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Abstract. The aim of this paper is to study the almost periodic and asymp-
totically almost periodic solutions on (0, +∞) of the Liénard equation

x′′ + f(x)x′ + g(x) = F (t),

where F : T→ R (T = R+ or R) is an almost periodic or asymptotically almost
periodic function and g : (a, b) → R is a strictly decreasing function. We study
also this problem for the vectorial Liénard equation.

We analyze this problem in the framework of general non-autonomous dy-
namical systems (cocycles). We apply the general results obtained in our early
papers [3, 7] to prove the existence of almost periodic (almost automorphic,
recurrent, pseudo recurrent) and asymptotically almost periodic (asymptot-
ically almost automorphic, asymptotically recurrent, asymptotically pseudo
recurrent) solutions of Liénard equations (both scalar and vectorial).

1. Introduction

In this paper we study the existence of almost periodic and asymptotically almost
periodic solutions of the Liénard equation

(1) x′′ + f(x)x′ + g(x) = F (t),

F : T → R (T = R+ := [0,+∞) or R := (−∞,+∞) is a continuous or locally
integrable function and f, g : (a, b) → R (−∞ ≤ a < b ≤ +∞) are locally Lipschitz
continuous functions.

We assume that the following conditions are fulfilled:

(i) g is strictly decreasing;
(ii) f(x) ≥ 0 for all x ∈ (a, b);
(iii) F is almost periodic (respectively, almost automorphic, recurrent, pseudo

recurrent) or asymptotically almost periodic (respectively, asymptotically
recurrent, asymptotically pseudo recurrent).

The typical equation of type (1) is

x′′ + cx′ +
1
xα

= F (t),
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where c ≥ 0, α > 0 and F : T→ R is an almost periodic or asymptotically almost
periodic function.

In the periodic case (i.e., when F is periodic), the dynamics of equation (1) was
intensively studied by P. Martinez-Amores and P. J. Torres [13] and J. Campos and
P. J. Torres [2]. For the almost periodic case (almost periodic F ) these results were
generalized by P. Cieutat in [8].

The almost automorphic and asymptotically almost automorphic solutions of equa-
tion (1) was studied by P. Cieutat et al. [9].

The problem of existence of pseudo almost periodic solutions of equation (1) was
analyzed by El Hadi Ait Dads et al. [9].

Our main result states that, when the function F is τ–periodic (respectively, quasi
periodic, almost periodic, almost automorphic, recurrent, pseudo recurrent), if
equation (1) admits a solution which is bounded on R+, then it has a unique
τ–periodic (respectively, quasi periodic, almost periodic, almost automorphic, re-
current, pseudo recurrent) solution and every solution of (1), bounded on R+, is as-
ymptotically τ–periodic (respectively, asymptotically quasi periodic, asymptotically
almost periodic, asymptotically almost automorphic, asymptotically recurrent, as-
ymptotically pseudo recurrent). We obtain also an analog of this result when the
function F is asymptotically τ–periodic (respectively, asymptotically quasi periodic,
asymptotically almost periodic, asymptotically almost automorphic, asymptotically
recurrent, asymptotically pseudo recurrent). These results are new and contain as
particular cases some of the results cited above.

We present our results in the framework of general non-autonomous dynamical
systems (cocycles) and we apply our abstract theory developed in [3, 7] to Liénard
differential equations (both scalar and vectorial).

The paper is organized as follows.

In Section 2, we collect some notions (global attractor, minimal set, point/compact
dissipativity, non-autonomous dynamical systems with convergence, quasi period-
icity, Levitan/Bohr almost periodicity, almost automorphy, recurrence, pseudo re-
currence, Poisson stability, etc) and facts from the theory of dynamical systems
which will be necessary in this paper. We give here also some results concerning a
special class of non-autonomous dynamical system (NDS): the so-called NDS with
weak convergence. We give a generalization of the notion of convergent NDS. On
the one hand, this type of NDS is very close to NDS with convergence (because they
conserve some properties of convergent systems) and larger than that of convergent
systems. On the other hand, we analyze the class of compact dissipative NDS with
nontrivial Levinson center.

Section 3 is devoted to the existence of almost periodic (almost automorphic, recur-
rent, pseudo recurrent) and asymptotically almost periodic (asymptotically almost
automorphic, asymptotically recurrent, asymptotically pseudo recurrent) solutions
of Liénard equation (1).



ALMOST PERIODIC AND ASYMPTOTICALLY ALMOST PERIODIC . . . 3

In Sections 4 we present some results about Sp– asymptotically almost periodic (as-
ymptotically almost periodic in the sense of Stepanoff) solutions of Liénard equation
(1).

Finally, Sections 5 is devoted to study the problem of almost periodicity (respec-
tively, almost automorphy, recurrence, pseudo recurrence) and asymptotically al-
most periodicity (respectively, asymptotically almost automorphy, asymptotically
recurrence, asymptotically pseudo recurrence) of solutions for the vectorial Liénard
equation.

2. Nonautonomous Dynamical Systems with Convergence

Let us start by recalling some concepts and notations about the theory of non-
autonomous dynamical systems which will be necessary for our analysis.

2.1. Compact Global Attractors of Dynamical Systems. Let (X, ρ) be a
metric space, R be the group of real numbers, R+ be the semi-group of nonnegative
real numbers, T be one of the two sets R or R+.

