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Abstract. This paper is dedicated to the study of the problem of asymptotic
stability general non-autonomous dynamical systems (both with continuous
and discrete time). We study the relation between different types of attrac-
tions and asymptotic stability in the framework of general non-autonomous
dynamical systems. Specially we investigate a case of almost periodic sys-
tems, i.e., when the base (driving system) is almost periodic. The obtained
results we apply to different classes of non-autonomous evolution equations:
Ordinary Differential Equations, Functional Differential Equations (both with
finite retard and neutral type) and Semi-Linear Parabolic Equations.

1. Introduction

The aim of this paper is the study the problem of asymptotic stability (the both
local and global) of trivial solution for non-autonomous differential systems. We
study this problem in the framework of general non-autonomous dynamical systems
(NDS). We formulate and prove our results for general (abstract) non-autonomous
dynamical systems. The obtained results we apply to study the problem asymp-
totical stability for ordinary differential equations (ODEs), functional-differential
equations (FDEs) and semi-linear parabolic equations (SLPEs).

Let R := (−∞, +∞), Rn be a product space of n copies of R, W be an open subset
from Rn containing the origin, C(R×W,Rn) be the space of all continuous functions
f : R×W 7→ Rn equipped with compact open topology.

Consider a differential equation

(1) u′ = f(t, u),

where f ∈ C(R × W,Rn). Denote by (C(R × W,Rn),R, σ) the shift dynamical
system [10, 22] on the space C(R × W,Rn) (dynamical system of translations or
Bebutov’s dynamical system), i.e., σ(τ, f) := fτ for all τ ∈ R and f ∈ C(R×W,Rn),
where fτ (t, x) := f(t + τ, x) for all (t, x) ∈ R×W .

Below we will use the following conditions:
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(A): for all (t0, x0) ∈ R+ × W the equation (1) admits a unique solution
x(t; t0, x0) with initial data (t0, x0) and defined on R+ := [0, +∞), i.e.,
x(t0; t0, x0) = x0;

(B): the hand right side f is positively compact, if the set Σ+
f := {fτ : τ ∈ R+}

is a relatively compact subset of C(R×W,Rn);
(C): the equation

v′ = g(t, v), g ∈ Ωf

is called a limiting equation for (1), where Ωf is the ω-limit set of f with
respect to the shift dynamical system (C(R×W,Rn),R, σ), i.e., Ωf := {g :
there exists a sequence {τk} → +∞ such that fτk

→ g as k →∞};
(D): equation (1) (or its hand right side f) is regular , if for all p ∈ H+(f) the

equation
x′ = p(t, x)

admits a unique solution ϕ(t, x0, p) defined on R+ with initial condition
ϕ(0, x0, p) = x0 for all x0 ∈ W , where H+(f) := {fτ : τ ∈ R+} and by
bar is denoted the closure in the space C(R×W,Rn);

(E): equation (1) admits a null (trivial) solution, i.e., f(t, 0) = 0 for all t ∈ R+.

The null solution of equation (1) is said to be:

(i) uniformly stable, if for all positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |u| < δ implies |ϕ(t, u, fτ )| < ε for all t, τ ∈ R+;

(ii) uniformly attracting, if there exists a positive number a

lim
t→+∞

|ϕ(t, u, fτ )| = 0

uniformly with respect to |u| ≤ a and τ ∈ R+;
(iii) uniformly asymptotically stable, if it is uniformly stable and uniformly

attracting.

The main results are contained in the following three theorems. The firs two (The-
orems A and B) are related to equation (1) and the third (Theorem C) to equation
(1) with almost periodic right hand side f .

Let E be a Banach space with the norm | · |.
Theorem 1.1. Let f ∈ C(R × E, E). Assume that the following conditions are
fulfilled:

(i) the function f is regular;
(ii) the set H+(f) is compact;
(iii) f(t, 0) = 0 for all t ∈ R+;
(iv) the cocycle ϕ generated by equation (1) is locally compact, i.e., for every

point u ∈ E there exists a neighborhood U of the point u and a positive
number l such that the set ϕ(l, U,H+(f)) is relatively compact.

Then the null solution of equation (1) is globally asymptotically stable if and only
if the following conditions hold:

(i)
lim

t→+∞
sup

v∈K,g∈Ωf

|ϕ(t, v, g)| = 0
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for every compact subset K from E;
(ii) for every v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g) of equation (2) is

relatively compact on R+.

