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Abstract. The aim of this paper is the study of problem of existence of
Levitan almost periodic, almost automorphic, recurrent and Poisson stable
solutions of seconde order differential equation

(1) x′′ = f(σ(t, y), x, x′), (y ∈ Y )

where Y is a complete metric space and (Y,R, σ) is a dynamical system (driving
system). For equation (1) with increasing (with respect to second variable)
function f the existence at least one quasi periodic (respectively, Bohr almost
periodic, almost automorphic, recurrent, pseudo recurrent, Levitan almost pe-
riodic, almost recurrent, Poisson stable) solution of (1) is proved under the
condition that (23) admits at least one bounded on the real axis solution to-
gether with its first derivative.

1. Introduction

The aim of this paper is the study of problem of existence of Levitan almost peri-
odic, almost automorphic, recurrent and Poisson stable solutions of seconde order
differential equation

(2) x′′ = f(σ(t, y), x, x′), (y ∈ Y )

where Y is a complete metric space and (Y,R, σ) is a dynamical system (driving
system).

The problem of Bohr almost periodic solutions of equation

(3) x′′ = f(t, x, x′)

with Bohr almost periodic right hand-side f with respect to time, uniformly with
respect variables x, x′ on every compact from R2 was studied by C. Corduneanu
[9] (see also [1]) and he established that if f ′x(t, x, u) ≥ k > 0 for all (t, x, u) ∈ R3,
then equation (3) admits a unique almost periodic solution.

In the case when the function f(t, x, u) is only increasing (in the large sense) Z.
Opial [15] studied this problem and he established the following result.
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2 TOMÁS CARABALLO AND DAVID CHEBAN

Theorem 1.1. (Z. Opial [15]) Suppose that the following conditions are fulfilled:

(i) f ∈ C(R3,R) and it is increasing in the large sense with respect to variable
x, i.e. the inequality x1 ≤ x2 implies f(t, x2, u) ≤ f(t, x1, u) for all u, t ∈
R;

(ii) for all r > 0 there exists a number L(r) > 0 such that |f(t, x1, u1) −
f(t, x2, u2)| ≤ L(r)(|x1−x2|+ |u1−u2|) for all |xi|, |ui| ≤ r (i = 1, 2) and
t ∈ R.

The the following statements hold:

(i) If equation (3) admits a bounded on R solution together with its derivative,
then this equations admits at least one almost periodic solution.

(ii) If u(t) and v(t) are two almost periodic solutions of equation (3) then there
exists a constant c ∈ R such that u(t)− v(t) = c for all t ∈ R.

(iii) If the the function f is strict increasing with respect to x ∈ R, then equation
(3) admits at most one almost periodic solution.

By P. Cieutat [8] was studied the bounded and almost periodic solutions of Liénard
equation

(4) x′′ + f(x)x′ + g(x) = p(t),

where p : R 7→ R is a almost periodic function, f(x) ≥ 0 and g is a strictly decreasing
function. He proved that every bounded on R+ solution is asymptotically almost
periodic and there exists a unique almost periodic solution of equation (4). The
model of equation (4) is

(5) x′′ + cx′ + 1/xα = p(t), (x ∈ (0, +∞))

where c ≥ 0, α > 0 and p is almost periodic.

In the work of P. Cieutat, S. Fatajou and G. M. N’Guerekata [10] was studied the
problem of existence of almost automorphic solutions of equation (4) with almost
automorphic forcing term p. It was proved the asymptotically almost automorphy
of every bounded on R+ solution and the existence a unique almost automorphic
solution of equation (4).

In the periodical case (p is periodic) the dynamics of equation (5) intensively was
studied by P. Martinez-Amores and P. J. Torres [14] and J. Campos and P. J. Torres
[3].

Desheng Li and Jinqiao Duan [13] study the structure of the set of bounded solution
for equation (2). In particularly, it was proved the existence a unique periodic
(respectively, quasi-periodic, almost periodic) solution of equation (2) if the point
y ∈ Y is so and the function f is strictly increasing with respect to second variable.

We note that in the all of the cited above works (with the exeption of [15]) figures
an assumption of strict monotony. We consider equation (2) with the function f
monotone increasing with respect to seconde variable in the large sense. All our
results will be formulated and proved for this case which includes, of course, also
the case of strict increasing too.

This paper is organized as follows.
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In Section 2 we collect some notions, facts and constructions from theory of dy-
namical systems which we use in this paper.

Section 3 is dedicated to the study of a special class of non-autonomous dynamical
systems (NDS): so called NDS with convergence. The main result in this section is
Theorem 3.10 which give sufficient conditions of convergence of NDS.

In Section 4 we apply Theorem 3.10 to the study the dynamics of scalar one-
dimensional equation x′ = f(σ(t, y), x) (y ∈ Y ) with pseudo recurrent base (Y,R, σ)
(driving system). The main result of this section is Theorem 4.2.

Levitan almost periodic and almost automorphic solutions of second order equations
x′′ = f(σ(t, y), x, x′′) with monotone increasing f (in the large sense) are studied
in the Section 5. The main results of this section are Theorem 5.4 and Corollary
5.5.

Section 6 is dedicated to the study the problem of quasi-periodic, Bohr almost pe-
riodic and recurrent (in the sense of Birhoff) for the equation x′′ = f(σ(t, y), x, x′′)
with monotone increasing f (in the large sense). The main results are Theorem 6.1
and Corollary 6.2.

In Section 7 we discus some generalizations of our main results (Theorems 5.4 and
6.1). One of this type results is given in Theorem 7.1 (see also Corollaries 7.2 and
7.3).

2. Almost Periodic and Almost Automorphic Motions of Dynamical
Systems

2.1. Recurrent, Almost Periodic and Almost Automorphic Motions. Let
X be a complete metric space, R (Z) be a group of real (integer) numbers, R+ (Z+)
be a semi-group of nonnegative real (integer) numbers, S be one of the two sets R
or Z and T ⊆ S (S+ ⊆ T) be a sub-semigroup of the additive group S.

Let (X,T, π) be a dynamical system.

A number τ ∈ T is called an ε > 0 shift (respectively, almost period) of x, if
ρ(xτ, x) < ε (respectively, ρ(x(τ + t), xt) < ε for all t ∈ T).

A point x ∈ X is called almost recurrent (respectively, Bohr almost periodic), if
for any ε > 0 there exists a positive number l such that at any segment of length l
there is an ε shift (respectively, almost period) of point x ∈ X.

If the point x ∈ X is almost recurrent and the set H(x) := {xt | t ∈ T} is compact,
then x is called recurrent.

Denote Nx := {{tn} ⊂ T : such that {π(tn, x)} is convergent and {tn} → ∞}.
A point x ∈ X is called Poisson stable in the positive direction if there exists a
sequence {tn} ∈ Nx such that tn → +∞ as n →∞.

Let (X,T, π) be a two-sided dynamical system (i.e., T = S). A point x ∈ X is
called Poisson stable in the negative direction if there exists a sequence {tn} ∈ Nx
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such that tn → −∞ as n → ∞. The point x ∈ X is called Poisson stable if it is
Poisson stable in the both directions.

A dynamical system (X,T, π) is said to be pseudo recurrent if X is compact and
every point x ∈ X is Poisson stable.

A point x ∈ X is called [20, 22] pseudo recurrent if the dynamical system (H(x),T, π)
is pseudo recurrent, where H(x) := {π(t, x) : t ∈ T}.
Remark 2.1. Every recurrent point is pseudo recurrent, but there exists a pseudo
recurrent points which are not recurrent [20, 22].