A dynamical system is a triplet (X,T, π), where π : T × X → X is a contin-
uous mapping satisfying the following conditions: π(0, x) = x (∀x ∈ X) and
π(s, π(t, x)) = π(s + t, x) (∀t, τ ∈ T and x ∈ X). When T = R+ (respectively,
R), the dynamical system (X,T, π) is called a semi-flow (respectively, flow).

The function π(·, x) : T→ X is called a motion passing through the point x at the
moment t = 0 and the set Σx := π(T, x) is called the trajectory of this motion.

A nonempty set M ⊆ X is called positively invariant (negatively invariant, invari-
ant) with respect to the dynamical system (X,T, π) or, simply, positively invariant
(negatively invariant, invariant), if π(t,M) ⊆ M (M ⊆ π(t,M), π(t,M) = M) for
every t ∈ T.

A closed positively invariant set, which does not contain any own closed positively
invariant subset, is called minimal.

It is easy to see that every positively invariant minimal set is invariant.

The dynamical system (X,T, π) is called:

− point dissipative if there exists a nonempty compact subset K ⊆ X such
that for every x ∈ X

(2) lim
t→+∞

ρ(π(t, x),K) = 0;

− compact dissipative if there exists a nonempty compact subset K ⊆ X
such that

lim
t→+∞

ρ(π(t, x),K) = 0

uniformly with respect to x on compact subsets from X.
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Let (X,T, π) be compact dissipative and K be a compact set attracting every
compact subset from X. Let us set

(3) J := ω(K) :=
⋂

t≥0

⋃

τ≥t

π(τ, K).

It can be shown [5, Ch.I] that the set J defined by equality (3) does not depend
on the choice of the attracting set K, but is characterized only by the properties
of the dynamical system (X,T, π) itself. The set J is called the Levinson center of
the compact dissipative dynamical system (X,T, π).

2.2. Non-Autonomous Dynamical Systems with Convergence. Recall (see
[5]) that a non-autonomous dynamical system 〈(X,T1,π),(Y,T2,σ),h〉 is said to be
convergent if the following conditions are fulfilled:

(i) the dynamical systems (X,T1, π) and (Y,T2, σ) are compact dissipative;
(ii) the set JX

⋂
Xy contains no more than one point for all y ∈ JY , where

Xy := h−1(y) := {x|x ∈ X, h(x) = y} and JX (respectively, JY ) is the
Levinson center of dynamical system (X,T1, π) (respectively, (Y,T2, σ) ).

Thus, a non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is convergent,
if the systems (X,T1, π) and (Y,T2, σ) are compact dissipative with Levinson cen-
ters JX and JY respectively and JX possesses “trivial” sections, i.e., JX

⋂
Xy

consists of a single point for all y ∈ JY . In this case the Levinson center JX of the
dynamical system 〈(X,T1, π) is a copy (an homeomorphic image) of the Levinson
center JY of the dynamical system (Y,T2, σ). Thus, the dynamics on JX is the
same as on JY .

Remark 2.1. We note that convergent systems are in some sense the simplest
dissipative dynamical systems. If Y is compact, invariant, T2 = R, 〈(X,T1, π),
(Y,T2, σ), h〉 is a convergent non-autonomous dynamical system and J is the Levin-
son center of (X,T1, π), then (J,T2, π) and (Y,T2, σ) are homeomorphic. Although
the Levinson center of a convergent system can be completely described, it may be
sufficiently complicated.

Recall [7] that the point x ∈ X is called asymptotically τ–periodic (respectively,
asymptotically quasi periodic, asymptotically Bohr almost periodic, asymptotically
recurrent, asymptotically pseudo recurrent), if there exists a τ -periodic (respectively,
quasi periodic, Bohr almost periodic, recurrent, pseudo recurrent) point p ∈ X such
that lim

t→+∞
ρ(π(t, x), π(t, p)) = 0.

2.3. Non-Autonomous Dynamical Systems with Weak Convergence. In
this section we will study a class of non-autonomous dynamical systems which is
very close to convergent systems, but possessing a non-trivial global attractor. This
means that this class of non-autonomous systems will conserve almost all properties
of convergent systems, but will have a “nontrivial” global attractor JX , i.e., there
exists at least one point y ∈ JY such that the set JX

⋂
Xy contains more than one

point.
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A non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is said to be weak
convergent, if the following conditions hold:

(i) the dynamical systems (X,T1, π) and (Y,T2, σ) are compact dissipative
with Levinson centers JX and JY respectively;

(ii) it follows that

lim
t→+∞

ρ(π(t, x1), π(t, x2)) = 0,

for all x1, x2 ∈ JX with h(x1) = h(x2).

Denote by Mx := {{tn} ⊆ T : such that the sequence {π(tn, x)} converges} and
Lx := {{tn} ∈ Mx : tn → +∞}. Recall [7] that the point x ∈ X is called
comparable with y ∈ Y by the character of recurrence in infinity if Lx ⊆ Ly.

Theorem 2.2. [7] Suppose that the following conditions hold:

(i) (X,T1, π) and (Y,T2, σ) are two dynamical systems;
(ii) the point y ∈ Y is asymptotically stationary (respectively, asymptotically

τ–periodic, asymptotically quasi-periodic, asymptotically almost periodic,
asymptotically almost automorphic, asymptotically recurrent);

(iii) the point x is comparable with y ∈ Y by the character of recurrence in
infinity.

