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Abstract. This paper is dedicated to the study of the G. Sell’s conjecture
for general non-autonomous dynamical systems. We give a positive answer for
this conjecture and we apply this result to different classes of non-autonomous
evolution equations: Ordinary Differential Equations, Functional Differential
Equations and Semi-linear Parabolic Equations.

1. Introduction

The aim of this paper is the study the problem of global asymptotic stability of
trivial solution for non-autonomous dynamical systems. We study this problem in
the framework of general non-autonomous dynamical systems (NDS).

Consider a differential equation

(1) x′ = f(t, x) (f ∈ C(R×W,Rn)),

where R := (−∞,+∞), Rn is a product space of n copies of R, W is an open
subset from Rn containing the origin (i.e., 0 ∈ W ), C(R ×W,Rn) is the space of
all continuous functions f : R ×W 7→ Rn equipped with compact open topology.
This topology is defined, for example [5, 15], by the following distance

ρ(f, g) :=
+∞∑

k=1

1
2k

ρk(f, g)
1 + ρk(f, g)

,

where ρk(f, g) := max{|f(t, x)−g(t, x)| : (t, x) ∈ [−k, k]×Wk}, {Wk} is a family of
compact subsets from W with the properties: Wk ⊂ Wk+1 for all k ∈ N,

⋃+∞
k=1 Wk =

W , and | · | is a norm on Rn. Denote by (C(R ×W,Rn),R, σ) the shift dynamical
system [5, 15] on the space C(R × W,Rn) (dynamical system of translations or
Bebutov’s dynamical system), i.e., σ(τ, f) := fτ for all τ ∈ R and f ∈ C(R×W,Rn),
where fτ (t, x) := f(t + τ, x) for all (t, x) ∈ R×W .

Below we will use the following conditions:

(A): for all (t0, x0) ∈ R+ × W the equation (1) admits a unique solution
x(t; t0, x0) with initial data (t0, x0) and defined on R+ := [0, +∞), i.e.,
x(t0; t0, x0) = x0;
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(B): the hand right side f is positively compact, if the set Σ+
f := {fτ : τ ∈ R+}

is a relatively compact subset of C(R×W,Rn);
(C): the equation

y′ = g(t, y), (g ∈ Ωf )
is called a limiting equation for (1), where Ωf is the ω-limit set of f with
respect to the shift dynamical system (C(R×W,Rn),R, σ), i.e., Ωf := {g :
there exists a sequence {τk} → +∞ such that fτk

→ g as k →∞};
(D): equation (1) (or its hand right side f) is regular , if for all p ∈ H+(f) the

equation
y′ = p(t, y)

admits a unique solution ϕ(t, x0, p) defined on R+ with initial condition
ϕ(0, x0, p) = x0 for all x0 ∈ W , where H+(f) := {fτ : τ ∈ R+} and by
bar is denoted the closure in the space C(R×W,Rn);

(E): equation (1) admits a null (trivial) solution, i.e., f(t, 0) = 0 for all t ∈ R+;
(F): a function f satisfies to local (respectively, global) Lipschitz condition, if

there exists a function L : R+ 7→ R+ (respectively, a positive constant L)
such that

|f(t, x1)− f(t, x2)| ≤ L(r)|x1 − x2|
(respectively, |f(t, x1)− f(t, x2)| ≤ L|x1 − x2|) for all t ∈ R+ and x1, x2 ∈
W with |x1|, |x2| ≤ r for all r > 0 (respectively, for all x1, x2 ∈ W ).

The trivial solution of equation (1) is said to be:

(i) uniformly stable, if for all positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |x| < δ implies |ϕ(t, x, fτ )| < ε for all t, τ ∈ R+;

(ii) uniformly attracting, if there exists a positive number a

lim
t→+∞

|ϕ(t, x, fτ )| = 0

uniformly with respect to |x| ≤ a and τ ∈ R+;
(iii) uniformly asymptotically stable, if it is uniformly stable and uniformly

attracting.

G. Sell’s conjecture ([15, Ch.VIII,p.134]). Let f ∈ C(R ×W,Rn) be a regular
function and f be positively pre-compact. Assume that W contains the origin 0
and f(t, 0) = 0 for all t ∈ R+. Assume further that there exists a positive number
a such that

lim
t→+∞

|ϕ(t, x, g)| = 0

takes place uniformly with respect to |x| ≤ a and g ∈ Ωf . Then the trivial solution
of (1) is uniformly asymptotically stable.

The positive solution of G. Sell’s conjecture was obtained by Z. Artstein [1] and
Bondi P. et al [2].

Remark 1.1. 1. Bondi P. et al [2] proved this conjecture under the additional
assumption that the function f is local Lipschitzian.

2. Artstein Z. [1] proved this statement without Lipschitzian condition. In reality
he proved a small more general statement. Namely, he supposed that only limiting
equations for (1) are regular, but the function f is not obligatory regular.
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3. It is well known (see, for example,[11]) that for a wide class of ordinary differential
equations (ODEs) the notions of uniform asymptotic stability and the notion of
stability in the sense of Duboshin (total stability or stability under the perturbation)
are equivalent. There is a series of works (see, for example,[2],[8],[10],[12]-[14], [16]-
[17] and the references therein), where the authors study the analog of G. Sell’s
problem for total stability.

In this paper we will formulate G. Sell’s conjecture for the abstract NDS. We
will give a positive answer to this conjecture and we will apply this result to dif-
ferent classes of evolution equations: infinite-dimensional differential equations,
functional-differential equations and semi-linear parabolic equations .

The paper is organized as follows.

In Section 2, we collect some notions (global attractor, stability, asymptotic stabil-
ity, uniform asymptotic stability, minimal set, point/compact dissipativity, recur-
rence, shift dynamical systems, etc) and facts from the theory of dynamical systems
which will be necessary in this paper.

Section 3 is devoted to the analysis of G. Sell’s conjecture. In this Section we
formulate an analog of G. Sell’s conjecture for cocycles and general NDS.

In Sections 4 we establish the relation between different types of stability of NDS.
We prove that from uniform attractiveness it follows uniform asymptotic stability
(Theorem 4.1). It is proved that for asymptotically compact dynamical system
asymptotic stability and uniform asymptotic stability are equivalent (Theorem 4.3).
The main results of this Section are Theorem 4.7 and Corollary 4.9 which contain
s positive answer to G. Sell’s conjecture for general NDS.

Finally, Section 5 contains some applications of our general results from Sections 2-4
for Ordinary Differential Equations (Theorem 5.1), Functional-Differential Equa-
tions (Theorem 5.5) and semi-linear parabolic equations (Theorem 5.7).