Finite-dimensional equation (1) Theorem 1.1 generalizes a statement (Theorem 2.6)
established in the work [2] (see also [20, Ch.I] and the bibliography therein).

Theorem 1.2. Let f ∈ C(R × E, E). Assume that the following conditions are
fulfilled:

(i) the function f is regular;
(ii) the set H+(f) is compact;
(iii) f(t, 0) = 0 for all t ∈ R+;
(iv) the cocycle ϕ generated by equation (1) is completely continuous, i.e., for

every bounded subset M ∈ E there exists a positive number l such that the
set ϕ(l, M, H+(f)) is relatively compact.

Then the null solution of equation (1) is globally asymptotically stable if and only
if the following conditions hold:

a. for every g ∈ Ωf limiting equation (2) does not a nontrivial bounded on R
solutions;

b. for every v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g) of equation (2) is
bounded on R+.

Recall that a function f ∈ C(R × W,E) is called almost periodic (respectively,
almost recurrent) with respect to (w.r.t.) t ∈ R uniformly w.r.t. u on every
compact subset K from W , if for an arbitrary number ε > 0 and compact subset
K ⊆ W there exists a positive number L = L(K, ε) such that on every segment
[a, a + L] (a ∈ R) of the length L there exists at least one number τ such that

max
u∈K, |t|≤1/ε

|f(t + s + τ, u)− f(t + s)| < ε

(respectively,
max

u∈K, |t|≤1/ε
|f(t + τ, u)− f(t, u)| < ε)

for all s ∈ R. If the function f ∈ C(R × W,E) is almost recurrent and H(f) :=
{fτ : τ ∈ R} is compact, then f is called recurrent (w.r.t. t ∈ R uniformly w.r.t.
u on every compact subset K from W ).

Theorem 1.3. Suppose that the following conditions are fulfilled:

(i) the function f ∈ C(R×W,E) is recurrent with respect to t ∈ R uniformly
with respect to spacial variable u on every compact subset from W ;

(ii) f(t, 0) = 0 for all t ∈ R+;
(iii) the function f is regular;
(iv) the cocycle ϕ associated by equation (1) is asymptotically compact;
(v) the null solution of equation (1) is uniformly stable;
(vi) there exists a positive number a such that

lim
t→+∞

|ϕ(t, u, f)| = 0

for all |u| ≤ a.
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Then the null solution of equation (1) is asymptotically stable.

Proof. This statement it follows directly from Theorem 4.5 using the same argu-
ments as in the proof of Theorem 5.2. ¤

Remark 1.4. For finite-dimensional equation (1) with almost periodic hand right
side f Theorem 5.7 was established by Z. Artstein [3] (see also [1], [18] and [20,
Ch.I]).

We establish also analogical results for the functional-differential equations and for
semi-linear parabolic equations.

The paper is organized as follows.

In Section 2, we collect some notions (global attractor, stability, asymptotic stabil-
ity, uniform asymptotic stability, minimal set, recurrence, shift dynamical systems,
cocycles, non-autonomous dynamical systems etc) and facts from the theory of
dynamical systems which will be necessary in this paper.

Section 3 is devoted to the analysis of different types of stabilities for non-autonomous
dynamical systems (NDSs). We prove that from uniform attractiveness it follows
uniform asymptotic stability. It is proved that for asymptotically compact dynam-
ical system asymptotic stability and uniform asymptotic stability are equivalent.
We formulate and proves some tests of asymptotical stability (global asymptotical
stability) of infinite-dimensional NDSs (Theorem 3.6, Theorem 3.12 and Theorem
3.13).

In Section 4 we present some results about NDS with minimal base (driving system).
The main result of this Section (Theorem 4.5) give a sufficient condition of global
asymptotic stability of this type of systems.

Finally, Section 5 contains a series of applications of our general results from Sec-
tions 3-4 for Ordinary Differential Equations (Theorem 5.2, Theorem 5.5 and Theo-
rem 5.7), Functional-Differential Equations (both Functional-Differential Equations
with finite delay (Theorem 5.11, Theorem 5.12 and Theorem 5.13) and Neutral
Functional-Differential Equations (Theorem 5.15)) and semi-linear parabolic equa-
tions (Theorem 5.17, Theorem 5.18 and Theorem 5.19).