Then, the point x is also asymptotically stationary (respectively, asymptotically τ–
periodic, asymptotically quasi-periodic, asymptotically almost periodic, asymptoti-
cally almost automorphic, asymptotically recurrent).

Let (X,T, π) be a dynamical system. Denote by ΩX :=
⋃{ωx| x ∈ X}, where ωx

is the ω-limit set of the point x.

Corollary 2.3. [3, 4] Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical
system such that the following conditions hold:

(i) the dynamical systems (X,T1, π) and (Y,T2, σ) are point dissipative;
(ii) ΩY is a compact minimal set;
(iii)

lim
t→+∞

ρ(π(t, x1), π(t, x2)) = 0

holds for all x1, x2 ∈ X with h(x1) = h(x2);
(iv) for every y ∈ ΩY , the set LX̃

⋂
X̃y contains at most one point.

Then, there exists a unique compact minimal set M ⊆ X such that

(i) the section M
⋂

Xy of the set M consists of a single point my for all y ∈ Y ;
(ii) ΩX = M ;
(iii) every point x ∈ X is comparable with h(x) by the character of recurrence

in infinity.

Corollary 2.4. [3, 4] Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical
system such that the following conditions hold:

(i) the dynamical system (X,T, π) is point dissipative;
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(ii) there exists a point y0 ∈ Y such that Y := H+(y0) := {σ(t, y0) : t ∈ T+};
(iii) the point y0 is asymptotically stationary (respectively, asymptotically τ–

periodic, asymptotically quasi-periodic, asymptotically almost periodic, as-
ymptotically almost automorphic, asymptotically recurrent);

(iv)
lim

t→+∞
ρ(π(t, x1), π(t, x2)) = 0

holds for all x1, x2 ∈ X with h(x1) = h(x2);
(v) for every y ∈ ΩY the set LX̃

⋂
X̃y contains at most one point.

Then, there exists a unique compact minimal set M ⊆ X such that

(i) the section M
⋂

Xy of the set M consists of a single point my for all y ∈ Y ;
(ii) ΩX = M ;
(iii) every point x ∈ X is asymptotically stationary (respectively, asymptotically

τ–periodic, asymptotically quasi-periodic, asymptotically almost periodic,
asymptotically almost automorphic, asymptotically recurrent).

2.4. Pseudo Recurrent Dynamical Systems with Convergence. A non-auto-
nomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is said to be uniformly stable in
the positive direction on compact subsets of X if, for arbitrary ε > 0 and K ∈ C(X),
there is δ = δ(ε,K) > 0 such that inequality ρ(x1, x2) < δ (h(x1) = h(x2)) implies
that ρ(π(t, x1), π(t, x2)) < ε for t ∈ T+

1 , where T+
1 := {t ∈ T1 : t ≥ 0} and C(X)

denotes the set of all compact subsets from X.

Let X×̇X := {(x1, x2) : x1, x2 ∈ X,h(x1) = h(x2)}. The function V : X×̇X →
R+ is said to be continuous, if xi

n → xi (i = 1, 2 and h(x1
n) = h(x2

n)) implies
V (x1

n, x2
n) → V (x1, x2).

Denote by X×̇X = {(x1, x2) ∈ X ×X | h(x1) = h(x2) }. If there exists a function
V : X×̇X → R+ with the following properties:

(i) V is continuous;
(ii) V is positive defined, i.e., V (x1, x2) = 0 if and only if x1 = x2;
(iii) V (π(t, x1), π(t, x2)) ≤ V (x1, x2) for all (x1, x2) ∈ X×̇X and t ∈ T+

1 ,

then the non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is called (see
[5, 6], [12], and [17]) V - monotone.

Let (X, h, Y ) be a fiber space, i.e., X and Y be two metric spaces and h : X → Y
be a homomorphism from X onto Y . The subset M ⊆ X is said to be conditionally
relatively compact, if the pre-image h−1(Y ′)

⋂
M of every relatively compact subset

Y ′ ⊆ Y is a relatively compact subset of X, in particular, My := h−1(y)
⋂

M is
relatively compact for every y. The set M is called conditionally compact if it is
closed and conditionally relatively compact.

Example 2.5. Let K be a compact space, X := K × Y , h = pr2 : X → Y, then
the triplet (X, h, Y ) is a fiber space, the space X is conditionally compact, but not
compact.

Denote by K := {a ∈ C(R+,R+)| a(0) = 0, a is strictly increasing}.
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Recall that the dynamical system (X,T1, π) is called asymptotically compact if for
every positively invariant bounded subset M ⊆ X there exists a nonempty compact
subset K ⊆ X such that

lim
t→+∞

β(π(t,M),K) = 0,

where β(A,B) := sup
a∈A

ρ(a,B) and ρ(a,B) := inf
b∈B

ρ(a, b).

Now, we state two results proved in [3, 4].

Theorem 2.6. Let 〈(X,T,π),(Y,R,σ),h〉 be a non-autonomous dynamical system
satisfying the following conditions:

1. the dynamical system (Y,R, σ) is pseudo recurrent;
2. the dynamical system (X,T, π) is asymptotically compact;
3. there exists a point x0 ∈ Xy0 with relatively compact positive semi-trajectory

Σ+
x0

:= {π(t, x0) : t ≥ 0};
4. the non-autonomous dynamical system 〈(X, T, π),(Y, R, σ), h〉 is V –

monotone;
5. for all (x1, x2) ∈ LX×̇LX \∆X (where ∆X := {(x, x) : x ∈ X}) there ex-

ists a positive number t0 = t0(x1, x2) ∈ T such that V (π(t0, x1), π(t0, x2)) <
V (x1, x2); ;

6. there are functions a, b ∈ K such that Im(a) = Im(b) and a(ρ(x1, x2)) ≤
V (x1, x2) ≤ b(ρ(x1, x2)) for all (x1, x2) ∈ X×̇X.