An m-dimensional torus is denoted by T m := Rm/2πZ. Let (T m,T, σ) be an irra-
tional winding of T m, i.e., σ(t, ν) := (ν1t, ν2t, . . . , νmt) for all t ∈ S and ν ∈ T m.

A point x ∈ X is called quasi-periodic with the frequency ν := (ν1, ν2, . . . , νm) ∈
T m, if there exists a continuous function Φ : T m → X such that π(t, x) := Φ(ωt)
for all t ∈ T, where ωt := σ(t, ω) and (T m,T, σ) is an irrational winding of the
torus T m.

A point x ∈ X of the dynamical system (X,T, π) is called Levitan almost periodic
[12], if there exists a dynamical system (Y,T, σ) and a Bohr almost periodic point
y ∈ Y such that Ny ⊆ Nx.

Remark 2.2. 1. Every almost automorphic point is Levitan almost periodic.

2. A Levitan almost periodic point is almost automorphic if and only if it is stable
in the sense of Lagrange.

Remark 2.3. Let xi ∈ Xi (i = 1, 2, . . . , m) be a Levitan almost periodic point of
the dynamical system (Xi,T, πi). Then the point x := (x1, x2, . . . , xm)) ∈ X :=
X1 × X2 × . . . × Xm is also Levitan almost periodic in the product dynamical
system (X,T, π), where π : T × X → X is defined by the equality π(t, x) :=
(π1(t, x1), π2(t, x2), . . . , πm(t, xm)) for all t ∈ T and x := (x1, x2, . . . , xm) ∈ X.

A point x ∈ X is called stable in the sense of Lagrange (st.L), if its trajectory
{π(t, x) : t ∈ T} is relatively compact.

A point x ∈ X is called almost automorphic [12, 18] in the dynamical system
(X,T, π), if the following conditions hold:

(i) x is st.L;
(ii) there exists a dynamical system (Y,T, σ), a homomorphism h from (X,T, π)

onto (Y,T, σ) and an almost periodic in the sense of Bohr point y ∈ Y such
that h−1(y) = {x}.

2.2. Shift Dynamical Systems, Almost Periodic and Almost Automorphic
Functions. Below we indicate one general method of construction of dynamical
systems on the space of continuous functions. In this way we will get many well
known dynamical systems on the functional spaces (see, for example, [2, 17, 20]).

Let (X,T, π) be a dynamical system on X, Y be a complete pseudo metric space
and P be a family of pseudo metrics on Y . We denote by C(X, Y ) the family of
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all continuous functions f : X → Y equipped with a compact-open topology. This
topology is given by the following family of pseudo metrics {dp

K} (p ∈ P, K ∈
C(X)), where

dp
K(f, g) := sup

x∈K
p(f(x), g(x))

and C(X) a family of all compact subsets of X. For all τ ∈ T we define a mapping
στ : C(X, Y ) → C(X, Y ) by the following equality: (στf)(x) := f(π(τ, x)) (x ∈
X). We note that the family of mappings {στ : τ ∈ T} possesses the next properties:

a. σ0 = idC(X,Y );
b. ∀τ1, τ2 ∈ T στ1 ◦ στ2 = στ1+τ2 ;
c. ∀τ ∈ T στ is continuous.

Lemma 2.4. [4] The mapping σ : T×C(X,Y ) → C(X, Y ), defined by the equality
σ(τ, f) := στf (f ∈ C(X,Y ), τ ∈ T), is continuous.

Corollary 2.5. The triple (C(X,Y ),T, σ) is a dynamical system on C(X,Y ).

Consider now some examples of dynamical systems of the form (C(X, Y ),T, σ),
useful in the applications.

Example 2.6. Let X = T and we denote by (X,T, π) a dynamical system on T,
where π(t, x) := x + t. The dynamical system (C(T, Y ),T, σ) is called Bebutov’s
dynamical system [2, 17, 20] (a dynamical system of translations, or shifts dynamical
system).

We will say that the function ϕ ∈ C(T, Y ) possesses a property (A), if the motion
σ(·, ϕ) : T → C(T, Y ), generated by this function, possesses this property in the
dynamical system of Bebutov (C(T, Y ),T, σ), generated by the function ϕ. As
property (A) we can take periodicity, quasi-periodicity, almost periodicity, almost
automorphy, recurrence, pseudo recurrence, Poisson stability etc.

Example 2.7. Let X := T ×W , where W is some metric space and by (X,T, π)
we denote a dynamical system on X defined in the following way: π(t, (s, w)) :=
(s+ t, w). Using the general method proposed above we can define on C(T×W,Y )
a dynamical system of translations (C(T×W,Y ),T, σ).

The function f ∈ C(T×W,Y ) is called almost periodic (quasi-periodic, recurrent,
almost automorphic, etc) with respect to t ∈ T uniform on w on every compact
from W , if the motion σ(·, f) is almost periodic (quasi-periodic, recurrent, almost
automorphic, etc.) in the dynamical system (C(T×W,Y ),T, σ).

Remark 2.8. Let W be a compact metric space, then the topology on C(W,Y ) is
metrizable. For example by the equality

d(f, g) :=
∞∑

k=1

1
2k

dk(f, g)
1 + dk(f, g)

there is defined a complete metric on the space C(W,X) which is compatible with the
compact-open topology on C(W,X), where dk(f, g) := max

|t|≤k, x∈W
ρ(f(t, x), g(t, x)).

The space C(T×W,Y ) is topologically isomorphic to C(T, C(W,Y )) [20], and also
the shifts dynamical systems (C(T×W,Y ),T, σ) and (C(T, C(W,Y )),T, σ) are dy-
namically isomorphic.
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2.3. Cocycles, Skew-Product Dynamical Systems and Non-Autonomous
Dynamical Systems. Let T1 ⊆ T2 be two sub-semigroups of the group S (S+ ⊆
T+).

A triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism from (X,T1, π)
onto (Y,T2, σ), is called a non-autonomous dynamical system.

Let (Y,T2, σ) be a dynamical system on Y , W be a complete metric space and ϕ be
a continuous mapping from T1 ×W × Y in W , possessing the following properties:

a. ϕ(0, u, y) = u (u ∈ W,y ∈ Y );
b. ϕ(t + τ, u, y) = ϕ(τ, ϕ(t, u, y), σ(t, y)) (t, τ ∈ T1, u ∈ W, y ∈ Y ).

Then the triplet 〈W,ϕ, (Y,T2, σ)〉 (or shortly ϕ) is called [17] a cocycle on (Y,T2, σ)
with the fiber W .

Let X := W × Y and let us define a mapping π : X × T1 → X as follows:
π((u, y), t) := (ϕ(t, u, y), σ(t, y)) (i.e. π = (ϕ, σ)). Then it is easy to see that
(X,T1, π) is a dynamical system on X, which is called a skew-product dynamical
system [17] and h = pr2 : X → Y is a homomorphism from (X,T1, π) onto (Y,T2, σ)
and, hence, 〈(X,T1, π), (Y,T2, σ), h〉 is a non-autonomous dynamical system.

Thus, if we have a cocycle 〈W,ϕ, (Y,T2, σ)〉 on the dynamical system (Y,T2, σ) with
the fiber W , then it generates a non-autonomous dynamical system 〈(X,T1, π),
(Y,T2, σ), h〉 (X := W ×Y ), called a non-autonomous dynamical system generated
by the cocycle 〈W,ϕ, (Y,T2, σ)〉 on (Y,T2, σ).

