R) with the proper-
ties (H1)-(H4) from Lemma 4.8 such that

〈x1 − x2, fi(x1)− fi(x2)〉 ≤ −θ(|x1 − x2|2)
for all i = 1, 2, . . . ,m and x1, x2 ∈ E, where fi(·) := f(·, ci) (i = 1, 2, . . . , m).

Then the following statements hold:

(i)
|ϕ(t, x1, u)− ϕ(t, x1, u)|2 ≤ ω(t, |x1 − x2|2)

for all t ≥ 0 and (xi, u) ∈ E × Sτ (R+,C) (i = 1, 2);
(ii) there exists a upper semi-continuous function ν : Sτ (R+,C) 7→ C(E) such

that {Iu | u ∈ Sτ (R+,C)}, where Iu := {ν(u)}, is a compact forward
attractor of switching system (14).

Proof. The first statement can be proved using the same reasoning as in the proof
of Theorem 4.9. To prove the second statement it is sufficient to apply Theorem
3.3. ¤

Remark 4.15. W’d like to stress that in contrast to Theorem 4.9 under the condi-
tions of Theorem 4.14 the fibers Iu (u ∈ Sτ (R+, C)) contains more than one point.

4.4. Chaotic Attractors of Switching Systems. Let Σm := {1, 2, . . . , m}Z and
σ : Σm 7→ Σm be the mapping defined by equality (σξ)(n) = ξ(n + 1) for all n ∈ Z
and ξ ∈ Σm. Denote by (Σm, σ) the discrete dynamical system generated by powers
of the mapping σ.

We put P := {ϕ ∈ Sτ (R, C) | {tk(ϕ)} = {kτ}k∈Z}.
Let (X1, f1) and (X2, f2) be two discrete dynamical systems. Recall that the dy-
namical systems (X1, f1) is called topological equivalent to (X2, f2) if there exists
a homeomorphism h : X1 7→ X2 such that h ◦ f1 = f2 ◦ h.

Lemma 4.16. The following statement hold:

(i) the mapping h : Σm 7→ Sτ (R, C), defined by equality

(31) h(ξ) = ϕ (ξ ∈ Σm, where ϕ(t) := cξ(k) for all t ∈ [kτ, (k + 1)τ)),

is a bijective operator from Σm onto P;
(ii) the operator h : Σm 7→ P defined by equality (31) is a homeomorphism;
(iii) the subset P is closed in Sτ (R, C);
(iv) the set P is invariant with respect to mapping T , where (Tϕ)(t) := ϕ(t+τ)

for all t ∈ R and ϕ ∈ P;
(v) the discrete dynamical systems (P, T ) and (Σm, σ) are topological isomor-

phic.

Proof. It is obviously that by equality (31) is defined correctly a mapping from Σm

into P ⊂ Sτ (R, C). Note that h is an injection. In fact, if ξ1, ξ2 ∈ Σm and ξ1 6= ξ2,
then there exists k0 ∈ Z such that ξ1(k0) 6= ξ2(k0). Thus ϕ1 = h(ξ1) 6= h(ξ2) = ϕ2

because ϕi(t) = cξi(k0) for all t ∈ [kτ, (k + 1)τ) (i = 1, 2) and cξ1(k0) 6= cξ2(k0).
Let now ϕ ∈ P be an arbitrary element, then for all k ∈ Z there exists a unique
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ik ∈ {1, 2, . . . , m} such that ϕ(t) = cik
for all t ∈ [kτ, (k + 1)τ). It easy to see that

h(ξ) = ϕ, where ξ(k) := ik for all k ∈ Z, i.e. h(Σm) = P.

We will show that the mapping h : Σm 7→ P defined by equality (31) is continuous.
Let {ξn} → ξ as n → +∞, we will prove that ϕn := h(ξn) → h(ξ) := ϕ. Fixe l ∈ N
and we will show that dl(ϕn, ϕ) → 0 as n → +∞, where dl(ϕn, ϕ) :=

∫
|t|≤l

|ϕn(t)−
ϕ(t)|dt. Denote by k1(l) := min{k ∈ Z |kτ ≥ −l}, k1(l) := max{k ∈ Z |kτ ≤ l}
and k(l) := max{1 + |k1(l)|, 1 + |k2(l)|} . Since {ξn} → ξ in Σm, then there exists
n(l) ∈ N such that ξn(k) = ξ(k) for all n ≥ n(l) and |k| ≤ k(l). Hence ϕn(t) = ϕ(t)
for all n ≥ n(l) and |t| ≤ l, thus we have dl(ϕn, ϕ) = 0 (n ≥ n(l)), i.e. h is
continuous.

Since Σm is compact and h is a continuous bijective operator, then it is a homeo-
morphism. Thus the set P = h(Σm) is a compact subset of Sτ (R, C).
The set P is invariant this respect to T because {tk(ϕ)} = {kτ}k∈Z.