Then, the following statements take place:

(i) the NDS 〈(X,T1,π),(Y,R,σ),h〉 is convergent;
(ii) JX = ωx0 ;
(iii) h(JX) = Y .

Corollary 2.7. Let 〈(X, T, π), (Y, R, σ), h〉 be a non-autonomous dynamical
system such that:

(i) the dynamical system (Y,R, σ) is transitive, i.e., there exists a point y0 ∈ Y
such that H(y0) = Y ;

(ii) the point y0 is τ–periodic (respectively, quasi periodic, Bohr almost peri-
odic, recurrent, pseudo recurrent);

(iii) the dynamical system (X,T, π) is asymptotically compact;
(iv) there exists a point x0 ∈ Xy0 with relatively compact positive semi-trajectory

Σ+
x0

:= {π(t, x0) : t ≥ 0};
(v) the non-autonomous dynamical system 〈(X,T,π),(Y,R,σ),h〉 is V –monotone;
(vi) for all (x1, x2) ∈ LX×̇LX \∆X (where ∆X := {(x, x) : x ∈ X}) there ex-

ists a positive number t0 = t0(x1, x2) ∈ T such that V (π(t0, x1), π(t0, x2)) <
V (x1, x2);

(vii) there are functions a, b ∈ K such that Im(a) = Im(b) and a(ρ(x1, x2) ≤
V (x1, x2) ≤ b(ρ(x1, x2)) for all (x1, x2) ∈ X×̇X.

Then,
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(i) there exists a unique τ–periodic (respectively, quasi periodic, Bohr almost
periodic, recurrent, pseudo recurrent) point x0 ∈ Xy0 := {x ∈ X : h(x) =
y0};

(ii) every point x ∈ X is asymptotically τ–periodic (respectively, asymptoti-
cally quasi periodic, asymptotically Bohr almost periodic, asymptotically
recurrent, asymptotically pseudo recurrent).

3. Almost periodic and asymptotically almost periodic solutions of
Liénard equation.

Consider the following Liénard equation

(4) x′′ + f(x)x′ + g(x) = F (t),

where F : T → R is a continuous function and f, g : I → R (I := (a, b) with
−∞ ≤ a < b ≤ +∞) are locally Lipschitz continuous functions. We assume that
the functions f, g and F satisfy the following conditions:

(i) g is strictly decreasing;
(ii) f(x) ≥ 0 for all x ∈ I;
(iii) sup

t∈T
|F (t)| < +∞.

The typical example for equation (4) is given by

x′′ + cx′ +
1
xα

= F (t),

where c is a nonnegative constant, α > 0 and F : R→ R is a periodic (respectively,
quasi periodic, almost periodic, almost automorphic, recurrent) function.

A function f : T→ I is said to be bounded if Q := f(T) is a compact subset from
I.

Remark 3.1. A continuous function f : T→ I is bounded if and only if [mϕ,Mϕ] ⊂
I, where mϕ := inf

t∈T
ϕ(t) and Mϕ := sup

t∈T
ϕ(t).

Denote by Cb(T,R) the set of all continuous functions F : T → R with norm
||F || := sup

t∈T
|F (t)| < +∞.

The following results are well known.

Lemma 3.2. [8] Let I := (t0, +∞) with t0 = −∞ or t0 ∈ R and F ∈ Cb(T,R).
If ϕ(t) is a solution of equation (4) which is bounded on R+ (respectively, bounded
on R), then the derivatives ϕ′(t) and ϕ′′(t) are also bounded on R+ (respectively,
bounded on R).

Denote by ϕ(t, u, v, F ) the unique solution of equation (4) satisfying the initial
conditions ϕ(0, u, v, F ) = u and ϕ′(0, u, v, F ) = v. We have the following theorem.

Theorem 3.3. [1, 8] The following statements hold true:
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(i) if F ∈ Cb(R+,R), then for any pair of solutions ϕ(t, ui, vi, F ) (i = 1, 2) of
equation (4), which are bounded on R+, we have

lim
t→+∞

(|ϕ(t, u1, v1, F )− ϕ(t, u2, v2, F )|+ |ϕ′(t, u1, v1, F )− ϕ′(t, u2, v2, F )|) = 0;

(ii) if F ∈ Cb(R,R), then equation (4) admits at most one solution which is
bounded on R.

Remark 3.4. Note that Theorem 3.3 remains true if we replace the condition
F ∈ Cb(T,R) (T = R+ for item (i) and T = R for item (ii)) by F ∈ Sp(T,R),
where Sp(T,R) is the space of all functions ϕ ∈ Lp

loc(T,R) satisfying the condition
|ϕ|Sp := sup

t∈T
(
∫ t+1

t
|ϕ(s)|pds)1/p < +∞ and p ≥ 1. This statement may be proved

with slight modification of the proof of Theorem 3.3.