Non-autonomous dynamical systems (cocycles) play a very important role in the
study of non-autonomous evolutionary differential equations. Under appropriate
assumptions every non-autonomous differential equation generates a cocycle (a non-
autonomous dynamical system). Below we give some examples of this type.

Example 2.9. Consider the system of differential equations

(6)
{

u′ = F (y, u)
y′ = G(y),

where Y ⊆ Em (for example, Y = T m is a m–torus), G ∈ C(Y,En) and F ∈
C(Y × En, En). Suppose that for the system (6) the conditions of the existence,
uniqueness and extendability on R+ are fulfilled. Denote by (Y,R+, σ) a dynamical
system on Y generated by the second equation of the system (6) and by ϕ(t, u, y)
we denote the solution of the equation

u′ = F (σ(t, y), u)

passing through the point u ∈ En for t = 0. Then the mapping ϕ : R+×En×Y →
En satisfies the conditions a. and b. from definition of cocycle and, consequently,
system (6) generates a non-autonomous dynamical system 〈(X,R+, π), (Y,R+, σ), h〉
(where X := En × Y , π := (ϕ, σ) and h := pr2 : X → Y ).

Example 2.10. Let (Y,R, σ) be a dynamical system on the metric space Y . We
consider the equation

(7) u′ = F (σ(y, t), u) (y ∈ Y ),
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where F ∈ C(Y ×Rn,Rn). Suppose that for equation (7) the conditions of the ex-
istence, uniqueness and extendability on R+ are fulfilled. The non-autonomous dy-
namical system 〈(X,R+, π), (Y,R, σ), h〉 (respectively, the cocycle 〈E, ϕ, (Y,R, σ)〉
), where X := Rn × Y , π := (ϕ, σ), ϕ(·, x, y) is the solution of (7) and h := pr2 :
X → Y is generated by equation (7).

Example 2.11. We consider the equation

(8) u′ = f(t, u),

where f ∈ C(R×Rn,Rn). Along with equation (8) consider the family of equations

(9) u′ = g(t, u),

where g ∈ H(f) := {fτ : τ ∈ R} and fτ is the τ -shift of f with respect to time,
i.e., fτ (t, u) := f(t + τ, u) for all (t, u) ∈ R × Rn. Suppose that the function f
is regular [17], i.e., for all g ∈ H(f) and u ∈ Rn there exists a unique solution
ϕ(t, u, g) of equation (9). Denote by Y = H(f) and (Y,R, σ) a shift dynamical
system on Y induced by Bebutov’s dynamical system (C(R× Rn,Rn),R, σ). Now
the family of equations (9) may by written as (7) if we take as quality of the
mapping F ∈ C(Y ×Rn,Rn) defined by equality F (g, u) := g(0, u) for all g ∈ H(f)
and u ∈ Rn.

A solution ϕ(t, u, y) of equation (7) is called [20, 22] compatible (respectively, uni-
formly compatible) by character of recurrence if Ny ⊆ Nϕ (respectively, My ⊆
Mϕ), where Nϕ (respectively, Mϕ) is a set of all sequences {tn} ⊂ R such that
{ϕ(t + tn, u, y} converges to ϕ(t, u, y) (respectively, {ϕ(t + tn, u, y} converges) in
the space C(T,Rn).

Remark 2.12. The sequence {ϕ(t + tn, u, y)} converges to function ψ in the space
C(T,Rn) if and only if {ϕ(tn, u, y)} converges to ψ(0).

Theorem 2.13. The following statements hold:

1. Let y ∈ Y be a stationary (respectively, τ -periodic, Levitan almost periodic,
almost recurrent, Poisson stable) point. If ϕ(t, u, y) is a compatible solution of
equation (7), then ϕ(t, u, y) is so.

2. Let y ∈ Y be a stationary (respectively, τ -periodic, Bohr almost periodic, al-
most automorphic, recurrent, pseudo recurrent) point. If ϕ(t, u, y) is a uniformly
compatible solution of equation (7), then ϕ(t, u, y) is so.

Example 2.14. Let us consider a differential equation of the second order

(10) x′′ = f(σ(t, y), x, x′), (y ∈ Y )

where f ∈ C(Y × Rn × Rn,Rn), and give a criterion of the existence of Levitan
almost periodic and almost automorphic solutions for this equation. Below we will
suppose that the function f is regular, i.e., for all y ∈ Y and x, y ∈ Rn the equation
(10) admits a unique solution ϕ(t, x, x′, y) defined on R+ with the initial conditions
ϕ(0, x, x′, y) = x and ϕ′(0, x, x′, y) = x′.

As we know, we can reduce the equation (10) to the equivalent system

(11)
{

u′ = v
v′ = f(σ(t, y), u, v)
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(y ∈ Y ) or to the equation

(12) z′ = F (σ(t, y), z)

on the product space Rn×Rn, where z := (u, v) and F ∈ C(Ω×Rn×Rn,Rn×Rn)
is the function defined by the equality F (y, z) := (v, f(y, u, v)) for all ω ∈ Ω and
z := (u, v) ∈ Rn × Rn.

Theorem 2.15. [20] Let ϕ ∈ C(R,Rn)be a continuously differentiable function. If
its derivative ϕ′ ∈ C(R,Rn) is uniformly continuous on R, then ϕ′ is uniformly
comparable by character of recurrence with ϕ, i.e., Mϕ ⊆ Mϕ′ .

Lemma 2.16. Suppose that the following conditions hold:

(i) Y is compact;
(ii) f ∈ C(Y × Rn × Rn,Rn) is regular;
(iii) ϕ(t, x0, x

′
0, y) is a solution of equation (10) defined and bounded on R to-

gether with its derivative ϕ′(t, x0, x
′
0, y).

Then the following two statements are equivalent:

a. a solution ϕ(t, x0, x
′
0, y) of equation (10) is compatible (respectively, uni-

form compatible) by character of recurrence with the right-hand site;
b. a solution (ϕ(t, x0, x

′
0, y), ϕ′(t, x0, x

′
0, y)) of equation (11) is compatible (re-

spectively, uniform compatible) by character of recurrence with the right-
hand site.

Proof. The implication b.−→ a. is evident. Thus to prove the lemma it is suffi-
cient to establish the inverse implication. Let ϕ(t, x0, x

′
0, y) be a solution of equa-

tion (10) defined and bounded on R together with its derivative ϕ′(t, x0, x
′
0, y),

then Ny ⊆ Nϕ (respectively, My ⊆ Mϕ). We need to show that then we will
have also the inclusion Ny ⊆ Nϕ′ (respectively, My ⊆ Mϕ′). In fact. Let
{tn} ∈ Ny (respectively, {tn} ∈ My), then the sequence {σ(tn, y)} converges to
y (respectively, the sequence {σ(tn, y)} converges to some point ỹ ∈ Y ), then the
functional sequence {f(σ(t + tn, y), u, v)} converges to f(σ(t, y), u, v) (respectively,
to f(σ(t, ỹ, u, v)) uniformly with respect to t on every compact subset from R
and u, v ∈ Q := ϕ(R, x0, x′0, y) × ϕ′(R, x0, x′0, y). Since Ny ⊆ Nϕ (respectively,
My ⊆ Mϕ), then the sequence {ϕ(tn, x0, x

′
0, y)} converges to x0 (respectively, to

some point x̃0 ∈ R). Since the function f ∈ C(Y ×Rn×Rn,Rn) is regular, then the
functional sequence {ϕ(t+tn, x0, x