2. Compact Global Attractors of Dynamical Systems

Let X be a topological space, R (Z) be a group of real (integer) numbers, R+ (Z+)
be a semi-group of the nonnegative real (integer) numbers, S be one of the two
sets R or Z and T ⊆ S be one of the sub-semigroups R+ (respectively, Z+) or R
(respectively, Z).

A triplet (X,T, π), where π : T × X → X is a continuous mapping satisfying the
following conditions:

(2) π(0, x) = x;

(3) π(s, π(t, x)) = π(s + t, x);

is called a dynamical system. If T = R (R+) or Z (Z+), then (X,T, π) is called
a group (semi-group) dynamical system. In the case, when T = R+ or R the
dynamical system (X,T, π) is called a flow, but if T ⊆ Z, then (X,T, π) is called a
cascade (discrete flow).

Below X will be a complete metric space with the metric ρ.
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The function π(·, x) : T → X is called a motion passing through the point x at
moment t = 0 and the set Σx := π(T, x) is called a trajectory of this motion.

A nonempty set M ⊆ X is called positively invariant (negatively invariant, in-
variant) with respect to dynamical system (X,T, π) or, simple, positively invariant
(negatively invariant, invariant), if π(t,M) ⊆ M (M ⊆ π(t,M), π(t,M) = M) for
every t ∈ T.

A closed positively invariant set (respectively, invariant set), which does not contain
own closed positively invariant (respectively, invariant) subset, is called minimal.

Let M ⊆ X. The set

ω(M) :=
⋂

t≥0

⋃

τ≥t

π(τ, M)

is called ω-limit for M .

The set W s(Λ), defined by equality

W s(Λ) := {x ∈ X| lim
t→+∞

ρ(π(t, x), Λ) = 0}

is called a stable manifold of the set Λ ⊆ X.

The set M is called:

- orbital stable, if for every ε > 0 there exists δ = δ(ε) > 0 such that
ρ(x, M) < δ implies ρ(π(t, x),M) < ε for all t ≥ 0;

- attracting, if there exists γ > 0 such that B(M,γ) ⊂ W s(M), where
B(M, γ) := {x ∈ X : ρ(x,M) < γ};

- asymptotic stable, if it is orbital stable and attracting;
- global asymptotic stable, if it is asymptotic stable and W s(M) = X;
- uniform attracting, if there exists γ > 0 such that

lim
t→+∞

sup
x∈B(M,γ)

ρ(π(t, x),M) = 0.

The system (X,T, π) is called:

− point dissipative if there exist a nonempty compact subset K ⊆ X such
that for every x ∈ X

(4) lim
t→+∞

ρ(π(t, x),K) = 0;

− compactly dissipative if equality (4) takes place uniformly with respect to
x on the compact subsets from X;

− locally dissipative if for any point p ∈ X there exist δp > 0 such that
equality (4) takes place uniformly with respect to x ∈ B(p, δp);

− bounded dissipative if equality (4) takes place uniformly with respect to x
on every bounded subset from X;

− local completely continuous (compact) if for all point p ∈ X there are two
positive numbers δp and lp such that the set π(lp, B(p, δp)) is relatively
compact.
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Let (X,T, π) be compactly dissipative and K be a compact set attracting every
compact subset from X. Let us set

(5) J = ω(K) :=
⋂

t≥0

⋃

τ≥t

π(τ,K).

It can be shown [5, Ch.I] that the set J defined by equality (5) doesn’t depends
on the choice of the attractor K, but is characterized only by the properties of
the dynamical system (X,T, π) itself. The set J is called a Levinson center of the
compactly dissipative dynamical system (X,T, π).

Denote by

D+(M) :=
⋂
ε>0

⋃
{π(t, B(M, ε))|t ≥ 0},

J+(M) :=
⋂
ε>0

⋂

t≥0

⋃
{π(τ, B(M, ε))|τ ≥ t},

D+
x := D+({x}) and J+

x := J+({x}).
Lemma 2.1. Let (X,T, π) be a dynamical system and x ∈ X be a point with
relatively compact semi-trajectory Σ+

x := {π(t, x) : t ≥ 0}. Then the following
statements hold:

(i) the dynamical system (X,T, π) induces on the H+(x) := Σ
+

x a dynamical
system (H+(x),T+, π), where by bar is denoted the closure of Σ+

x in the
space X;

(ii) the dynamical system (H+(x),T+, π) is compactly dissipative;
(iii) Levinson center JH+(x) of (H+(x),T+, π) coincides with ω-limit set ωx of

the point x.

Proof. The first and second statements are evident. Now we will establish the
equality JH+(x) = ωx. It is clear that ωx ⊆ JH+(x) because ωx ⊆ H+(x) is a
compact and invariant subset of (H+(x),T+, π). To finish the proof of Lemma
it is sufficient to show that JH+(x) ⊆ ωx. Let y ∈ ωx, then there are sequences
{xn} ⊆ H+(x) and {tn} ⊆ T+ such that tn →∞ and {π(tn, xn)} → y as n → ∞.
Logically two cases are possible:

(i) there exists a subsequence {xnk
} ⊆ {xn} such that {xnk

} ⊆ Σ+
x . This

means that there is a sequence {sk} ⊆ T+ such that xnk
= π(sk, x)) and,

consequently, we have

y = lim
k→∞

π(tnk
, xnk

) = lim
k→∞

π(tnk
, π(sk, x)) = lim

k→∞
π(tnk

+ sk, x).

Since sk + tnk
→∞ as k →∞, then y ∈ ωx.

(ii) there exists a subsequence {xnk
} ⊆ {xn} such that {xnk

} ⊆ ωx and,
consequently, π(tnk

, xnk
) ∈ ωx for all k ∈ N. Since the set ωx is invariant

and closed, then y also belongs to ωx.

Lemma is completely proved. ¤
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3. G. Sell’s conjecture for non-autonomous dynamical systems

Let T1 ⊆ T2 ⊆ T be two sub-semigroups of S and ((Y,T2, σ) be a dynamical system
on metric space Y . Recall that a triplet 〈W,ϕ, (Y, T2, σ)〉 (or shortly ϕ), where W
is a metric space and ϕ is a mapping from T1 × W × Y into W , is said to be a
cocycle over (Y,T2, σ) with the fiber W , if the following conditions are fulfilled:

(i) ϕ(0, u, y) = u for all u ∈ W and y ∈ Y ;
(ii) ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all t, τ ∈ T1, u ∈ W and y ∈ Y ;
(iii) the mapping ϕ : T1 ×W × Y 7→ W is continuous.

Example 3.1. (Bebutov’s dynamical system) Let X, W be two metric space.
Denote by C(T × W,X) the space of all continuous mappings f : T × W 7→ X
equipped with the compact-open topology and σ be the mapping from T× C(T×
W,X) into C(T × W,X) defined by the equality σ(τ, f) := fτ for all τ ∈ T and
f ∈ C(T×W,X), where fτ is the τ -translation (shift) of f with respect to variable
t, i.e., fτ (t, x) = f(t+ τ, x) for all (t, x) ∈ T×W . Then [5, Ch.I] the triplet (C(T×
W,X),T, σ) is a dynamical system on C(T×W,X) which is called a shift dynamical
system (dynamical system of translations or Bebutov’s dynamical system).