Denote by C(T,R) the set of all continuous functions F : T 7→ R endowed with the
compact-open topology, by Fτ the τ–shift of F (τ ∈ T), that is, Fτ (t) := F (t + τ)
for all t ∈ T, and (C(T,R),T, σ) the shift dynamical system (Bebutov’s dynamical
system), i.e., σ(τ, F ) := Fτ for all τ ∈ T and F ∈ C(T,R).

It is said that the function F ∈ C(T,R) possesses the property (S) (for example,
periodicity, almost periodicity, recurrence, asymptotically almost periodicity and so
on), if the motion σ(τ, F ), generated by the function F in the shift dynamical
system (C(T,R),T, σ), possesses this property.

The solution ϕ(t) of equation (4) is called [7, 14, 15, 16] compatible (respectively,
uniform compatible) by the character of recurrence, if the motion σ(t, (ϕ,ϕ′)),
generated by by function (ϕ,ϕ′) ∈ C(R,R) × C(R,R) is comparable (respectively,
uniform comparable) by the character of recurrence with the motion σ(τ, F ), i.e.,
NF ⊆ N(ϕ,ϕ′) (respectively, MF ⊆ M(ϕ,ϕ′)), MF := {{tn} : the sequence {σ(tn, F )}
is convergent}, LF := {{tn} ∈ MF : such that tn → +∞ as n →∞} and ϕ′ is the
derivative of the function ϕ.

Example 3.5. Denote by y = x′, then equation (4) can be reduced to the system

(5)
{

x′ = y
y′ = −g(x)− f(x)y + F (t).

Along with system (5), consider its H–class, i.e., the family of systems

(6)
{

x′ = y
y′ = −g(x)− f(x)y + G(t),

where G ∈ H(F ).

Recall that we denote by ϕ(t, u, v, F ) the unique solution of equation (4) satisfy-
ing the initial conditions ϕ(0, u, v, F ) = u and ϕ′(0, u, v, F ) = v and defined on
R+ (or on R). Then, (ϕ(t, u, v, F ), ϕ′(t, u, v, F )) is the unique solution of sys-
tem (5) with the initial data (ϕ(0, u, v, F ), ϕ′(0, u, v, F )) = (u, v) ∈ R2. Let
Y = H(F ) := {σ(t, F ) : t ∈ R} and let (Y,R, σ) be the shift dynamical sys-
tem on H(F ), induced by Bebutov’s dynamical system (C(R,R),R, σ). We set
W := R2 ×H(F ), X̃ := {((u, v), G) ∈ W : there exists a unique solution ϕ(t, u, v)
of equation (4) through the point (u, v) ∈ R2 at the initial moment t = 0 and
defined on R+}, π(t, ((u, v), G)) := (ϕ(t, u, v, G), ϕ′(t, u, v, G)) for all t ∈ R+ and
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((u, v), G) ∈ X̃, where (ϕ(t, u, v, G), ϕ′(t, u, v,G)) is the unique solution of system
(6) with initial data (ϕ(0, u, v,G), ϕ′(0, u, v,G)) = (u, v). Let now ϕ(t, u, v, F ) be a
solution of equation (4) bounded on R+, and we denote by X = H+((u, v, F )) :=
{(ϕ(τ, u, v, F ), ϕ′(τ, u, v, F ), Fτ ) : τ ∈ R+}, where Fτ := F (· + τ). From Lemma
3.2 it follows that the set X is shift invariant, i.e., π(t,X) ⊆ X for all t ∈ R+ and
X ⊆ X̃. Let h = pr2 : X 7→ Y be the second projection of X onto Y , then the
triplet 〈(X,R+, π), (Y,R, σ), h〉 is a non-autonomous dynamical system, generated
by equation (4) (or system of equations (5)) and the solution ϕ(t, u, v, F ).

A solution ϕ of equation (4) is called compatible by recurrence in infinity [7], if
LF ⊆ L(ϕ,ϕ′), where ϕ′ is the derivative of the function ϕ and Lϕ := {{tn} ∈ Mϕ :
tn → +∞}.
Theorem 3.6. Suppose that F ∈ C(R+,R) and F is asymptotically recurrent.
Then, every solution ϕ(t, u, v) of equation (4), which is bounded on R+, is compat-
ible by recurrence in infinity.

Proof. Consider the non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉
generated by equation (4) and its solution ϕ(t, u, v, F ) (see Example 3.5). Since
F is asymptotically recurrent, the dynamical system (Y,R, σ) is compact dissipa-
tive and its Levinson center JY = ωF is a compact minimal set, where ωF is the
ω–limit set of the point F ∈ C(R,R) in the shift dynamical system (Y,R, σ). By
Lemma 3.2, the set X = H+((u, v, F )) ⊆ R2 × C(R,R) is compact. Let now
G ∈ H+(F ) := {Fτ : τ ∈ R+} and ϕ(t, ui, vi, G) (i = 1, 2; (ui, vi, G) ∈ X) be two
solutions of system (6). According to Theorem 3.3 we have

lim
t→+∞

(|ϕ(t, u1, v1, G)− ϕ(t, u2, v2, G)|+ |ϕ′(t, u1, v1, G)− ϕ′(t, u2, v2, G)|) = 0.