′
0, y)} converges to function ϕ(t, x0, x

′
0, y) (respec-

tively, to ϕ(t, x̃0, x̃0
′, ỹ)) uniformly with respect to t on every compact subset from

R. Note that under the conditions of Lemma, the second derivative ϕ′′(t, x0, x
′
0, y)

of the function ϕ(t, x0, x
′
0, y) is bounded on R and, consequently, the first derivative

ϕ′(t, x0, x
′
0, y) is uniformly continuous in t ∈ R. Thus according to Theorem 2.15

the first derivative ϕ′(t, x0, x
′
0, y) is comparable (respectively, uniformly compara-

ble) by character of recurrence and, consequently, the sequence ϕ′(t + tn, x0, x
′
0, y)

converges to ϕ′(t, x0, x
′
0, y) (respectively, ϕ(t, x̃0, x̃0

′, ỹ)). The lemma is proved. ¤
Remark 2.17. Not that if Y is not compact, then from the boundedness of ϕ(t, x0, x

′
0, y)

on R together with its prime derivative ϕ′(t, x0, x
′
0, y) in general case does not im-

ply the boundedness on R of the second derivative ϕ′′(t, x0, x
′
0, y). In this case the

equivalence of of the statements a. and b. of Lemmma 2.16 remains open.
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3. Non-Autonomous Dynamical Systems with Convergence

A dynamical system (X,T, π) is called point dissipative (respectively, compact dis-
sipative), if there exists a nonempty compact subset K ⊆ X such that

(13) lim
t→+∞

ρ(π(t, x),K) = 0

for all x ∈ X (respectively, the equality (13) holds uniformly with respect to x on
every compact subset M from X).

〈(X,T1,π),(Y,T2,σ),h〉 is said to be convergent if the following conditions are valid:

(i) the dynamical systems (X,T1, π) and (Y,T2, σ) are compactly dissipative;
(ii) the set JX

⋂
Xy contains no more than one point for all y ∈ JY where

Xy := h−1(y) := {x|x ∈ X, h(x) = y} and JX(JY ) is the Levinson’s center
of the dynamical system (X,T1, π)((Y,T2, σ)).

Remark 3.1. 1. Note that convergent systems are in some sense the simplest
dissipative dynamical systems. If 〈(X,T1, π), (Y,T2, σ), h〉 is a convergent non-
autonomous dynamical system and JX (respectively, JY ) is a Levinson center of
the dynamical system (X,T1, π) (respectively, (Y,T2, σ)), then JX and JY are dy-
namically homeomorphic. Although the center of Levinson of a convergent system
can by completely described, it may be sufficiently complicated. An example which
illustrates the above comment is given in [4, ChII].

2. If

(i) Y is compact and invariant, then evidently (Y,T, σ) is compactly dissipa-
tive and its Levinson center JY coincides with Y ;

(ii) 〈(X,T1, π), (Y,T2, σ), h〉 is a convergent non-autonomous dynamical sys-
tem, and JX (respectively, JY ) is a Levinson center of the dynamical sys-
tem (X,T1, π) (respectively, (Y,T2, σ)) and JY = Y , then JX and Y are
dynamically homeomorphic. In particularly, if the point y ∈ Y is station-
ary (respectively, τ–periodic, quasi-periodic, almost periodic, recurrent),
then the point x = h−1 ∈ JX is so.

A nonautonomous dynamical system 〈(X,T1, π), (Ω,T2, Θ), h〉 is said to be uni-
formly stable in the positive direction on compacts of X if, for arbitrary ε > 0 and
K ⊆ X, there is δ = δ(ε,K) > 0 such that inequality ρ(x1, x2) < δ (h(x1) = h(x2))
implies that ρ(πtx1, π

tx2) < ε for t ∈ T1, where πt := π(t, ·).
Denote by X×̇X = {(x1, x2) ∈ X×X | h(x1) = h(x2) }. If there exists the function
V : X×̇X → R+ with the following properties:

(i) V is continuous;
(ii) V is positive defined, i.e., V (x1, x2) = 0 if and only if x1 = x2;
(iii) V (x1t, x2t) ≤ V (x1, x2) for all (x1, x2) ∈ X×̇X and t ∈ T+

1 := {t ∈
T1 | t ≥ 0},

then the nonautonomous dynamical system 〈(X,T1, π), (Y,T2, Θ), h〉 is called (see
[4] and [24], [12]) V - monotone.
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Theorem 3.2. [5] Every V - monotone st.L+ nonautonomous dynamical system
〈(X, T1, π), (Y,T2,Θ), h〉 is uniformly stable in the positive direction on compacts
from X.

Let (X, h, Y ) be a fiber space, i.e. X and Y be two metric spaces and h : X → Y
be a homomorphism from X onto Y . The subset M ⊆ X is said to be conditionally
relatively compact, if the pre-image h−1(Y ′)

⋂
M of every relatively compact subset

Y ′ ⊆ Y is a relatively compact subset of X, in particularly My := h−1(y)
⋂

M is
relatively compact for every y. The set M is called conditionally compact if it is
closed and conditionally relatively compact.

Example 3.3. Let K be a compact space, X := K × Y , h = pr2 : X → Y, then
the triplet (X, h, Y ) be a fiber space, the space X is conditionally compact, but not
compact.

Theorem 3.4. [5] Let (X,T, π), (Y, S, σ)〉 be a NDS with the following properties:

(i) It admits a conditionally relatively compact invariant set J .
(ii) The NDS 〈(X,T, π), (Y, S, σ), h〉 is positively uniformly stable on J ;
(iii) every point y ∈ Y is two-sided Poisson stable.

Then

(i) all motions on J may be continued uniquely to the left and define on J a
two-sided dynamical system (J,S, π), i.e., the semi-group dynamical system
(X,T, π) generates on J a two-sided dynamical system (J,S, π);

(ii) for every y ∈ Y there are two sequences {t1n} → +∞ and {t2n} → −∞ such
that

π(tin, x) → x (i = 1, 2)

as n →∞ for all x ∈ Jy.

Corollary 3.5. Let (X,T, π), (Y, S, σ)〉 be a NDS with the following properties:

(i) It admits a conditionally relatively compact invariant set J .
(ii) The NDS 〈(X,T, π), (Y, S, σ), h〉 is V –monotone;
(iii) every point y ∈ Y is two-sided Poisson stable.

Then

(i) all motions on J may be continued uniquely to the left and define on J a
two-sided dynamical system (J,S, π), i.e., the semi-group dynamical system
(X,T, π) generates on J a two-sided dynamical system (J,S, π);

(ii) for every y ∈ Y there are two sequences {t1n} → +∞ and {t2n} → −∞ such
that

π(tin, x) → x (i = 1, 2)

as n →∞ for all x ∈ Jy.

Proof. This statement directly it follows from Theorems 3.2 and 3.4. ¤

Denote by K := {a ∈ C(R+,R+)| a(0) = 0, a is strict increasing}.
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Theorem 3.6. [5] Suppose that the following conditions hold:

(i) y ∈ Y is a two-sided Poisson stable point;
(ii) the NDS 〈(X, T, π), (Y, S, σ), h〉 admits a conditionally relatively compact

invariant set J ;
(iii) 〈(X, T, π), (Y, S, σ), h〉 be a V -monotone non-autonomous dynamical sys-

tem and there are two functions a, b ∈ K such that
(a) Im(a) = Im(b), where Im(a) := a(R+) is the domain of the values

of a ∈ K;
(b) a(ρ(x1, x2)) ≤ V (x1, x2) ≤ b(ρ(x1, x2)) for all x1, x2 ∈ X (h(x1) =

h(x2)).