2. Some Notions and Facts from Dynamical Systems

2.1. Stable and asymptotically stable sets. Global attractors and Levin-
son center. Let (X, ρ) be a complete metric space with the metric ρ, R (Z) be
a group of real (integer) numbers, R+ (Z+) be a semi-group of the nonnegative
real (integer) numbers, S be one of the two sets R or Z and T ⊆ S be one of the
sub-semigroups R+ (respectively, Z+) or R (respectively, Z).

Triplet (X,T, π), where π : T × X → X is a continuous mapping satisfying the
following conditions:

(2) π(0, x) = x;

(3) π(s, π(t, x)) = π(s + t, x);
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is called a dynamical system. If T = R (R+) or Z (Z+), then (X,T, π) is called
a group (semi-group) dynamical system. In the case, when T = R+ or R the
dynamical system (X,T, π) is called a flow, but if T ⊆ Z, then (X,T, π) is called a
cascade (discrete flow).

The function π(·, x) : T → X is called a motion passing through the point x at
moment t = 0 and the set Σx := π(T, x) is called a trajectory of this motion.

A nonempty set M ⊆ X is called positively invariant (negatively invariant, in-
variant) with respect to dynamical system (X,T, π) or, simple, positively invariant
(negatively invariant, invariant), if π(t,M) ⊆ M (M ⊇ π(t,M), π(t,M) = M) for
every t ∈ T+ := {t ∈ T : t ≥ 0}.
A closed positively invariant set (respectively, invariant set), which does not contain
own closed positively invariant (respectively, invariant) subset, is called minimal.

Let M ⊆ X. The set

ω(M) :=
⋂

t≥0

⋃

τ≥t

π(τ, M)

is called ω-limit for M . If the set M consists a single point x, i.e., M = {x}, then
Ω({x}) := ωx is called the ω-limits set of the point x.

The set W s(Λ), defined by equality

W s(Λ) := {x ∈ X| lim
t→+∞

ρ(π(t, x), Λ) = 0}
is called a stable manifold of the set Λ ⊆ X.

The set M is called:

- orbital stable, if for every ε > 0 there exists δ = δ(ε) > 0 such that
ρ(x, M) < δ implies ρ(π(t, x),M) < ε for all t ≥ 0;

- attracting, if there exists γ > 0 such that B(M,γ) ⊂ W s(M), where
B(M, γ) := {x ∈ X : ρ(x,M) < γ};

- asymptotic stable, if it is orbital stable and attracting;
- global asymptotic stable, if it is asymptotic stable and W s(M) = X;
- uniform attracting, if there exists γ > 0 such that

lim
t→+∞

sup
x∈B(M,γ)

ρ(π(t, x),M) = 0.

The system (X,T, π) is called:

− point dissipative if there exist a nonempty compact subset K ⊆ X such
that for every x ∈ X

(4) lim
t→+∞

ρ(π(t, x),K) = 0;

− compactly dissipative if equality (4) takes place uniformly with respect to
x on the compact subsets from X;

− locally dissipative if for any point p ∈ X there exist δp > 0 such that
equality (4) takes place uniformly with respect to x ∈ B(p, δp);

− bounded dissipative if equality (4) takes place uniformly with respect to x
on every bounded subset from X;
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− local completely continuous (compact) if for all point p ∈ X there are two
positive numbers δp and lp such that the set π(lp, B(p, δp)) is relatively
compact.

Let (X,T, π) be compactly dissipative and K be a compact set attracting every
compact subset from X. Let us set

(5) J = ω(K) :=
⋂

t≥0

⋃

τ≥t

π(τ,K).

It can be shown [10, Ch.I] that the set J defined by equality (5) doesn’t depends
on the choice of the attractor K, but is characterized only by the properties of
the dynamical system (X,T, π) itself. The set J is called a Levinson center of the
compactly dissipative dynamical system (X,T, π).

Denote by

D+(M) :=
⋂
ε>0

⋃
{π(t, B(M, ε))|t ≥ 0},

J+(M) :=
⋂
ε>0

⋂

t≥0

⋃
{π(τ, B(M, ε))|τ ≥ t},

D+
x := D+({x}) and J+

x := J+({x}).
Lemma 2.1. [13] Let (X,T, π) be a dynamical system and x ∈ X be a point with
relatively compact semi-trajectory Σ+

x := {π(t, x) : t ≥ 0}. Then the following
statements hold:

(i) the dynamical system (X,T, π) induces on on the H+(x) := Σx a dynam-
ical system (H+(x),T+, π), where by bar is denoted the closure of Σ+

x in
the space X;

(ii) the dynamical system (H+(x),T+, π) is compactly dissipative;
(iii) Levinson center JH+(x) of (H+(x),T+, π) coincides with ω-limit set ωx of

the point x.