On the other hand if G ∈ ΩF (ω-limit set of the function F ), then G ∈ Cb(R,R)
and by Theorem 3.3 system (6) admits at most one solution which is bounded on
R . Now to finish the proof of Theorem it is sufficient to apply Corollary 2.3. ¤

Corollary 3.7. Suppose that F ∈ C(R,R) and F is asymptotically stationary
(respectively, asymptotically τ–periodic, asymptotically quasi-periodic, asymptot-
ically almost periodic, asymptotically almost automorphic, asymptotically recur-
rent). Then, every solution ϕ(t, u, v, F ) of equation (4), which is bounded on R+,
is asymptotically stationary (respectively, asymptotically τ–periodic, asymptotically
quasi-periodic, asymptotically almost periodic, asymptotically almost automorphic,
asymptotically recurrent).

Proof. This statement follows from Theorem 3.6 and Corollary 2.4. ¤

4. Sp–asymptotically almost periodic solutions

4.1. Dynamical systems of shifts in the space Lp
loc(T; B; µ). Let (T, B; µ) be

a space with measure and µ is a Radon measure, B –is a Banach space with the
norm | · |.
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Let 1 ≤ p ≤ +∞. By Lp(T;B, µ) we denote the space of all measurable functions
(classes of functions) f : T→ B such that |f | ∈ Lp(T;R;µ), where |f |(s) = |f(s)|.
The space Lp(T; B; µ) is endowed with the norm

(7) ||f ||Lp = (
∫

T
|f(s)|pdµ(s))1/p and ||f ||∞ = ess sups∈T|f(s)|.

Lp(T; B; µ) with norm (7) is a Banach space.

Denote by Lp
loc(T; B; µ) the set of all function f : T→ B such that fl ∈ Lp([−l, l]∩

T;B;µ) for every l > 0, where fl is the restriction of the function f onto [−l, l]∩T.

In the space Lp
loc(T; B;µ) we define the following family of semi-norms || · ||l,p :

(8) ||f ||l,p = ||fl||Lp([−l,l]∩T;B;µ) (l > 0).

These semi-norms in (8) define a metrizable topology on Lp
loc(T; B; µ). The metric

given by this topology can be defined, for instance, by

dp(ϕ, ψ) =
∞∑

n=1

1
2n

||ϕ− ψ||n,p

1 + ||ϕ− ψ||n,p
.

Let us define a mapping σ : Lp
loc(T; B; µ)× T→ Lp

loc(T; B; µ) as follows: σ(f, τ) =
fτ for all f ∈ Lp

loc(T; B; µ) and τ ∈ T, where fτ (s) := f(s + τ) (s ∈ T).

Lemma 4.1. [7, ChI] (Lp
loc(T;B;µ),T, σ) is a dynamical system.

4.2. Stepanoff asymptotically almost periodic solutions. Let us start by
defining the concept of Stepanoff asymptotically almost period solutions.

Definition 4.2. A function ϕ ∈ Lp
loc(R; B; µ) is called Sp almost periodic (almost

periodic in the sense of Stepanoff), if the motion σ(·, ϕ) is almost periodic in the dy-
namical system (Lp

loc(R; B; µ),R, σ). Analogously, it can be defined the asymptotic
Sp almost periodicity of functions.

Recall now two interesting results from [7, ChI].

Theorem 4.3. Let ϕ ∈ Lp
loc(R; B;µ). The following statements are equivalent:

1) ϕ is Sp almost periodic;
2) for every ε > 0 there exists l > 0 such that on every segment of length l in
R there is a number τ for which

t+1∫

t

|ϕ(s + τ)− ϕ(s)|pds < εp

for all t ∈ R;
3) from an arbitrary sequence {tn} ⊂ R there can be extracted a subsequence
{tkn} such that the sequence {ϕ(tkn )} uniformly converges in the space
Lp

loc(R;B;µ), i.e., there exists a function ϕ̃ ∈ Lp
loc(R; B; µ) such that

lim
n→+∞

sup
t∈R

t+1∫

t

|ϕ(s + tkn)− ϕ̃(s)|pds = 0.
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Theorem 4.4. Let ϕ ∈ Lp
loc(R+;B;µ). The following statements are equivalent:

1) the function ϕ is asymptotically Sp almost periodic, i.e., the motion σ(·, ϕ)
is asymptotically almost periodic in the dynamical system (Lp

loc(R+; B;µ),
R, σ);

2) there exist an Sp almost periodic function p and a function ω ∈ Lp
loc(R+;

B; µ) such that p ∈ Lp
loc(R;B;µ), ϕ = p + ω and lim

t→+∞

t+1∫
t

|ω(s)|pds = 0;

3) for every ε > 0 there exist numbers β ≥ 0 and l > 0 such that on every
segment of length l there is a number τ for which

t+1∫

t

|ϕ(τ + s)− ϕ(s)|pds < εp

for all t ≥ β and t + τ ≥ β;
4) from every sequence {tn}, tn → +∞, we can extract a subsequence {tkn}

such that the sequence {ϕ(tkn )} converges uniformly with respect to t ∈ R+

in the space Lp
loc(R+;B;µ), i.e., there exists a function ϕ̃ ∈ Lp

loc(R+; B; µ)
such that

lim
n→+∞

sup
t∈R+

t+1∫

t

|ϕ(s + tkn)− ϕ̃(s)|pds = 0.

Lemma 4.5. Let I := (t0,+∞) with t0 = −∞ or t0 ∈ R, F ∈ Lp
loc(R+;R; µ) and

sup
t∈T

(
∫ t+1

t
|F (t)|p)1/p < +∞ (p ≥ 1). If ϕ(t) is a solution of equation (4) which is

bounded on R+ (respectively, bounded on R), then the derivatives ϕ′(t) and ϕ′′(t)
are also bounded on R+ (respectively, bounded on R).