A function f ∈ C(T × W,X) is said to be recurrent with respect to time t ∈ T
uniformly with respect to spacial variable x ∈ W on every compact subset from
W , if f ∈ C(T × W,X) is a recurrent point of the Bebutov’s dynamical system
(C(T×W,X),T, σ).

Example 3.2. Consider differential equation (1) with regular second right hand
f ∈ C(R × W,Rn), where W ⊆ Rn. Denote by (H+(f),R+, σ) a semi-group
shift dynamical system on H+(f) induced by Bebutov’s dynamical system (C(R×
W,Rn),R, σ), where H+(f) := {fτ : τ ∈ R+}. Let ϕ(t, u, g) a unique solution of
equation

y′ = g(t, y), (g ∈ H+(f)),
then from the general properties of the solutions of non-autonomous equations it
follows that the following statements hold:

(i) ϕ(0, u, g) = u for all u ∈ W and g ∈ H+(f);
(ii) ϕ(t + τ, u, g) = ϕ(t, ϕ(τ, u, g), gτ ) for all t, τ ∈ R+, u ∈ W and g ∈ H+(f);
(iii) the mapping ϕ : R+ ×W ×H+(f) 7→ W is continuous.

From above it follows that the triplet 〈W,ϕ, (H+(f),R+, σ)〉 is a cocycle over
(H+(f), R+, σ) with the fiber W ⊆ Rn. Thus, every non-autonomous equation (1)
with regular f naturally generates a cocycle which plays a very important role in
the qualitative study of equation (1).

Suppose that W ⊆ E, where E is a Banach space with the norm | · |, 0 ∈ W (0
is the null element of E) and the cocycle 〈W,ϕ, (Y,T2, σ)〉 admits a trivial (null)
motion/solution, i.e., ϕ(t, 0, y) = 0 for all t ∈ T1 and y ∈ Y .

The trivial motion/solution of cocycle ϕ is said to be:

(i) uniformly stable, if for all positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |u| < δ implies |ϕ(t, u, y)| < ε for all t ≥ 0 and y ∈ Y ;
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(ii) uniformly attracting, if there exists a positive number a such that

(6) lim
t→+∞

|ϕ(t, u, y)| = 0

uniformly with respect to |u| ≤ a and y ∈ Y ;
(iii) uniformly asymptotically stable, if it is uniformly stable and uniformly

attracting.

G.Sell’s conjecture for cocycle. Suppose that 〈W,ϕ, (Y, T2, σ)〉 is a cocycle
under (Y,T2, σ) with the fiber W and the following conditions are fulfilled:

(i) the cocycle ϕ admits a trivial motion/solution;
(ii) the space Y is compact;
(iii) there exists a positive constant a such that (6) takes place uniformly with

respect to |u| ≤ a and y ∈ JY , where JY is Levinson center (maximal com-
pact invariant set) of compactly dissipative dynamical system (Y,T2, σ);

Recall [5] that a triplet 〈(X,T1, π), (Y,T2, σ), h〉 is said to be a NDS, where (X,T1, π)
(respectively, (Y,T2, σ)) is a dynamical system on X (respectively, Y ) and h is an
homomorphism from (X,T1, π) onto (Y,T2, σ).

Below we will give some examples of nonautonomous dynamical systems which play
a very important role in the study of nonautonomous differential equations.

Example 3.3. (NDS generated by cocyle.) Note that every cocycle 〈W, ϕ,
(Y, T2, σ)〉 naturally generates a NDS. In fact. Let X := W × Y and (X,T1, π)
be a skew-product dynamical system on X (i.e., π(t, x) := (ϕ(t, u, y), σ(t, y)) for
all t ∈ T1 and x := (u, y) ∈ X), then the triplet 〈(X,T1, π), (Y,T2, σ), h〉, where
h := pr2 : X 7→ Y is the second projection (i.e., h(u, y) = y for all u ∈ W and
y ∈ Y ), is a NDS.

Example 3.4. (NDS generated by tangent flow.) Let M be a compact dif-
ferentiable manifold and (M,R, σ) be a differentiable flow on M . Denote by TM
the tangent bundle of M and by Dσ : R× TM 7→ TM the derivative flow on TM :
if x := (u, y) ∈ TM , i.e., u ∈ TyM (TyM is the tangent space for M at the point
y ∈ M), then π(t, (u, y)) := (Dσt(y)u, σt(y)) (where σt(y) := σ(t, y) for all t ∈ R
and y ∈ Y ). The triplet 〈(TM,R, π), (M,R, σ), h〉, where h : TM 7→ M is the
natural projection (h(u, y) := y for all y ∈ Y and u ∈ TyM), is a nonautonomous
dynamical system.

Example 3.5. (NDS generated by equation (1) with non-regular right
hand side.) Let f ∈ C(R ×W,Rn) be a local Lipschitzian function and consider
a differential equation (1). Let Y = H(f) := {fτ : τ ∈ R} and by bar is denoted a
closure in the space C(R×W,Rn) and (Y,R, σ) be a shift dynamical system on Y .
Denote by X the set of all points x := (u, g) ∈ W × Y such that the equation

(7) y′ = g(t, y)

admits a (unique) solution ϕ(t, u, g) defined on R+ with initial data ϕ(0, u, g) = u.
Now we define a mapping π : R+ × X 7→ X by the following way: π(τ, (u, g)) :=
(ϕ(τ, u, g), gτ ) for all τ ∈ R+ and (u, g) = x ∈ X. From the general properties of
solutions of ODEs it follows that the triplet (X,R+, π) is a semi-group dynamical
system. Note that a triplet 〈(X,R+, π), (Y,R, σ), h〉, where h : X 7→ Y is the second
projection, is a nonautonomous dynamical system generated by equation (1).
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Remark 3.6. 1. Note that the NDS in Example 3.4 (respectively, Example 3.5) is
not generated by a cocycle.

2. Equation (1) from Example 3.5, generally speaking, is not regular because we
suppose the uniqueness of Cauchy problem for (1) (the function f is local Lip-
schitzian), but we do not suppose the existence on the all space W . As a conse-
quence we obtain that the bundle space (X, h, Y ), figuring in Example 3.5, is not
trivial.

Let (X,h, Y ) be a vectorial bundle. Denote by θy the null element of the vectorial
space Xy := {x ∈ X : h(x) = y} and Θ := {θy : y ∈ Y } is the null section and of
(X, h, Y ).