2.2. Almost periodic, almost automorphic and recurrent points (mo-
tions). Given ε > 0, a number τ ∈ T is called an ε−shift (respectively, an ε−almost
period) of x, if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ+t, x), π(t, x)) < ε for all t ∈ T).

A point x ∈ X is called almost recurrent (respectively, Bohr almost periodic), if
for any ε > 0 there exists a positive number l such that in any segment of length l
there is an ε−shift (respectively, an ε−almost period) of the point x ∈ X.

If the point x ∈ X is almost recurrent and the set H(x) := {π(t, x) | t ∈ T} is
compact, then x is called recurrent, where the bar denotes the closure in X.

Denote by Nx := {{tn} ⊂ T : such that {π(tn, x)} → x and {tn} → ∞}.
A point x ∈ X is said to be Levitan almost periodic (see [19]) for the dynamical
system (X,T, π) if there exists a dynamical system (Y,T, λ), and a Bohr almost
periodic point y ∈ Y such that Ny ⊆ Nx.

A point x ∈ X is called stable in the sense of Lagrange (st.L), if its trajectory
{π(t, x) : t ∈ T} is relatively compact.
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A point x ∈ X is called almost automorphic [19, 24, 11] for the dynamical system
(X,T, π), if the following conditions hold:

(i) x is st.L;
(ii) there exists a dynamical system (Y,T, λ), a homomorphism h from (X,T, π)

onto (Y,T, λ) and an almost periodic (in the sense of Bohr) point y ∈ Y
such that h−1(y) = {x}.

Remark 2.2. A Levitan almost periodic point x with relatively compact trajectory
{π(t, x) t ∈ T} is also almost automorphic (see [4]–[7], [15],[21] and [24]). In other
words, a Levitan almost periodic point x is almost automorphic, if and only if its
trajectory {π(t, x) t ∈ T} is relatively compact.

2.3. Bebutov’s dynamical system. Let X, W be two metric space. Denote by
C(T × W,X) the space of all continuous mappings f : T × W 7→ X equipped
with the compact-open topology and σ be the mapping from T×C(T×W,X) into
C(T×W,X) defined by the equality σ(τ, f) := fτ for all τ ∈ T and f ∈ C(T×W,X),
where fτ is the τ -translation (shift) of f with respect to variable t, i.e., fτ (t, x) =
f(t + τ, x) for all (t, x) ∈ T ×W . Then [10, Ch.I] the triplet (C(T ×W,X),T, σ)
is a dynamical system on C(T × W,X) which is called a shift dynamical system
(dynamical system of translations or Bebutov’s dynamical system).

A function f ∈ C(T × W,X) is said to be almost periodic (respectively, almost
automorphic, recurrent with respect to time t ∈ T uniformly with respect to spacial
variable x ∈ W on every compact subset from W , if f ∈ C(T × W,X) is an
almost periodic (respectively, almost automorphic, recurrent) point of the Bebutov’s
dynamical system (C(T×W,X),T, σ).

2.4. Cocycles. Let T1 ⊆ T2 ⊆ S be two sub-semigroups of S and ((Y,T2, σ) be
a dynamical system on metric space Y . Recall that a triplet 〈W,ϕ, (Y, T2, σ)〉 (or
shortly ϕ), where W is a metric space and ϕ is a mapping from T1 ×W × Y into
W , is said to be a cocycle over (Y,T2, σ) with the fiber W , if the the following
conditions are fulfilled:

(i) ϕ(0, u, y) = u for all u ∈ W and y ∈ Y ;
(ii) ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all t, τ ∈ T1, u ∈ W and y ∈ Y ;
(iii) the mapping ϕ : T1 ×W × Y 7→ W is continuous.