Proof. We omit the proof because it is a slight modification of the proof of Lemma 3.2.
¤

Lemma 4.6. [7, ChI] If F ∈ Lp
loc(R+;R) and F is asymptotically recurrent, then

sup
t∈R+

(
∫ t+1

t
|F (t)|p)1/p < +∞ (p ≥ 1).

Theorem 4.7. Suppose that F ∈ Lp
loc(R+;R) and F is asymptotically recurrent.

Then every bounded on R+ solution ϕ(t, u, v) of equation (4) is compatible by re-
currence in infinity.

Proof. This statement can be proved using the same arguments as in the proof of
Theorem 3.3 (see also Remark 3.4), Theorem 3.6 and using lemmas 4.5 and 4.6. ¤

Corollary 4.8. Suppose that F ∈ Lp
loc(R+; B) and F is asymptotically Sp–statio-

nary (respectively, asymptotically Sp τ–periodic, asymptotically Sp quasi-periodic,
asymptotically Sp almost periodic, asymptotically Sp almost automorphic, asymp-
totically Sp recurrent). Then, every solution ϕ(t, u, v) of equation (4), which is
bounded on R+, is asymptotically stationary (respectively, asymptotically τ–periodic,
asymptotically quasi-periodic, asymptotically almost periodic, asymptotically almost
automorphic, asymptotically recurrent).
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Proof. The proof follows from Theorem 3.6 and Corollary 2.4. ¤

Remark 4.9. We would like to stress that in Corollary 4.8 the function F is as-
ymptotically almost periodic in the sense of Stepanoff, but the solution ϕ(t, u, v, F )
is asymptotically almost periodic in the sence of Fréchet [10, 11].

Remark 4.10. When the function F is Sp asymptotically almost periodic, a par-
ticular case of Corollary 3.7 was established by Ait Dads et al. [1]. Namely, they
proved this statement in the case when F (t) = P (t) + Ω(t) for all t ∈ R+, where
P ∈ C(R,R) is a Bohr almost periodic function and Ω ∈ C(R+,R) with the follow-
ing properties: sup

t∈R+

|Ω(t)| < +∞ and lim
t→+∞

∫ t+1

t
|Ω(s)|ds = 0. It is evident, that

the function F with the properties listed above is Sp (with p = 1) asymptotically
almost periodic, but the inverse statement is not true.

5. Convergence of Forced Vectorial Liénard Equations

Let (Y,R, σ) be a two-sided dynamical system. Consider the following vectorial
Liénard equation

(9) u′′(t) +
d

dt
[∇F (u(t))] + Cu(t) = f(σ(t, y)),

where f ∈ C(Y,Rm), C : Rm 7→ Rm is a symmetric and nonsingular linear operator,
and ∇F denotes the gradient of the convex function F on Rm. If the operator C is
positive definite, then we introduce the product space Rm × Rm ' R2m endowed
with the inner product associated to the quadratic form Q given by

Q(u, v) := |u|2 + 〈C−1v, v〉.
Remark 5.1. Note that the inequality

α(|u|2 + |v|2) ≤ Q(u, v) ≤ β(|u|2 + |v|2)
holds for all (u, v) ∈ R2m, where α := max(1,

∣∣∣∣C
∣∣∣∣−1) and β := max(1,

∣∣∣∣C−1
∣∣∣∣),

where ||C|| is the norm of operator C.

Equation (9) can be re-written in the form

(10) U ′(t) + G(σ(t, y), U(t)) = 0,

where G ∈ C(Y ×R2m,R2m) and the partial function G(y, ·, ·) is strictly monotone
for each y ∈ Y with respect to the inner product associated to Q, i.e., for each
y ∈ Y

〈G1(y, u1, v1)−G1(y, u2, v2), u1 − u2〉+
〈C−1(G2(y, u1, v1)−G2(y, u2, v2)), v1 − v2〉 > 0,

for all (ui, vi) ∈ R2m (i = 1, 2) such that (u1, v1) 6= (u2, v2). Indeed, by letting
v(t) := u′(t) +∇F (u(t)); U(t) := (u(t), v(t)), equation (9) reduces to

U ′(t) +∇Φ(U(t)) + JU(t) = F(σ(t, y))

where Φ(u, v) := F (u), J :=
(

0 −I
C 0

)
and F(y) := (0, f(y)).
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Lemma 5.2. [8] Let I be the interval [0, +∞) or the whole real line R. Let f(t) :=
f(σ(t, y)) (∀t ∈ I) be bounded on I. If u ∈ C2(I,Rn) is a solution of equation (9)
which is bounded on I, then u′ and u′′ are also bounded on I.

Theorem 5.3. Suppose that the following conditions are fulfilled:

(i) the dynamical system (Y,R, σ) is pseudo recurrent;
(ii) y0 ∈ Y is such that H(y0) = Y ;
(iii) the equation (9) admits a solution u0 which is bounded on R+.