A vectorial bundle (X, h, Y is said to be local trivial with fiber F if for every point
y ∈ Y there exists a neighborhood U of the point y (U is an open subset of Y
containing y) such that h−1(U) and U × F are homeomorphic, i.e., there exists an
homeomorphism α : h−1(U) 7→ U × F (trivialization).

Lemma 3.7. Let (X, h, Y ) be a vectorial bundle and Θ be its null section. Suppose
that the following conditions hold:

(i) the space Y is compact;
(ii) the vectorial bundle (X, h, Y ) is local trivial.

Then the trivial section Θ is compact.

Proof. Let Y be compact and y ∈ Y . Since (X, h, Y ) is trivial, then there exists a
neighborhood Uy of the point y such that h−1(Uy) and Uy ×F are homeomorphic.
Let {θyk

} be an arbitrary sequence from Θ. We will prove that from {θyk
} can be

extracted a convergent subsequence. In fact, since the space Y is compact then
without loss of generality we may suppose that the sequence {yk} converges to
y0 ∈ Y and, consequently, there exists a natural number k0 such that yk ∈ Uy0 for
all k ≥ k0. Denote by α the homeomorphism (trivialization) between h−1(Uy0) and
Uy0 × F , then θyk

= α−1(yk, 0) (0 is the null element of the vectorial space F ) for
all k ≥ k0 and, consequently, θyk

→ θy0 as k →∞. ¤

Consider a NDS 〈(X,T1, π), (Y,T2, σ), h〉 on the vectorial bundle (X, h, Y ). Every-
where in this paper we suppose that the null section Θ of (X, h, Y ) is a positively
invariant set, i.e., π(t, θ) ∈ Θ for all θ ∈ Θ and t ≥ 0 (t ∈ T1).

The null (trivial) section Θ of NDS 〈(X,T1, π), (Y,T2, σ), h〉 is said to be:

(i) uniformly stable, if for every ε > 0 there exists a δ = δ(ε) > 0 such that
|x| < δ implies |π(t, x)| < ε for all t ≥ 0 (t ∈ T1);

(ii) attracting, if there exists a number ν > 0 such that B(Θ, ν) ⊆ W s(Θ),
where B(Θ, ν) := {x ∈ X| |x| < ν};

(iii) uniform attracting, if there exists a number ν > 0 such that

lim
t→+∞

sup{|π(t, x)| : |x| ≤ ν} = 0;

(iv) asymptotically stable (respectively, uniformly asymptotically stable) if, Θ
is uniformly stable and attracting (respectively, uniformly attracting).
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Let (Y,T2, σ) be a compactly dissipative dynamical system, JY its Levinson center
and 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS. Denote by X̃ := h−1(JY ) = {x ∈ X :
h(x) = y ∈ JY }, then evidently the following statements are fulfilled:

(i) X̃ is closed;
(ii) π(t, X̃) ⊆ X̃ for all t ∈ T1 and, consequently, on the set X̃ is induced by

(X,T1, π) a dynamical system (X̃,T1, π));
(iii) the triplet 〈(X̃,T1, π), (JY ,T2, σ), h〉 is a NDS.

G.Sell’s conjecture for NDS. Suppose that 〈(X,T1, π), (Y,T2, σ), h〉 is a NDS
and the following conditions are fulfilled:

(i) the null/trivial section Θ of (X, h, Y ) is a positively invariant set;
(ii) the space Y is compact;
(iii) the null section Θ̃ of the NDS 〈(X̃,T1, π), (JY ,T2, σ), h〉 is uniformly

attracting.

Then the trivial section Θ of NDS 〈(X,T1, π), (Y,T2, σ), h〉 is uniformly asymptot-
ically stable.

One of the main goal of this paper is a positive answer to G.Sell’s conjecture for
general NDS (Corollary 4.9).

4. Relation between different types of stability for NDS

In this Section we establish the relation between different types of stability of NDS.
In particular, it is proved that for asymptotically compact dynamical system as-
ymptotic stability and uniform asymptotic stability are equivalent (Theorem 4.3).
The main results of this Section are Theorem 4.7 and Corollary 4.9 which contain
s positive answer to G. Sell’s conjecture for general NDS.

Theorem 4.1. Let Y be compact. If the null section Θ of non-autonomous dynam-
ical system 〈(X,T1, π), (Y,T2, σ), h〉 is uniformly attracting, then it is uniformly
asymptotically stable.

Proof. To prove this statement it is sufficient that under the condition of Theorem,
the null section Θ is uniformly stable. Let r be a positive number such that

(8) lim
t→+∞

sup
|x|≤r

|π(t, x)| = 0.

If we suppose that under the condition of Theorem the set Θ is not uniformly stable,
then there are ε0 > 0, |xn| ≤ 1/n and tn ≥ n such that

(9) |π(tn, xn)| ≥ ε0

for all n ∈ N. On the other hand from (8) we have for any 0 < ε < ε0/2 a positive
number L = L(ε) such that

(10) |π(t, x)| < ε

for all |x| ≤ r and t ≥ L(ε). For sufficiently large n ∈ N (n > max{L, r−1}) we
have |xn| < r and, consequently, from (10) we obtain

(11) |π(tn, xn)| < ε < ε0/2.
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Inequalities (9) and (11) are contradictory. The obtained contradiction completes
the proof of Theorem. ¤

Remark 4.2. 1. Note that Theorem 4.1 remains true without assumption of the
compactness of Y .

2. By Theorem 4.1, if Θ is uniformly attracting, then it is uniformly asymptotically
stable.

3. It is evident that from uniform asymptotic stability of Θ it follows its asymptotic
stability. The converse statement, generally speaking, is not true (see, for example,
[5, Ch.I] Example 1.8).

Theorem 4.3. Suppose that the following conditions are fulfilled:

(i) the space Y is compact;
(ii) the null section Θ is asymptotically stable;
(iii) the dynamical system (X,T1, π) is asymptotically compact.

Then the null section Θ is uniformly asymptotically stable.

Proof. By Lemma 3.7 the trivial section Θ is a compact positively invariant set.
Since the null section Θ is asymptotically stable, then there exists a positive number
δ such that B(Θ, δ) ⊂ W s(Θ). Let µ be a positive number such that |π(t, x)| ≤ δ for
all x ∈ X with |x| ≤ µ and t ≥ 0. Consider the set M := {π(t, x) : |x| ≤ µ, t ≥ 0}.
It is cleat that M is bounded and positively invariant. Since the dynamical system
(X,T1, π) is asymptotically compact, then there exists a nonempty compact set K
from X such that

lim
t→+∞

β(π(t,M),K) = 0,

where β(A,B) := sup
a∈A

ρ(a,B) and ρ(a,B) := inf
b∈B

ρ(a, b). According to Lemma 1.3

[5, Ch.I] the set Ω(M) is compact, invariant and

(12) lim
t→+∞

β(π(t,M), Ω(M)) = 0,

where π(s,M) := {π(s, x) : x ∈ M}. It is clear that Ω(M) ⊆ M ⊆ W s(Θ).
According to Theorem 1.37 [5, Ch.I] the set Ω(Θ) ⊆ Θ is a maximal compact
invariant set of dynamical system (X,T1, π) in W s(Θ) and, consequently,

(13) Ω(M) ⊆ Ω(Θ) ⊆ Θ.