Example 2.3. Consider differential equation (1) with regular second right hand
f ∈ C(R × W,Rn), where W ⊆ Rn. Denote by (H+(f),R+, σ) a semi-group
shift dynamical system on H+(f) induced by Bebutov’s dynamical system (C(R×
W,Rn),R, σ), where H+(f) := {fτ : τ ∈ R+}. Let ϕ(t, u, g) a unique solution of
equation

y′ = g(t, y), (g ∈ H+(f)),
then from the general properties of the solutions of non-autonomous equations it
follows that the following statements hold:

(i) ϕ(0, u, g) = u for all u ∈ W and g ∈ H+(f);
(ii) ϕ(t + τ, u, g) = ϕ(t, ϕ(τ, u, g), gτ ) for all t, τ ∈ R+, u ∈ W and g ∈ H+(f);
(iii) the mapping ϕ : R+ ×W ×H+(f) 7→ W is continuous.
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From above it follows that the triplet 〈W,ϕ, (H+(f),R+, σ)〉 is a cocycle over
(H+(f), R+, σ) with the fiber W ⊆ Rn. Thus, every non-autonomous equation (1)
with regular f naturally generates a cocycle which plays a very important role in
the qualitative study of equation (1).

Suppose that W ⊆ E, where E is a Banach space with the norm | · |, 0 ∈ W (0
is the null element of E) and the cocycle 〈W,ϕ, (Y, T2, σ)〉 admits a trivial (null)
motion/solution, i.e., ϕ(t, 0, y) = 0 for all t ∈ T1 and y ∈ Y .

The trivial motion/solution of cocycle ϕ is said to be:

(i) uniformly stable, if for all positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |u| < δ implies |ϕ(t, u, y)| < ε for all t ≥ 0 and y ∈ Y ;

(ii) uniformly attracting, if there exists a positive number a such that

(6) lim
t→+∞

|ϕ(t, u, y)| = 0

uniformly with respect to |u| ≤ a and y ∈ Y ;
(iii) uniformly asymptotically stable, if it is uniformly stable and uniformly

attracting.

2.5. Nonautonomous Dynamical Systems (NDS). Recall [10] that a triplet
〈(X,T1, π), (Y,T2, σ), h〉 is said to be a NDS, where (X,T1, π) (respectively, (Y,T2, σ))
is a dynamical system on X (respectively, Y ) and h is a homomorphism from
(X,T1, π) onto (Y,T2, σ).

Below we will give some examples of nonautonomous dynamical systems which play
a very important role in the study of nonautonomous differential equations.

Example 2.4. (NDS generated by cocyle.) Note that every cocycle 〈W, ϕ,
(Y, T2, σ)〉 naturally generates a NDS. In fact, let X := W × Y and (X,T1, π)
be a skew-product dynamical system on X (i.e., π(t, x) := (ϕ(t, u, y), σ(t, y)) for
all t ∈ T1 and x := (u, y) ∈ X). Then the triplet 〈(X,T1, π), (Y,T2, σ), h〉, where
h := pr2 : X 7→ Y is the second projection (i.e., h(u, y) = y for all u ∈ W and
y ∈ Y ), is a NDS.

Remark 2.5. There are Examples of NDS which are not generated by cocycles
(see, for example, [13]).

Let (X,h, Y ) be a vectorial bundle. Denote by θy the null element of the vectorial
space Xy := {x ∈ X : h(x) = y} and Θ := {θy : y ∈ Y } is the null section and of
(X, h, Y ).

A vectorial bundle (X, h, Y is said to be locally trivial with fiber F if for every
point y ∈ Y there exists a neighborhood U of the point y (U is an open subset of
Y containing y) such that h−1(U) and U × F are homeomorphic, i.e., there exists
an homeomorphism α : h−1(U) 7→ U × F (trivialization).

Lemma 2.6. [13] Let (X, h, Y ) be a vectorial bundle and Θ be its null section.
Suppose that the following conditions hold:

(i) the space Y is compact;
(ii) the vectorial bundle (X, h, Y ) is locally trivial.
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Then the trivial section Θ is compact.

Consider a NDS 〈(X,T1, π), (Y,T2, σ), h〉 on the vectorial bundle (X, h, Y ). Every-
where in this paper we suppose that the null section Θ of (X, h, Y ) is a positively
invariant set, i.e., π(t, θ) ∈ Θ for all θ ∈ Θ and t ≥ 0 (t ∈ T1).