Then V (x1t, x2t) = V (x1, x2) for all t ∈ S and x1, x2 ∈ Jy.

Recall that the dynamical system (X,T1, π) is called asymptotically compact if for
every positively invariant bounded subset M ⊆ X there exists a nonempty compact
subset K ⊆ X such that

lim
t→+∞

β(π(t,M),K) = 0.

Lemma 3.7. [6] Let 〈(X,T, π), (Y, S, σ), h〉 be a non-autonomous dynamical system
and the following conditions be fulfilled:

1) (Y, S, σ) is pseudo recurrent;
2) γ ∈ C(Y, X) is an invariant section of the homomorphism h : X 7→ Y ,

i.e., h(γ(y)) = y for all y ∈ Y .

Then the autonomous dynamical system (γ(Y ),S, π) is pseudo recurrent too.

Denote by ωx the ω–limit set of point x and by ΩX := {ωx| x ∈ X}. Let M ⊆ X
we put

D+(M) :=
⋂
ε>0

⋃

t≥0

π(t, B(M, ε)),

where B(M, ε) := {x ∈ X| ρ(x,M) < ε}.
A subset M
subseteqX is called orbital stable if for arbitrary ε > 0 there exists a δ = δ(ε) > 0
such that ρ(x, M) < δ implies ρ(π(t, x),M) < ε for all t ≥ 0.

Theorem 3.8. [4, ChI] A point dissipative dynamical system (X,T, π) on the com-
plete metric space X is compact dissipative of and only if D+(ΩX) is compact and
orbital stable.

Corollary 3.9. Let (X,T, π) be point dissipative and ΩX is orbital stable, then
(X,T, π) is compact dissipative and its Levinson center JX coincides with ΩX .

Proof. If ΩX is orbital stable, then D+(ΩX) = ΩXand now to finish the proof it is
sufficient to apply Theorem 3.8. ¤

Theorem 3.10. Let 〈(X,T,π),(Y,S,σ),h〉 be a non-autonomous dynamical systems
and the following conditions be held:
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1. the dynamical system (Y, S, σ) is pseudo recurrent;
2. the dynamical system (X,T, π) is asymptotically compact;
3. there exists a point x0 ∈ Xy0 with relatively compact positive semi-trajectory

Σ+
x0

:= {π(t, x0) : t ≥ 0};
4. there exists a continuous function V : X×̇X → R+ such that V (x1t, x2t) <

V (x1, x2) for all (x1, x2) ∈ X×̇X \∆X and t > 0 (t ∈ T2), where ∆X :=
{(x, x) : x ∈ X};

5. there are functions a, b ∈ K such that Im(a) = Im(b) and a(ρ(x1, x2) ≤
V (x1, x2) ≤ b(ρ(x1, x2)) for all (x1, x2) ∈ X×̇X.

Then the following statements take place:

(i) the NDS 〈(X,T1,π),(Y,T2,σ),h〉 is convergent;
(ii) JX = ωx0 ;
(iii) h(JX) = Y .

Proof. Since the point y0 is Poisson stable and ωx0 = H(y0) = Y , for all y ∈ Y there
exists a sequence {tn} ⊆ T2 such that tn → +∞ as n → ∞ and {σ(tn, y0)} → y.
Consider the sequence {π(tn, x0)}. Under the conditions of Theorem this sequence
may be considered convergent. Let p be its limit, then it is clear that p ∈ ωx0

⋂
Xy.

Thus we established that h(ω0) = Y .

At first we note that the set ωx0 is compact and invariant and according to Corol-
lary 3.5 on ωx0 is defined a two-sided dynamical system (ωx0 ,S, π) such that
π(t, x) = γx(t) for all x ∈ ωx0 and t ∈ R−, where γx is a unique full trajectory
of dynamical system (X,T, π) passing through the point x at the initial moment
t = 0. We will show now that under the conditions of Theorem the set ωx0

⋂
Xy

contains at most one point for all y ∈ Y . In fact, the set ωx0 is compact, invariant
and according to Theorem 3.6 (The principle of invariance for the NDS) we have
V (π(t, p1), π(t, p2)) = V (p1, p2) for all t ∈ S. But the last equality takes place only
if p1 = p2.

Let now x be an arbitrary point from X, y := h(x) and p ∈∈ ωx0

⋂
Xy. According

to the conditions 5. and 6. we have a(ρ(xt, pt)) ≤ V (xt, pt) ≤ V (x, p) ≤ b(ρ(x, p))
for all t ≥ 0 and, consequently, we obtain ρ(xt, pt) ≤ a−1(b(x1, x2)) for all t ≥ 0.
Since p ∈ LX then from the last inequality we obtain that the set Σ+

x is bounded.
Taking into account that (X,T, π) is asymptotically compact, then we may conclude
that the point x is stable in the sense of Lagrange in the positive direction. It easy
to show that ωx

⋂
Xy contains a single point using the same arguments as above

for the set ωx0 . We will show that ωx = ωx0 . To this end denote by M := ωx0

⋃
ωx

and repeating the reasoning above for this set we we obtain that M
⋂

Xy consists
a singe point for all y ∈ Y . Thus we have ωx0

⋃
Xy = ωx

⋃
Xy = M

⋃
Xy for all

y ∈ Y and, consequently, ωx = ωx0 foe all x ∈ X. This means that the dynamical
system (X,T, π) is point dissipative and ΩX = M, where M := ωx0 . Now we will
show that (X,T, π) is compact dissipative. By Theorem 3.8 (see also Corollary 3.9)
it is sufficient to establish that the set M is orbitally stable, i.e., for every ε > 0
there exists a positive number δ(ε) such that ρ(x, M) < δ implies ρ(π(t, x),M) < ε
for all t ≥ 0. If we suppose the contrary, then there are ε0 > 0, δn → 0 (δn > 0)
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xn ∈ X and tn → +∞ such that

(14) ρ(xn,M) < δn and ρ(π(tn, xn),M) ≥ ε0.

Let mn ∈ M be a point such that ρ(xn,mn) = ρ(xn,M) and denote by yn := h(xn).
Since the set M is compact and taking into account (14) we may suppose that
the sequences {xn}, {yn} and {mn} are convergent. Let x̄ := lim

n→∞
xn and m̄ :=

lim
n→∞

mn, then by (14) we have x̄ = m̄. Denote by myn
:= M

⋂
Xyn

and taking into
consideration the continuity of the mapping y 7→ my we obtain lim

n→∞
myn

= mȳ,

where ȳ := h(m̄). Note that

(15) m̄ = mȳ

and, consequently,

(16) ρ(xn,myn) ≤ ρ(xn, mn) + ρ(mn,myn).

From (15) and (16) it follows that

(17) ρ(xn, myn
) → 0

as n →∞. On the other hand we have

(18) V (π(tn, xn), π(tn,myn)) < V (xn,myn) → 0

as n →∞. It is clear that π(tn,myn) = mσ(tn,yn) and since the space Y is compact
me may suppose that the sequence {σ(tn, yn)} is convergent and denote its limit
by ỹ, then lim

n→∞
mσ(tn,yn) = mỹ ∈ M . But the last equality contradict to inequality

(14). The obtained contradiction prove our statement.