From (12) and (13) it follows that

lim
t→+∞

sup
|x|≤µ

|π(t, x)| = 0.

Indeed, if we suppose that it is not true, then there are ε0 > 0, {xn} with |xn| ≤ µ
and tn → +∞ such that

(14) |π(tn, xn)| ≥ ε0

for all n ∈ N. According to Lemma 1.3 [5, Ch.I] the sequence {π(tn, xn)} is rela-
tively compact and, consequently, without loss of generality we can suppose that
{π(tn, xn)} is convergent. We denote by x̄ := lim

n→∞
π(tn, xn), then from (14) we
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obtain |x̄| ≥ ε0 > 0. On the other hand x̄ ∈ Ω(M) ⊆ Θ and, consequently, |x̄| = 0.
The obtained contradiction proves our statement. The theorem is proved. ¤

Directly from Theorem 4.3 it follows the following statement.

Corollary 4.4. Suppose that the following conditions are fulfilled:

(i) the space Y is compact;
(ii) the null section Θ is globally asymptotically stable;
(iii) the dynamical system (X,T1, π) is asymptotically compact.

Then the null section Θ is globally uniformly asymptotically stable.

Corollary 4.5. Suppose that the following conditions are fulfilled:

(i) the space Y is compact;
(ii) the null section Θ is asymptotically stable;
(iii) one of the following two conditions hold:

a. the dynamical system (X,T1, π) is completely continuous;
b. the fiber bundle (X, h, Y ) is finite-dimensional.

Then the null section Θ is uniformly asymptotically stable.

Proof. This statement it follows from Theorem 4.3. Indeed, condition a. (or b.)
implies the asymptotically compactness of the dynamical system (X,T1, π) and now
it is sufficient to apply Theorem 4.3. ¤

From Theorem 4.1 and Theorem 4.3 we have.

Corollary 4.6. Suppose that the following conditions are fulfilled:

(i) the space Y is compact;
(ii) the null section Θ is asymptotically stable;
(iii) the dynamical system (X,T1, π) is asymptotically compact.

Then the null section Θ is uniformly asymptotically stable if and only if it is a
uniform attracting set.

Theorem 4.7. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS. Suppose that the following
conditions are fulfilled:

(i) the space Y is compact;
(ii) the dynamical system (X,T1, π) is locally compact;
(iii) the trivial section Θ of (X, h, Y ) is positively invariant;
(iv) the trivial section Θ̃ of NDS 〈(X̃,T1, π), (JY ,T2, σ), h〉 is uniformly at-

tracting.

Then the trivial section Θ of non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ),
h〉 is uniformly stable.
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Proof. Since Θ̃ is uniformly attracting with respect to NDS 〈(X̃,T1, π), (JY ,T2, σ),
h〉, then there exists a positive number α̃ such that

(15) lim
t→+∞

sup{|π(t, x)| : |x| ≤ α̃, x ∈ X̃} = 0.

According to local compactness of the dynamical system (X,T1, π) for all y ∈
Y there exists a positive number ly such that the set π(ly, B[θy, α̃]) is relatively
compact, where B[x, δ] := {x ∈ X : |x| ≤ δ}. By Lemma 3.7 the trivial section Θ
is compact, then from the covering {B[θy, α̃] : y ∈ Y } of Θ we can extract a finite
sub-covering {B[θyi

, α̃] : i = 1, 2, . . . ,m}. Put l := max{lyi
: i = 1, 2, . . . , m}, then

the set π(l, B(Θ, α)) is relatively compact, where α ∈ (0, α̃) such that B(Θ, α) ⊂⋃m
i=1 B[θyi

, α̃].

Now we will show that for arbitrary ε ∈ (0, α) there exists a number δ(ε) ∈ (0, ε)
such that |x| < δ implies |π(t, x)| < ε for all t ≥ 0 (t ∈ T1). If we suppose that
it is not true, then there are ε0 ∈ (0, α), a sequence 0 < δn → 0 as n → +∞ and
tn → +∞ such that

|xn| ≤ δn, |π(tn, xn| = ε0 (if the time T1 is continuous, i.e., R+ ⊆ T1)

or
|π(tn + 1, xn)| > ε0 (if the time T1 is discrete, i.e., T1 ⊆ Z)

and
|π(t, xn)| ≤ ε0 for all t ∈ [0, tn].

Denote by x̄n := π(tn, xn) and x̃n := π(l, x̄n). According to choose of the number
l, the sequence {x̃n} is relatively compact. Let γn be a continuous mapping defined
on S with the values from X, defined by equality

γn(s) :=
{

π(s + l + tn, xn) = π(s, x̃n), s ≥ −l − tn
xn, s ≤ −l − tn.

The sequence {γn} is relatively compact with respect to compact-open topology. In
fact, to establish this fact it is sufficient to show that for all r > 0 the sequence {ϕn},
where ϕn(t) := γn(t) for all t ∈ [−r, r], satisfies the conditions of Arcela-Ascoly
theorem. This means that there exists a compact Kr ⊂ X that ϕn([−r, r]) ⊆ Kr

for all n ∈ N and {ϕn} is equi-continuous on [−r, r]. Since tn → +∞ as n →∞, then
for the given r > 0 there exists a number n0 ∈ N such that [−r, r] ⊂ [−r−l−tn,+∞)
for all n ≥ n0. Since γn([−r, r]) ⊆ π(l, B[Θ, α̃]), then in the quality of Kr we can
take the set π(l, B[Θ, α̃])

⋃
M , where M :=

⋃n0
i=1 γi([−r, r]). Now we will show

that for arbitrary ε > 0 there exists a δ = δ(ε) > 0 such that |s1 − s2| < δ implies
ρ(ϕn(s1), ϕn(s2)) < ε. If we suppose that it is not true, then there are ε0 > 0,
0 < δn → 0 and si

n ∈ [−r, r] (i = 1, 2) such that

(16) ρ(ϕn(s1
n), ϕn(s2

n)) ≥ ε0.