The null (trivial) section Θ of NDS 〈(X,T1, π), (Y,T2, σ), h〉 is said to be:

(i) uniformly stable, if for every ε > 0 there exists a δ = δ(ε) > 0 such that
|x| < δ implies |π(t, x)| < ε for all t ≥ 0 (t ∈ T1);

(ii) attracting, if there exists a number ν > 0 such that B(Θ, ν) ⊆ W s(Θ),
where B(Θ, ν) := {x ∈ X| |x| < ν};

(iii) uniformly attracting, if there exists a number ν > 0 such that

lim
t→+∞

sup{|π(t, x)| : |x| ≤ ν} = 0;

(iv) asymptotically stable (respectively, uniformly asymptotically stable), if Θ
is uniformly stable and attracting (respectively, uniformly attracting);

(v) globally asymptotically (respectively, uniformly asymptotically) stable, if
Θ is asymptotically (respectively, uniformly asymptotically) stable and
W s(Θ) = X.

3. Some Tests of Global Asymptotical Stability of NDS

Let (Y,T2, σ) be a compactly dissipative dynamical system, JY its Levinson center
and 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS. Denote by X̃ := h−1(JY ) = {x ∈ X :
h(x) = y ∈ JY }, then evidently the following statements are fulfilled:

(i) X̃ is closed;
(ii) π(t, X̃) ⊆ X̃ for all t ∈ T1 and, consequently, on the set X̃ is induced by

(X,T1, π) a dynamical system (X̃,T1, π));
(iii) the triplet 〈(X̃,T1, π), (JY ,T2, σ), h〉 is a NDS.

A dynamical system (X,T1, π) is said to be:

(i) completely continuous (compact), if for every bounded subset B ⊆ X there
exists a number l = l(B) > 0 such that the set π(l, M) is relatively com-
pact, where π(l, M) := {π(l, x) : x ∈ M};

(ii) locally completely continuous (locally compact), if for every point p ∈ X
there exit positive numbers l = l(p) and δ = δ(p) such that the set
π(l, B(p, δ)) is relatively compact, where B(p, δ) := {x ∈ X : ρ(x, p) < δ};

(iii) asymptotically compact, if for any positively invariant subset M ⊆ X there
exists a compact subset K ⊆ X such that lim

t→+∞
β(π(t,M), K) = 0.

Remark 3.1. 1. The dynamical system (X,T1, π) is completely continuous, if one
of the following conditions are fulfilled:

(i) the space X possesses the property of Heine-Borel, i.e., every bounded set
B ⊆ X is relatively compact;
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(ii) for some t0 ∈ T1 the mapping πt0 : X 7→ X, defined by the equality
πt0(x) := π(t0, x) (∀ x ∈ X) is completely continuous, i.e., for any bounded
subset B from X the set πt0(B) is relatively compact.

2. Every completely continuous dynamical system (X,T1, π) is locally completely
continuous and asymptotically compact.

3. Let (X,T, π) be a dynamical system associated by cocycle 〈(W,ϕ, (Y,T, σ)〉 and
Y is a compact space. Then (X,T, π) is asymptotically compact if and only if
for every bounded sequence {un} ⊆ W , {yn} ⊆ Y and tn → +∞ the sequence
{ϕ(tn, un, yn)} is relatively compact, if it is bounded. In this case the cocycle ϕ is
called asymptotically compact.

Theorem 3.2. [13] Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS. Suppose that the fol-
lowing conditions are fulfilled:

(i) Y is compact;
(ii) the dynamical system (X,T1, π) is locally compact;
(iii) the trivial section Θ of (X, h, Y ) is positively invariant;
(iv) the trivial section Θ̃ of NDS 〈(X̃,T1, π), (JY ,T2, σ), h〉 is uniformly at-

tracting.

Then the trivial section Θ of non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ),
h〉 is uniformly stable.

Remark 3.3. Theorem 3.2 remains true:

(i) if we replace the condition of uniform attraction of Θ by the following:
there exists a positive number α̃ such that for all compact subset K ⊆
B[Θ̃, α̃] we have

lim
t→+∞

sup{|π(t, x)| : x ∈ K} = 0;

(ii) if we replace the condition of local compactness for (X,T1, π) by the fol-
lowing: there are positive numbers α and l such that the set π(l, B(Θ, α))
is relatively compact.

Corollary 3.4. [13] Under the conditions of Theorem 3.2 the trivial section Θ of
NDS 〈(X,T1, π), (Y,T2, σ), h〉 is uniformly asymptotically stable.

Theorem 3.5. Let 〈(X,T1, π), (Y,T2, σ), h)〉 be a NDS and the following conditions
be held:

(i) the trivial section Θ of (X, h, Y ) is positively invariant;
(ii) Y is compact.