Since the set ΩX = M is orbitally stable, then according to Theorem 3.8 and
Corollary 3.9 the dynamical system (X,T, π) is compact dissipative and its Levinson
center JX coincides with ΩX = M . Since we established above that JX

⋂
Xy =

M
⋂

Xy consists a single point for all y ∈ Y , then the NDS 〈(X,T, π), (Y, S, σ), h〉
is a system with convergence. The theorem is completely proved. ¤

4. First order differential equations

This section is dedicated to the study of scalar differential equation of the form

(19) x′ = f(σ(t, y), x) (y ∈ Y ),

where f ∈ C(Y × R,R), Y is a complete metric space and (Y,R, σ) is a dynamical
system.

A function f ∈ C(Y ×R,R) is said to be decreasing in the large sense (respectively,
strict increasing) with respect to variable x ∈ R if for all x1, x2 ∈ R and y ∈ Y the
inequality x2 > x1 implies f(y, x2) ≤ f(y, x1) (respectively, f(y, x2) < f(y, x1)).

Theorem 4.1. [5, 16, 21] Suppose that the function f ∈ C(Y × R,R) is regular
and monotone decreasing (in the large sense) with respect to variable x ∈ R and
the point y ∈ Y is stationary (respectively, τ–periodic, quasi-periodic, Bohr almost
periodic, recurrent). Then the following statements hold:
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(i) If (10) admits a bounded on R solution, then it has at least one stationary
(respectively, τ–periodic, quasi-periodic, Bohr almost periodic, recurrent)
solution;

(ii) If u(t) and v(t) are two stationary (respectively, τ–periodic, quasi-periodic,
Bohr almost periodic, recurrent) solutions of equation (10), then u(t) −
v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly decreasing with respect to variable x ∈ R, then
equation (10) admits at most one bounded on R stationary (respectively,
τ–periodic, quasi-periodic, Bohr almost periodic, recurrent) solution.

Below we will give some results which refine and generalize a third statement of
Theorem 4.1.

Theorem 4.2. Suppose that the function f ∈ C(Y × R,R) is regular and strictly
decreasing with respect to variable x ∈ R and the dynamical system (Y,R, σ) is
pseudo recurrent. If (10) admits a bounded on R+, solution ϕ(t, u0, y), then it is
convergent, i.e., the non-autonomous dynamical system generated by equation (10)
is convergent.

Proof. Let ϕ(t, u, y) be a unique solution of equation (10) passing through point
u ∈ R at the initial moment t = 0. Consider the non-autonomous dynamical system
〈(X,T, π), (Y,R, σ), h〉 (X := R × Y, π := (ϕ, σ) and h = pr2 : X 7→ Y ) generated
by (10). Consider the mapping V : X×̇X 7→ R+ defined by equality

(20) V ((u1, y), (u2, y)) :=
|u1 − u2|2

2
for all u1, u2 ∈ R and y ∈ Y . It easy to verify that under the conditions of Theorem
we have V (π(t, (u1, y)), π(t, (u2, y))) < V ((u1, y), (u2, y)) for all t > 0, u1, u2 ∈ R
and y ∈ Y . Now to finish the proof of Theorem it is apply Theorem 3.10. ¤
Corollary 4.3. Suppose that the function f ∈ C(Y ×R,R) is regular and is strict
decreasing with respect to variable x ∈ R and the point y is stationary (respectively,
τ–periodic, quasi-periodic, Bohr almost periodic, almost automorphic, recurrent,
pseudo recurrent).

Then if (10) admits a bounded on R+ solution, then it has at unique stationary
(respectively, τ–periodic, quasi-periodic, Bohr almost periodic, almost automorphic,
recurrent, pseudo recurrent) solution which is globally uniformly asymptotically sta-
ble.

Proof. This statement it follows directly from Theorem 4.2 and Remark 3.1 (item
2 (ii)). ¤
Remark 4.4. 1. The analog of Theorem 4.2 (and also Corollary 4.3) take place if
we replace the condition ”f is strict decreasing” by ”f is strict increasing”. This
case may be reduced to the considered case by time substitution t → −t.

2. Note that Theorem 4.2 and Corollary 4.3 remain true also for vectorial equation
(system of equations). In fact, if f ∈ C(Ω× Rn,Rn) and we replace the condition
”f is strict decreasing” by the condition

〈f(ω, u1)− f(ω, u2), u1 − u2〉 < 0
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for all ω ∈ Ω and u1, u2 ∈ Rn, where 〈, 〉 is the scalar product on the space Rn.

3. If the function f ∈ C(Ω × R,R) is continuously differentiable with respect to
x ∈ R and

(21)
∂f

∂x
(ω, x) ≤ −k < 0

for all ω ∈ Ω and x ∈′ R, then Theorem 4.2 and Corollary 4.3 take place without
requirement that equation (10) admits at least one bounded on R+ solution. Since
from condition (21) it follows

(22) 〈f(ω, u1)− f(ω, u2), u1 − u2〉 ≤ −k|u1 − u2|2

for all ω ∈ Ω and u1, u2 ∈ R. But condition (22) guaranties (see [7]) that equation
(10) will be convergent.

4. More in detail the multi-dimensional case we plane to study in one of our next
publications.

5. Levitan almost periodic and almost automorphic solutions of
second order differential equations

In this section we consider a scalar differential equation of the type (10), i.e., n = 1.

Everywhere below in this paper we suppose that the function f ∈ C(Y × R2,R)
is regular and monotone increasing (in the large sense) with respect to variable x,
i.e., if u1 ≤ u2 then f(y, u1, v) ≤ f(y, u2, v) for all y ∈ Y and v ∈ R.

Lemma 5.1. [16] Let u(t), v(t) be two solutions of equation (10) defined on R.
Then one of the following three cases is possible:

(i) the function u(t)− v(t) is monotone on the real axis R;
(ii) u(t) − v(t) is positive on R and there exists a number t0 ∈ R such that

this function is non-decreasing on interval (t0, +∞) and non-increasing
on (−∞, t0);

(iii) the function u(t)− v(t) is negative on R and there exists a number t0 ∈ R
such that it is non-increasing on interval (t0,+∞) and non-decreasing on
(−∞, t0).

Let ϕ ∈ C(R,R). Denote by aϕ := inf{ϕ(t)| t ∈ R} and bϕ := sup{ϕ(t)| t ∈ R}.
Remark 5.2. 1. aϕ ≤ bϕ for all ϕ ∈ C(R,R).

2. The following inequality inequalities

(23) aϕ ≤ aψ ≤ bψ ≤ bϕ

hold for all ψ ∈ H(ϕ).

3. If the function ϕ is recurrent, then the following equalities

(24) aϕ = aψ and bψ = bϕ

hold for all ψ ∈ H(ϕ).
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Theorem 5.3. [19, 23] Let f ∈ C(R× Rn,Rn) be a Poisson stable with respect to
time t ∈ R. If the equation

(25) x′ = f(t, x)

admits a bounded on R solution ϕ, then it admits at least one Poisson stable (jointly
with f) solution ψ ∈ H(ϕ).

Theorem 5.4. Suppose that the function f ∈ C(Y ×R2,R) is regular and monotone
increasing (in the large sense) with respect to variable x ∈ R and the point y ∈ Y
is Poisson stable. Then the following statements hold:

(i) If (10) admits a bounded on R, together with its derivative, solution, then it
has at least one compatible (by character of recurrence with the right-hand
side) solution;

(ii) If u(t) and v(t) are two compatible solutions of equation (10), then u(t)−
v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to variable x ∈ R, then
equation (10) admits at most one bounded on R compatible solution.