From (16) we have

(17) ρ(π(s1
n + l + tn, xn), π(s2

n + l + tn, xn)) ≥ ε0

for all n ≥ n0. Without loss of generality we can suppose that the sequence {xn} is
convergent. Denote by x̃ := lim

n→∞
x̃n and si := lim

n→∞
si

n (i = 1, 2). Since |s1
n − s2

n| <
δn, then s1 = s2. Passing into limit in (17) as n →∞ we obtain

0 = ρ(π(s1 + r, x̃), π(s2 + r, x̃) ≥ ε0.
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The obtained contradiction proves our statement. Thus the sequence {γn} is rel-
atively compact in the compact-open topology. Without loss of generality we can
suppose that the sequence {γn} converges. Denote by γ the limit of {γn}, then
according to Theorem 1.3.5 [6] γ is an entire trajectory of (X,T1, π) with γ(0) = x̃.
On the other hand we have

(18) |γ(−l)| = lim
n→∞

|γn(−l)| = lim
n→∞

|π(tn, xn)| = ε0 > 0,

if the time T1 is continuous and

(19) |γ(−l)| = lim
n→∞

|γn(−l)| = lim
n→∞

|π(tn + 1, xn)| ≥ ε0 > 0,

if the time T1 is discrete. Thus we have γ(−l)| ≥ ε0 > 0, i.e., the entire trajectory
γ of (X,T1, π) is not trivial. It easy to see that under the conditions of Theorem

(20) |γ(s)| ≤ α̃

for all s ≤ −l. On the other hand from (15) it follows that for ε0 > 0 there exists
a positive number L = L(ε0) such that

(21) |π(t, x)| < ε0/2

for all t ≥ L and |x| ≤ α̃. Let t0 ≥ L, then from (18)-(21) we obtain

0 < ε0 ≤ |γ(−l)| = |π(t0, γ(−t0 − l))| < ε0/2.

The obtained contradiction complete the proof of Theorem. ¤

Remark 4.8. 1. Note that the assumption of the compactness of Y plays a very
important role in the proof of Theorem 4.3 and Theorem 4.7. Probably these The-
orems remain true if we replace this condition by the weaker one: the dynamical
system (Y,T2, σ) is compactly dissipative. But it is an open problem.

2. Theorem 4.7 remains true:

(i) if we replace the condition of uniform attraction of Θ by the following:
there exists a positive number α̃ such that for all compact subset K ⊆
B[Θ̃, α̃] we have

lim
t→+∞

sup{|π(t, x)| : x ∈ K} = 0;

(ii) if we replace the condition of local compactness for (X,T1, π) by the fol-
lowing: there are positive numbers α and l such that the set π(l, B(Θ, α))
is relatively compact.

Corollary 4.9. Under the conditions of Theorem 4.7 the trivial section Θ of NDS
〈(X,T1, π), (Y,T2, σ), h〉 is uniformly asymptotically stable.

Proof. To prove this statement it is sufficient to show that Θ is attracting. Accord-
ing to Theorem 4.7 there are positive constants α and l such that the set πlB(Θ, α)
is relatively compact. Let ε0 ∈ (0, α] and a := δ(ε0) > 0 (without loss of generality
we can suppose that a ≤ min{α, α̃}, where α̃ is a positive number figuring in Corol-
lary 4.9) be a positive number from uniform stability of Θ, then |π(t, x)| ≤ a for all
t ≥ 0 and |x ≥ a. Thus the positive semi-trajectory Σ+

x with |x| ≤ a is relatively
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compact. Now it is easy to see that lim
t→+∞

|π(t, x)| = 0. In fact. If we suppose that

it is not true, then there exist ε̃0 > 0, 0 < |x0| ≤ a and tn → +∞ such that

(22) |π(tn, x0)| ≥ ε̃0.

Since the sequence {π(tn, x0)} is relatively compact, then we can suppose that it
converges. Denote by x̄0 its limit. Passing into limit in (22) as n → +∞ we obtain

(23) |x̄0| ≥ ε̃0 > 0.

Note that x̄0 is an ω-limit point for x0. Taking into account that the ω-limit set ωx0

is a nonempty, compact invariant set, then there exists an entire motion γ ∈ Φx̄0(π)
such that |γ(s)| ≤ a ≤ α̃ for all s ∈ S and we will have

(24) ε̃0 ≤ |x̄0| = |π(t, γ(−t))| ≤ sup
x∈H(γ)

|π(t, x)

for all t ≥ 0, where H(γ) := {γ(s) : ∈ S} is a compact subset of ωx0 . Passing
into limit in (24) and taking into account Remark 4.8 we receive ε̃0 ≤ 0. The last
inequality contradicts to (23). The obtained contradiction proves our statement.

¤

Remark 4.10. 1. Note that Corollary 4.9 gives a positive answer to G.Sell’s
conjecture for local-compact NDS.

2. Application this result (Corollary 4.9) to ODEs (classical G. Sell’s conjecture
[15, Ch.VIII,p.134]) we give below (Theorem 5.1 and its proof).

5. Some applications

5.1. Ordinary differential equations. Let E be a Banach space with the norm
| · |, W be an open subset of E and 0 ∈ W . Denote by C(S×W,E) the space of all
continuous mappings f : S ×W 7→ E equipped with the compact open topology.
On the space C(S×W,E) it is defined a shift dynamical system [5, ChI] (dynamical
system of translations or Bebutov’s dynamical system) (C(S×W,E), S, σ), where σ
is a mapping from S×C(S×W,E) onto C(S×W,E) defined as follow σ(τ, f) := fτ

for all (τ, f) ∈ S × C(S × W,E), where fτ is the τ -translation of f with respect
to time t, i.e., fτ (t, x) := f(t + τ, x) for all (t, x) ∈ S ×W . Consider a differential
equation

(25) u′ = f(t, u),

where f ∈ C(R×W,E).

If the function f is regular, then the equation (25) naturally defines a cocycle
〈W,ϕ, (H+(f),R+, σ)〉, where (H+(f),R+, σ) is a (semi-group) dynamical system
on H+(f) induced by Bebutov’s dynamical system.

Applying the general results from Sections 2-4 we will obtain a series of results for
equation (25). Below we formulate some of them.

Denote by Ωf := {g ∈ H+(f) : there exists a sequenceτn → +∞ such that g =
lim

n→∞
fτn} the ω-limit set of f .
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Theorem 5.1. Assume that the following conditions are fulfilled:

(i) the function f is regular;
(ii) the set H+(f) is compact;
(iii) f(t, 0) = 0 for all t ∈ R+;
(iv) There exists a neighborhood U of the origin 0 and a positive number l such

that the set ϕ(l, U,H+(f)) is relatively compact;
(v) there exists a positive number a such that

(26) lim
t→+∞

sup
|v|≤a,g∈Ωf

|ϕ(t, v, g)| = 0.

Then the null solution of equation (25) is uniformly asymptotically stable.