From the definition of the mappings h, σ and T it follows that h(σ(ξ)) = T (h(ξ))
for all ξ ∈ Σm. Lemma is proved. ¤

The set S ⊂ W is

(i) nowhere dense, provided the interior of the closure of S is empty set,
int(cl(S)) = ∅;

(ii) totally disconnected, provided the connected components are single points;
(iii) perfect, provided it is closed and every point p ∈ S is the limit of points

qn ∈ S with qn 6= p.

The set S ⊂ W is called a Cantor set, provided it is totally disconnected, perfect
and compact.

Let (X, ρ) be a metric space and (X,Z+, π) be a discrete dynamical system gener-
ated by positive powers of the map f : X → X, i.e. π(n, x) := fnx for all x ∈ X
and n ∈ Z+, where fn := fn−1 ◦ f.

A subset M ⊆ X is called transitive, if there exists a point x0 ∈ X such that
H(x0) := {π(n, x0) | n ∈ Z+} = M.

{p, q} ⊆ X is called a Li-Yorke pair, if simultaneously

lim inf
n→+∞

ρ(π(n, p), π(n, q)) = 0 and lim sup
n→+∞

ρ(π(n, p), π(n, q)) > 0.

A set M ⊆ X is called scrambled, if any pair of distinct points {p, q} ⊆ M is a
Li-Yorke pair.

A dynamical system (X,T, π) is said to be chaotic, if X contains an uncountable
subset M satisfying the following conditions:

(i) the set M is transitive;
(ii) M is scrambled;
(iii) P (M) = M, where P (M) := {x ∈ X | x ∈ ωx = αx} and by bar we denote

the closure in X.
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Theorem 4.17. [8] Let (X,T, π) and (Ω,T, σ) be two dynamical systems and ν :
X → Ω be a homeomorphism of (Ω,T, σ) onto (X,T, π). Assume that (Ω,T, σ) is
chaotic. Then the dynamical system (X,T, π) is chaotic too.

Corollary 4.18. The discrete dynamical system (P, T ) is chaotic.

Proof. This statement follows from Theorem 4.17, Lemma 4.16 and from the fact
that (Σm, σ) is chaotic (see, for example, [18, 22]). ¤
Lemma 4.19. Suppose the following conditions hold:

(i) (X,R, π) is a dynamical system with continuous time;
(ii) M is a nonempty compact subset of X;
(iii) there exists t0 > 0 (t0 ∈ R) such that M is invariant with respect to

f := π(t0, ·), i.e. f(M) = M ;
(iv) the discrete dynamical system (M, f) is chaotic.

Then the dynamical system (X,R, π) is chaotic too.

Proof. This statement follows directly from the corresponding definitions. ¤
Corollary 4.20. The dynamical system (Sτ (R, C),R, σ) with continuous time R is
chaotic.

Proof. This statement follows from Lemma 4.19 and Corollary 4.18. ¤
Theorem 4.21. Under the conditions of Theorem 4.9 the following statements
hold:

(i) the skew-product dynamical system (X,R+, π) generated by switching sys-
tem (14) is compactly dissipative;

(ii) Levinson center J of the skew-product dynamical system (X,R+, π) is
chaotic;

(iii) the cocycle 〈E,ϕ, (Sτ (R, C),R, σ)〉 generated by switching system (14) is
compactly dissipative;

(iv) the Levinson center I := ∪{Iu | u ∈ Sτ (R, C)}, where I is the Levinson
center of ϕ and {Iu | u ∈ Sτ (R, C)} is the global attractor of cocycle ϕ;

(v) I = Per(ϕ), where Per(ϕ) := {x ∈ E : ∃s > 0 and u ∈ Sτ (R, C) such that
σ(s, u) = u and ϕ(s, x, u) = x}.

Proof. By Theorem 4.9, the cocycle ϕ generated by switching system (14) is com-
pactly dissipative and, hence, the skew-product dynamical system (X,R+, π) (X :=
E × Sτ (R, C), π := (ϕ, σ)) is compactly dissipative too.

Now we will prove that the Levinson center J of the skew-product dynamical system
(X,R+, π) possesses the properties listed in the theorem. For this aim, we note that
by Lemma 4.16 the discrete dynamical systems (P, T ) and (Σm, σ) are topological
isomorphic and, consequently (see, for example, [18, 22]), the dynamical system
(J,R, π) is chaotic too.

By Theorem 4.9 the Levinson center J of the skew-product dynamical system
(X,R+, π) is dynamically isomorphic to (Sτ (R, C),R, σ) and, consequently, Per(π) =
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J . Taking into consideration that I = pr1(J) we obtain the last statement of The-
orem. ¤

Remark 4.22. Note that the results presented above also are true in the case when
the phase space E is an infinite dimensional Hilbert space.
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