Proof. Let ϕ ∈ C(R,R) be a bounded on R, together with its derivative ϕ′, solution
of equation (10). To prove the first statement of Theorem by Lemma 2.16 it is suf-
ficient to show that the function ϕ is comparable with y by character of recurrence,
i.e., that the functional sequence {ϕ(t + tn)} converges to ϕ(t) uniformly on every
compact subset from R for every sequence {tn} ∈ Ny. Consider the motion σ(t, φ)
in the shift dynamical system (Bebutov’s system) (C(R,R),R, σ). According to
Theorem 5.3 the set H(φ) := {σ(τ, φ)| τ ∈ R} contains at least one Poisson stable
solution ϕ ∈ H(φ) (in fact the function ϕ and the point y are jointly Poisson stable)
of equation (10). We will prove that the solution ϕ will be compatible. To this end
we will show that equation (10) has at most one solution from H(ϕ) ⊆ H(φ). In
fact, if ψ ∈ H(ϕ) is a solution of equation (10) and r(t) := ψ(t)−ϕ(t) for all t ∈ R,
then by Lemma 5.1 there exist limits

(26) lim
t→+∞

r(t) = c+, lim
t→−∞

r(t) = c−

and

(27) |c+|+ |c−| > 0.

Suppose, for example, that c+ > 0. Then by jointly Poisson stability of point ω
and the solution ϕ there exists a sequence {tn} ∈ Ny ∩Nϕ such that tn → +∞ as
n →∞. Without lost of generality we may suppose that the sequence {ψ(t + tn)}
is convergent in the space C(R,R). Let ψ̄ be its limit, i.e., ψ̄(t) = lim

t→+∞
ψ(t + tn),

then we have

(28) ψ̄(t) = ϕ(t) + c+ for all t ∈ R.

From (23) and ψ̄ ∈ H(ψ) ⊆ H(ϕ) we have

(29) aϕ ≤ aψ ≤ aψ̄ ≤ bψ̄ ≤ bψ ≤ aϕ.

On the other hand from (28) we have bψ̄ = bϕ +c+. From the last equality and (29)
we obtain C+ ≤ 0. The obtained contradiction proves our statement. Similarly can
be considered the others cases.
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Let now u(t) and v(t) be two compatible solutions of equation (10), then by Lemma
5.1 there exists a number t0 ∈ R such that the function r(t) := u(t) − v(t) is
monotone on the one of the two intervals: (−∞, t0) or (t0, +∞). Consider, for ex-
ample, the case when r(t) is monotone on the interval (−∞, t0). Since the solutions
u and v are compatible and the point y is Poisson stable, then the function r(t)
is Poisson stable too. In particularly, it is Poisson stable in the negative direction.
On the other hand this function is monotone on the interval (−∞, t0) and, conse-
quently, it is a constant. Thus u(t) − v(t) = c for all t ∈ R, where c ∈ R is some
constant.

Finally, we will prove the third statement of Theorem. Suppose that the function
f is strictly increasing with respect to variable x ∈ R. If we suppose that equation
(10) admits two different bounded on R solutions u and v, then the function

(30) r(t) := u(t)− v(t) (t ∈ R)

admits the limits c± := lim
t→±∞

r(t) and |c−|+ |c+| > 0. Suppose, for example, that

c+ > 0 then we take a sequence {tn} ∈ Ny such that tn → +∞ and the functional
sequences {u(t + tn)} and {v(t + tn)} are convergent (since the functions u and v
are bounded on R solutions of (10), then evidently, it is possible). Denote by ū
(respectively, v̄) the limit of the sequence {u(t + tn)} (respectively, {v(t + tn)})).
from equality (30) we have

(31) ū(t) := v̄(t) + c+ for allt ∈ R

and, consequently, we obtain f(σ(t, y), v̄(t), v̄′(t)) = f(σ(t, y), v̄(t) + c+, v̄′(t)) for
all t ∈ R. The last identity contradicts to the strict monotony of the function
f with respect to variable x. The obtained contradiction completes the proof of
Theorem. ¤

Corollary 5.5. Suppose that the function f ∈ C(Y×R2,R) is regular and monotone
increasing (in the large sense) with respect to variable x ∈ R and the point y ∈ Y is
stationary (respectively, τ–periodic, Levitan almost periodic, almost automorphic,
almost recurrent, Poisson stable). Then the following statements hold:

(i) If (10) admits a bounded on R, together with its derivative, solution, then
it has at least one stationary (respectively, τ–periodic, Levitan almost pe-
riodic, almost automorphic, almost recurrent, Poisson stable) solution;

(ii) If u(t) and v(t) are two stationary (respectively, τ–periodic, Levitan almost
periodic, almost automorphic, almost recurrent, Poisson stable) solutions
of equation (10), then u(t) − v(t) = c for all t ∈ R, where c ∈ R is some
constant;

(iii) If the function f is strictly increasing with respect to variable x ∈ R, then
equation (10) admits at most one bounded on R stationary (respectively,
τ–periodic, Levitan almost periodic, almost automorphic, almost recurrent,
Poisson stable) solution.

Proof. This statement it follows from Theorem 5.4 and Theorem 2.13. ¤
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6. Quasi-periodic, almost periodic and recurrent solutions

In this section we suppose that Y is compact and (Y,R, σ) is a minimal dynamical
system.

Theorem 6.1. Suppose that the function f ∈ C(Y ×R2,R) is regular and monotone
increasing (in the large sense) with respect to variable x ∈ R. Then the following
statements hold:

(i) If (10) admits a bounded on R, together with its derivative, solution, then
it has at least one uniformly compatible (by character of recurrence with
the right-hand side) solution;

(ii) If u(t) and v(t) are two uniformly compatible solutions of equation (10),
then u(t)− v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to variable x ∈ R,
then equation (10) admits at most one bounded on R uniformly compatible
solution.

Proof. Let ϕ ∈ C(R,R) be a bounded on R, together with its derivative ϕ′, solution.
To prove the first statement of Theorem by Lemma 2.16 it is sufficient to show that
the function ϕ is uniformly comparable with ω by character of recurrence, i.e.,
that the functional sequence {ϕ(t + tn)} is convergent uniformly on every compact
subset from R for every sequence {tn} ∈ My. Denote by X := C(R,R) × Y
and (X,R, π) the product dynamical system, i.e., π(τ, (ϕ, y)) := (ϕτ , σ(τ, y)) for
all (ϕ, y) ∈ C(R,R) × Y and τ ∈ R, where ϕτ is a τ–shift of the function ϕ
(ϕτ (t) := ϕ(t + τ) for all t ∈ R). Consider the motion π(t, (ϕ, y)) in the product
dynamical system (X,R, π). Under the condition of Theorem this motion is stable
in the sense of Lagrange, i.e., the set H(ϕ, y) := {π(τ, (uϕ, y))| τ ∈ R} is compact.
According to Birkhoff’s theorem the set H(ϕ, y) contains at least one minimal set
M⊆ H(ϕ, y). Note that the mapping h := pr2 : M 7→ Y is an homomorphism of
dynamical system (H(ϕ, y),R, π) onto (Y,R, σ) and, consequently, My := {(ψ, y) :
(ψ, y) ∈ H(ϕ, y)} is a nonempty compact subset of H(ϕ, y). Now we will show that
the set My consists a single point for every y ∈ Y . In fact, if we suppose the
contrary then there exists a point y0 ∈ Y such that My0 contains at least two
different points (vi, y0) (i = 1, 2 and v1 6= v2). According to Theorem 5.4 without
loss of generality we may suppose, for example, that v1 is comparable by character
of recurrence with the point y0, i.e., Ny0 ⊆ Nv1 . On the other hand by Lemma 5.1
there exist limits lim

t→±∞
r(t) = c± and |c−|+ |c+| > 0, where r(t) := v2(t)−v1(t) for

all t ∈ R. Suppose for example that c− > 0, then taking into account the fact that
the point (v1, y0) is negatively Poisson’s stable we have a sequence {tn} ∈ Nv1∩Nω0

such that tn → −∞ as n →∞. We may suppose that the sequence {v2(t + tn)} is
convergent. Denote by v̄2 its limit, then we have v̄2(t) = v1(t) + c− for all t ∈ R
and, consequently, we have

(32) av̄2 = av1 + c−.