Proof. Consider the dynamical system (H+(f),R+, σ). Since the space H+(f)
is compact, then (H+(f),R+, σ) is compactly dissipative and its Levinson cen-
ter (maximal compact invariant set) JH+(f) evidently coincides with ω-limit set
Ωf of f . Let Y := H+(f) and (Y,R+, σ) be the shift dynamical system on
Y . Denote by X := W × Y and (X,R+, π) the skew-product dynamical sys-
tem generates by (Y,R+, σ) and cocycle ϕ, i.e., π(t, (v, g)) := (ϕ(t, v, g), σ(t, g)) for
all t ∈ R+ and (v, g) ∈ X. Now consider a non-autonomous dynamical system
〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated by equation (25). It easy to verify
this NDS posses the following properties:

(i) by Lemma 2.1 the dynamical system (Y,R+, σ) is compactly dissipative
and its Levinson center JY coincides with Ωf ;

(ii) the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;
(iii) Θ is a positively invariant subset of (X,R+, π);
(iv) according to (26) the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ), h〉

is uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for all t ∈ R+ and
x := (v, g) ∈ X.

Now to finish the proof it is sufficient to apply Corollary 4.9. ¤
Remark 5.2. If the space E is finite-dimensional, then Theorem 5.1 coincides with
the result of Artstein Z. [1] and Bondi P. et all [2] because in this case the cocycle
ϕ associated by equation (25) is local compact.

5.2. Functional differential-equations. We will apply now the abstract theory
developed in the previous Sections to the analysis of a class of functional differential
equations.

5.2.1. Functional-differential equations (FDEs) with finite delay. Let us first recall
some notions and notations from [9]. Let r > 0, C([a, b],Rn) be the Banach
space of all continuous functions ϕ : [a, b] → Rn equipped with the sup–norm. If
[a, b] = [−r, 0], then we set Cr := C([−r, 0],Rn). Let σ ∈ R, A ≥ 0 and u ∈
C([σ − r, σ + A],Rn). We will define ut ∈ Cr for all t ∈ [σ, σ + A] by the equality
ut(θ) := u(t + θ), −r ≤ θ ≤ 0. Consider a functional differential equation

(27) u̇ = f(t, ut),

where f : R× Cr → Rn is continuous.
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Denote by C(R × C,Rn) the space of all continuous mappings f : R × C 7→ Rn

equipped with the compact open topology. On the space C(R × C,Rn) is defined
(see, for example, [5, ChI]) a shift dynamical system (C(R × C,Rn),R, σ), where
σ(τ, f) := fτ for all f ∈ C(R× C,Rn) and τ ∈ R and fτ is τ -translation of f , i.e.,
fτ (t, φ) := f(t + τ, φ) for all (t, φ) ∈ R× C.
Let us set H+(f) := {fs : s ∈ R+}, where by bar we denote the closure in C(R ×
C,Rn).

Along with the equation (27) let us consider the family of equations

(28) v̇ = g(t, vt),

where g ∈ H+(f).

Below, in this subsection, we suppose that equation (27) is regular.

Remark 5.3. 1. Denote by ϕ̃(t, u, f) the solution of equation (27) defined on R+

(respectively, on R) with the initial condition ϕ(0, u, f) = u ∈ Cr, i.e., ϕ(s, u, f)
= u(s) for all s ∈ [−r, 0]. By ϕ(t, u, f) we will denote below the trajectory of
equation (27), corresponding to the solution ϕ̃(t, u, f), i.e., the mapping from R+

(respectively, R) into Cr, defined by ϕ(t, u, f)(s) := ϕ̃(t + s, u, f) for all t ∈ R+

(respectively, t ∈ R) and s ∈ [−r, 0].

2. Due to item 1. of this remark, below we will use the notions of “solution” and
“trajectory” for equation (27) as synonym concepts.

It is well known [3, 15] that the mapping ϕ : R+×Cr ×H+(f) 7→ Rn possesses the
following properties:

(i) ϕ(0, v, g) = u for all v ∈ Cr and g ∈ H+(f);
(ii) ϕ(t + τ, v, g) = ϕ(t, ϕ(τ, v, g), σ(τ, g)) for all t, τ ∈ R+, v ∈ Cr and g ∈

H+(f);
(iii) the mapping ϕ is continuous.

Thus, a triplet 〈Cr, ϕ, (H+(f),R+, σ)〉 is a cocycle which is associated to equation
(27). Applying the results from Sections 2-4 we will obtain a series of results for
functional differential equation (27). Below we formulate some of them.

Lemma 5.4. Suppose that the following conditions hold:

(i) the function f ∈ C(R×W, C) is regular;
(ii) the set H+(f) is compact;
(iii) the function f is completely continuous, i.e., the set f(R+×A) is bounded

for all bounded subset A ⊆ C.

Then the cocycle ϕ associated by (27) is completely continuous, i.e., for all bounded
subset A ⊆ W there exists a positive number l = l(A) such that the set ϕ(l, A,H+(f))
is relatively compact in C.

Proof. This statement follows from the general properties of solutions of equation
(27) (see, for example [9], Lemma 2.2.3 and Lemma 3.3.1) because the set H+(f)
is compact. ¤
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Theorem 5.5. Assume that the following conditions are fulfilled:

(i) the function f is regular;
(ii) the set H+(f) is compact;
(iii) f(t, 0) = 0 for all t ∈ R+;
(iv) there exists a positive number a such that

(29) lim
t→+∞

sup
|v|≤a,g∈Ωf

|ϕ(t, v, g)| = 0.

Then the null solution of equation (27) is uniformly asymptotically stable.

Proof. Consider the dynamical system (H+(f),R+, σ). Since the space H+(f) is
compact, then (H+(f),R+, σ) is compactly dissipative and by Lemma 2.1 its Levin-
son center JH+(f) coincides with ω-limit set Ωf of f . Let Y := H+(f) and (Y,R+, σ)
be the shift dynamical system on Y . Denote by X := C × Y and (X,R+, π) the
skew-product dynamical system generates by (Y,R+, σ) and cocycle ϕ. Now con-
sider a NDS 〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated by equation (27). It
easy to verify this NDS posses the following properties:

(i) the dynamical system (Y,R+, σ) is compact dissipative and its Levinson
center JY coincides with Ωf ;

(ii) the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;
(iii) Θ is a positively invariant subset of (X,R+, π);
(iv) according to (29) the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ), h〉

is uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for all t ∈ R+ and
x := (v, g) ∈ X;

(v) according to Lemma 5.4 the dynamical system (X,R+, π) is completely
continuous.

Now to finish the proof it is sufficient to apply Corollary 4.9. ¤

5.3. Semi-linear parabolic equations. Let H be a separable Hilbert space with
inner product 〈·, ·〉 and the norm | · |2 := 〈·, ·〉, and A be a self-adjoint operator with
domain D(A).