Then,

(i) the equation (9) is convergent, i.e., the non-autonomous dynamical system
(cocycle) generated by (9) is convergent;

(ii) if the point y0 ∈ Y is a τ -periodic (quasi periodic, almost periodic in the
sense of Bohr, almost automorphic, recurrent, pseudo recurrent) point,
then equation (9) has a unique τ -periodic (respectively, quasi periodic,
Bohr almost periodic, almost automorphic, recurrent, pseudo recurrent)
solution u such that My0 ⊆ Mu;

(iii) every solution of equation (9), which is bounded on R+, is asymptotically
τ–periodic (respectively, asymptotically quasi periodic, asymptotically Bohr
almost periodic, asymptotically almost automorphic, asymptotically recur-
rent, asymptotically pseudo recurrent).

Proof. Consider equation (10). By Lemma 5.2 it admits a solution U0(t) := (u0(t),
u′0(t)) (t ∈ R) which is bounded on R+ . Denote by ϕ the cocycle associated to
equation (9), where ϕ(t, x, y) is the solution of equation (9) with initial condition
ϕ(0, x, y) = x and x = (u, v). Let X = Y × Rn, (X,R+, π) be the skew-product
dynamical system and 〈(X,R+, π), (Y,R, σ), h〉 be the non-autonomous dynamical
system generated by equation (10). Denote by V : X → R+ the function defined
by V(y, (u1, v1), (u2, v2)) := 1

2 (〈u1 − u2, u1 − u2〉 + 〈C−1(v1 − v2), v1 − v2〉) for all
(y, (ui, vi)) ∈ X := Y × Rn (i = 1, 2), then

V (σ(t, y), ϕ(t, x1, y), ϕ(t, x2, y))

=
1
2
(〈ϕ1(t, x1, y)− ϕ1(t, x2, y)), ϕ1(t, x1, y)− ϕ1(t, x2, y)〉

+ 〈C−1(ϕ2(t, x1, y))− ϕ2(t, x2, y), ϕ2(t, x2, y)− ϕ2(t, x2, y))〉
(where ϕ := (ϕ1, ϕ2)). Since

dV (σ(t, y), ϕ(t, x1, y), ϕ(t, x2, y))
dt

= 〈G1(σ(t, y), ϕ1(t, x1, y))−G1(σ(t, y), ϕ1(t, x2, y)), ϕ1(t, x1, y)− ϕ1(t, x2, y)〉
+ 〈C−1(G2(σ(t, y), ϕ1(t, x1, y))−G2(σ(t, y), ϕ1(t, x2, y))), ϕ2(t, x1, y)− ϕ2(t, x2, y)〉,
then, by (11), one has V (σ(t, y), ϕ(t, x1, y), ϕ(t, x2, y)) < V (y, x1, x2) for all y ∈ Y,
x1, x2 ∈ X (x1 6= x2) and t > 0.

Let u0 be a solution of equation (9) which is bounded on R+, then by Lemma 5.2
U0 := (u0, u

′
0) is the solution of equation (10) which is bounded on R+. To finish

the proof, it is sufficient to refer to Theorem 2.6 and Corollary 2.7. ¤
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Example 5.4. We consider the equation

(11) x′′ + p(x)x′ + ax = f(σ(t, y)),

where p ∈ C(R,R), f ∈ C(Y,R) and a is a positive number. Denote by u = x and
v = u′ + F(u), where F(u) =

∫ u

0
p(s)ds, then we obtain the system

{
u′ = v −F(u)

v′ = −au + f(σ(t, y)).

Theorem 5.5. Assume the following conditions:

(i) the dynamical system (Y,R, σ) is pseudo recurrent;
(ii) there exists a Poisson stable point y0 ∈ Y such that H(y0) = Y ;
(iii) p(x) ≥ 0 for all x ∈ R and

∫ β

α
p(s)ds > 0 for all α < β (α, β ∈ R);

(iv) the equation (11) admits a solution u0 which is bounded on R+.

Then,

(i) if the point y0 is τ -periodic (respectively, quasi periodic, almost periodic
in the sense of Bohr, almost automorphic, recurrent, pseudo recurrent),
then (9) has a unique τ -periodic (respectively, quasi periodic, Bohr almost
periodic, almost automorphic, recurrent, pseudo recurrent) solution u such
that My0 ⊆ Mu.

(ii) every solution of equation (9), which is bounded on R+, is asymptotically
τ–periodic (respectively, asymptotically quasi periodic, asymptotically Bohr
almost periodic, asymptotically almost automorphic, asymptotically recur-
rent, asymptotically pseudo recurrent).

Proof. Denote by F (x) :=
∫ x

0

∫ η

0
p(s)dsdη, then p(x)x′ = dF ′(x)

dt and F ′′(x) =
p(x) ≥ 0. Note that 〈∫ x1

0
p(s)ds− ∫ x2

0
p(s)ds, x1 − x2〉 = |(x1 − x2)

∫ x2

x1
p(s)ds| > 0

for all x1 6= x2 (x1, x2 ∈ R). Now our statement follows from Theorem 5.3. ¤

Remark 5.6. Note that Theorem 5.5 remains true also if p(x) ≥ 0 (for all x ∈ R)
without the condition

∫ β

α
p(s)ds > 0 for all α < β (α, β ∈ R). This statement

follows from Theorem 3.3 and Corollary 3.7.
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[15] B.A. Shcherbakov, The comparability of the motions of dynamical systems with regard to
the nature of their recurrence, Differential Equations 11(1975), no. 7, 1246–1255.

[16] B.A. Shcherbakov, Poisson Stability of Motions of Dynamical Systems and Solutions of
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