But the functions v1, v̄2 ∈ H(v1) and the function v1 is recurrent and, consequently,
we have

(33) av̄2 = av1 = av2 .
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From (32) and (33) it follows that c− = 0. The obtained contradiction proves our
statement. The other cases may be considered similarly. Thus we established that
the set My consists a single point for all ω ∈ Ω. Let φ be a solution of equation (10)
such that {(φ, y)} = My. Now it is easy to show that the solution φ is uniformly
compatible. In fact, let {tn} ∈ My, then the sequence {σ(tn, y)} converges. Denote
by ỹ its limit. We will show that the sequence functional {φ(t + tn)} is convergent
too in the space C(R,R). If it is not true, then there exists at least two points ψi

(i = 1, 2 and ψ1 6= ψ2) of accumulation for this sequence. On the other hand it
easy to see that (ψi, ỹ) ∈ Mỹ (i = 1, 2). The last inclusion contradicts to the fact
that every subsets My ⊆ M consists a single point for all y ∈ Y . The obtained
contradiction proves the first statement of Theorem.

The second and third statements of Theorem follow from Theorem 5.4. ¤

Corollary 6.2. Suppose that the function f ∈ C(Y×R2,R) is regular and monotone
increasing (in the large sense) with respect to variable x ∈ R and the point y ∈ Y
is stationary (respectively, τ–periodic, quasi-periodic, Bohr almost periodic, recur-
rent). Then the following statements hold:

(i) If (10) admits a bounded on R, together with its derivative, solution, then
it has at least one stationary (respectively, τ–periodic, quasi-periodic, Bohr
almost periodic, recurrent) solution;

(ii) If u(t) and v(t) are two stationary (respectively, τ–periodic, quasi-periodic,
Bohr almost periodic, recurrent) solutions of equation (10), then u(t) −
v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to variable x ∈ R, then
equation (10) admits at most one bounded on R stationary (respectively,
τ–periodic, quasi-periodic, Bohr almost periodic, recurrent) solution.

Proof. This statement it follows from Theorem 6.1 and Theorem 2.13. ¤

Remark 6.3. In the case when Y is a Bohr almost periodic minimal set, then
Corollary 6.2 coincides with Opial’s result [16].

7. Some generalizations

Let now I := (a, b), where a, b ∈ [−∞, +∞]. For example, I = R, I = (0,+∞), I =
(a, b) and a, b ∈ R etc. Consider equation (10) in the case when f ∈ C(Y ×I×R,R).
For example, for the equation

(34) x′′ + cx′ + 1/xα = f(σ(t, y))

f(y, x, x′) := −cx′ − 1/xα + f(y) and I = (0, +∞), where α > 0.

A solution ϕ ∈ C(R,R) of equation (10) is said to be bounded on R (respectively,
on R+) if Q := ϕ(R) is a compact subset from I, i.e., if there exist two real numbers
α and β such that a < α ≤ ϕ(t) ≤ β < b for all t ∈ R (respectively, t ∈ R+).

All our results about second order equations (10) (Theorems 5.4, 6.1 and Corollaries
5.5 and 6.2) remain true also when f ∈ C(Y × I × R,R). We will formulate for
example the following statement.
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Theorem 7.1. Suppose that the function f ∈ C(Y × I × R,R) is regular and
monotone increasing (in the large sense) with respect to variable x ∈ R. Then the
following statements hold:

(i) If (10) admits a bounded on R, together with its derivative, solution, then
it has at least one uniformly compatible (by character of recurrence with
the right-hand side) solution;

(ii) If u(t) and v(t) are two uniformly compatible solutions of equation (10),
then u(t)− v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to variable x ∈ R,
then equation (10) admits at most one bounded on R uniformly compatible
solution.

Proof. We omit the proof because it absolutely similar to proof of Theorem 6.1. ¤
Corollary 7.2. Suppose that the function f ∈ C(Y × I × R,R) is regular and
monotone increasing (in the large sense) with respect to variable x ∈ R and the
point y ∈ Y is stationary (respectively, τ–periodic, quasi-periodic, Bohr almost
periodic, recurrent). Then the following statements hold:

(i) If (10) admits a bounded on R, together with its derivative, solution, then
it has at least one stationary (respectively, τ–periodic, quasi-periodic, Bohr
almost periodic, recurrent) solution;

(ii) If u(t) and v(t) are two stationary (respectively, τ–periodic, quasi-periodic,
Bohr almost periodic, recurrent) solutions of equation (10), then u(t) −
v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to variable x ∈ R, then
equation (10) admits at most one bounded on R stationary (respectively,
τ–periodic, quasi-periodic, Bohr almost periodic, recurrent) solution.

Proof. This statement it follows from Theorem 7.1 and Theorem 2.13. ¤
Corollary 7.3. Suppose that the following conditions are fulfilled:

(i) f ∈ C(Y × I × R,R) and there exists a constant C > 0 such that

(35) |f(y, x, x′)| ≤ C(1 + |x′|2)
for all (y, x, x′) ∈ Y × I × R;

(ii) the function f is regular and monotone increasing (in the large sense) with
respect to variable x ∈ R;

(iii) the point y ∈ Y is stationary (respectively, τ–periodic, quasi-periodic, Bohr
almost periodic, recurrent).

Then the following statements hold:

(i) If (10) admits a bounded on R solution, then it has at least one stationary
(respectively, τ–periodic, quasi-periodic, Bohr almost periodic, recurrent)
solution;

(ii) If u(t) and v(t) are two stationary (respectively, τ–periodic, quasi-periodic,
Bohr almost periodic, recurrent) solutions of equation (10), then u(t) −
v(t) = c for all t ∈ R, where c ∈ R is some constant;
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(iii) If the function f is strictly increasing with respect to variable x ∈ R, then
equation (10) admits at most one bounded on R stationary (respectively,
τ–periodic, quasi-periodic, Bohr almost periodic, recurrent) solution.

Proof. This statement it follows from Theorem 6.1 and Theorem 2.13. ¤

Proof. This statement it follows from Corollary 7.2. To this end it is sufficient to
note that under the condition (35) if ϕ ∈ C(R,R) is a bounded on R solution of
equation (10), then its derivative ϕ′ is also bounded on R (see Lemma 2.1 [13] and
also Lemma 5.1 from [11, Ch.XII]). ¤

Remark 7.4. 1. Corollary 7.3 (item (iii)) refines and generalizes some of results
from [3, 8, 10, 13] in the case, when the function f is strict increasing with respect
to second variable.

2. We plan to study more in detail this case (f is strict increasing with respect to
second variable) in one of our future publication.
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sidad de Sevilla, Apdo. Correos 1160, 41080-Sevilla (Spain)

(D. Cheban) State University of Moldova, Department of Mathematics and Informatics,
A. Mateevich Street 60, MD–2009 Chişinău, Moldova