An operator is said (see, for example, [7]) to have a discrete spectrum if in the space
H, there exists an ortho-normal basis {ek} of eigenvectors, such that 〈ek, ej〉 = δkj ,
Aek = λkek (k, j = 1, 2, . . .) and 0 < λ1 ≤ λ2 ≤ . . . , λk ≤ . . ., and λk → +∞ as
k → +∞.

One can define an operator f(A) for a wide class of functions f defined on the
positive semi-axis as follows:

D(f(A)) := {h =
∑∞

k=1 ckek ∈ H :
∑∞

k=1 ck[f(λk)]2 < +∞},
f(A)h :=

∑∞
k=1 ckf(λk)ek, h ∈ D(f(A)).(30)

In particular, we can define operators Aα for all α ∈ R. For α = −β < 0 this
operator is bounded. The space D(A−β) can be regarded as the completion of the
space H with respect to the norm | · |β := |A−β · |.
The following statements hold [7]:
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(i) The space F−β := D(A−β) with β > 0 can be identified with the space of
formal series

∑∞
k=1 ckek such that

∞∑

k=1

ckλ−2β
k < +∞;

(ii) For any β ∈ R, the operator Aβ can be defined on every space D(Aα) as
a bounded operator mapping D(Aα) into D(Aα−β) such that

AβD(Aα) = D(Aα−β), Aβ1+β2 = Aβ1Aβ2 .

(iii) For all α ∈ R, the space F := D(Aα) is a separable Hilbert space with the
inner product 〈·, ·〉α := 〈Aα·, Aα·〉 and the norm | · |α := |Aα · |.

(iv) The operator A with the domain F1+α is a positive operator with discrete
spectrum in each space Fα.

(v) The embedding of the space Fα into Fβ for α > β is continuous, i.e.,
Fα ⊂ Fβ and there exists a positive constant C = C(α, β) such that
| · |β ≤ C| · |α.

(vi) Fα is dense in Fβ for any α > β.
(vii) Let α1 > α2, then the space Fα1 is compactly embedded into Fα2 , i.e.,

every sequence bounded in Fα1 is relatively compact in Fα2 .
(viii) The resolvent Rλ(A) := (A−λI)−1, λ 6= λk is a compact operator in each

space Fα, where I is the identity operator.

According to (30) we can define an exponential operator e−tA, t ≥ 0, in the scale
spaces {Fα} . Note some of its properties [7]:

a. For any α ∈ R and t > 0 the linear operator e−tA maps Fα into
⋂

β≥0

Fβ

and
|e−tAx|α ≤ e−λ1t|x|α

for all x ∈ Fα.
b. e−t1Ae−t2A = e−(t1+t2)A for all t1, t2 ∈ R+;
c.

|e−tAx− e−τAx|β → 0

as t → τ for every x ∈ Fβ and β ∈ R;
d. For any β ∈ R the exponential operator e−tA defines a dissipative compact

dynamical system (Fβ), e−tA);
e.

|Aαe−tAh| ≤
[(

α−β
t

)α−β + λα−β
1

]
e−tλ1 |Aβh|, α ≥ β

||Aαe−tA|| ≤ (
α
t

)α
e−α, t > 0, α > 0.

Consider an evolutionary differential equation

(31) u′ + Au = F (t, u)

in the separable Hilbert space H, where A is a linear (generally speaking un-
bounded) positive operator with discrete spectrum, and F is a nonlinear continuous
mapping acting from R×Fθ into H, 0 ≤ θ < 1, possessing the property

(32) |F (t, u1)− F (t, u2)| ≤ L(r)|Aθ(u1 − u2)|
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for all u1, u2 ∈ Bθ(0, r) := {u ∈ Fθ : |u|θ ≤ r}. Here L(r) denotes the Lipschitz
constant of F on the set Bθ(0, r).

A function u : [0, a) 7→ Fθ is said to be a weak solution (in Fθ) of equation (31)
passing through the point x ∈ Fθ at moment t = 0 (notation ϕ(t, x, F )) if u ∈
C([0, T ],Fθ) and satisfies the integral equation

u(t) = e−tAx +
∫ t

0

e−(t−τ)AF (τ, u(τ))dτ

for all t ∈ [0, T ] and 0 < T < a.

In the book [7], it is proved that, under the conditions listed above, there exists a
unique solution ϕ(t, x, F ) of equation (32) passing through the point x at moment
t = 0, and it is defined on a maximal interval [0, a), where a is some positive number
depending on (x, F ).

Denote by C(R× Fθ,H) the space of all continuous mappings equipped with the
compact open topology and by (C(R×Fθ,H),R, σ) the shift dynamical system on
C(R×Fθ,H).

Denote by (H+(F ),R+, σ) a shift dynamical system on H+(F ) induced by (C(R×
Fθ,H),R, σ). From general properties of solutions of evolution equation (31) and
Theorem 5.1 [4] it follows that the triplet 〈Fθ, ϕ, (H+(F ),R+, σ)〉 is a cocycle over
(H+(F ),R+, σ) with the fiber Fθ.

Applying results from Sections 2-4 we obtain a series of results for evolution equa-
tion (31). Now we will formulate some of them.

Lemma 5.6. Under the conditions listed above, if the function F is regular and the
set H+(F ) is compact, then the cocycle ϕ associated by equation (31) is completely
continuous.

Proof. This statement can be proved with the slight modification of the proof of
Lemma 5.3 [4]. ¤

Theorem 5.7. Assume that the following conditions are fulfilled:

(i) the function F is regular;
(ii) the set H+(F ) is compact;
(iii) F (t, 0) = 0 for all t ∈ R+;
(iv) there exists a positive number a such that

(33) lim
t→+∞

sup
|v|≤a,G∈ΩF

|ϕ(t, v, G)| = 0.

Then the null solution of equation (31) is uniformly asymptotically stable.

Proof. Consider the dynamical system (H+(F ),R+, σ). Since the space H+(F )
is compact, then (H+(f),R+, σ) is compactly dissipative and its Levinson center
JH+(F ) coincides with ω-limit set ΩF of F . Let Y := H+(F ) and (Y,R+, σ) be
the shift dynamical system on Y . Denote by X := Fθ × Y and (X,R+, π) the
skew-product dynamical system generates by (Y,R+, σ) and cocycle ϕ. Consider a
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non-autonomous dynamical system 〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated
by equation (31). It easy to verify that this NDS posses the following properties:

(i) the dynamical system (Y,R+, σ) is compact dissipative and by Lemma 2.1
its Levinson center JY coincides with ΩF ;

(ii) the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;
(iii) Θ is a positively invariant subset of (X,R+, π);
(iv) according to (33) the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ), h〉

is uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for all t ∈ R+ and
x := (v, g) ∈ X;

(v) by Lemma 5.6 the cocycle ϕ and, consequently, the skew-product dynam-
ical system (X,R+, π) too, is completely continuous.

Now to finish the proof it is sufficient to apply Corollary 4.9. ¤
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