Then the following statements are equivalent:

a. 〈(X,T1, π), (Y,T2, σ), h)〉 is compactly dissipative and its Levinson center
JX is included in Θ;

b. the trivial section Θ is globally asymptotically stable;
c. the equality

(7) lim
t→+∞

|π(t, x)| = 0
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holds for all x ∈ X uniformly w.r.t. x on every compact subset M from
X.

Proof. Suppose that condition a. is fulfilled. We will show that Θ is globally
asymptotically stable. Under condition a. it is sufficient to show that Θ is stable.
If we suppose that it is not true, then there are ε0 > 0, 0 < δn → 0, |xn| < δn and
tn → +∞ such that

(8) |π(tn, xn)| ≥ ε0.

By Lemma 2.6 the set Θ is compact, then the sequence {xn} is relatively com-
pact. Since (X,T1, π) is compact dissipative, then the sequence {π(tn, xn)} is rela-
tively compact. Thus, without loss of generality we can suppose that the sequence
{π(tn, xn} is convergent. Denote by x̄ := lim

n→∞
π(tn, xn). Then x̄ ∈ JX ⊆ Θ and,

consequently, |x̄| = 0. On the other hand passing into limit in (8) as n → ∞ we
obtain |x̄| ≥ ε0. The obtained contradiction proves our statement.

Now we will prove that condition b. implies a. In fact. According to Theorem 3.6
[8] the set Θ is orbitally stable. By Theorem 1.13 [10, Ch.I] the dynamical system
(X,T1, π) is compactly dissipative and its Levinson center JX is included in Θ.

Suppose that condition c. is fulfilled. We will show that c. implies a. Let M be
an arbitrary compact subset from X, then by condition c. we have the following
equality

(9) lim
t→+∞

sup
x∈M

ρ(π(t, x), Θ) = 0.

In fact

(10) ρ(π(t, x),Θ) ≤ ρ(π(t, x), θh(π(t,x))) = |π(t, x)| ≤ max
x∈M

|π(t, x)| → 0

as t → +∞. Since the sets M and Θ are compact, then by Lemma 1.3 [10, Ch.I]
we have

(i) the set Σ+
M is relatively compact;

(ii) the set Ω(M) is nonempty, compact and invariant;
(iii)

(11) lim
t→+∞

sup
x∈M

ρ(π(t, x), Ω(M)) = 0.

From (9) and (11) we obtain Ω(M) ⊆ Θ for all compact subset M from X, i.e. the
compact subset Θ attracts every compact subset M from X. This means that the
dynamical system (X,T1, π) is compactly dissipative and, evidently, its Levinson
center JX is included in Θ, i.e., c. implies a.

Finally we will establish the implication a. → c. Suppose that it is not true, then
there are a compact subset M0 ⊆ X, a sequence {xn} ⊆ M0, tn → +∞ and ε0 > 0
such that

(12) |π(tn, xn)| ≥ ε0.

Since (X,T1, π) is compactly dissipative and Y is compact, then without loss of
generality, we can consider that the sequences {π(tn, xn)} and {σ(tn, yn)} are con-
vergent, where yn := h(xn). Denote by ȳ = lim

n→∞
σ(tn, yn) and x̄ = lim

n→∞
π(tn, xn),
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then x̄ ∈ JX and h(x̄) = ȳ. Since JX ⊆ |theta, then |x̄| = 0. Taking into account
the last equality and passing into limit in (12) as n →∞ we will have ε0 ≤ 0. The
obtained contradiction proves our statement. Theorem is proved. ¤

A continuous mapping γ : S 7→ X is called an entire trajectory of the semi-group
dynamical system (X,T, π) passing through the point x, if γ(0) = x and π(t, γ(s)) =
γ(t + s) for all t ∈ T and s ∈ S.
Denote by Fx(π) the set of all entire trajectory of (X,T, π) passing through the
point x and F(π) :=

⋃
x∈X

Fx(π).

Theorem 3.6. Let Y be a compact metric space and (X,T1, π) be asymptotically
compact. The following statements hold:

(i) if the trivial section Θ of 〈(X,T1, π), (Y,T2, σ), h)〉 is globally asymptoti-
cally stable, then:

a. every motion of (X,T1, π) is bounded on T+
1 , i.e., sup

t∈T+
1

|π(t, x)| < +∞

for all x ∈ X, where T+
1 := {t ∈ T1 : t ≥ 0};

b. the dynamical system (X,T1, π) does not have nontrivial entire bounded
on S motions.

(ii) if (X,T1, π) is locally compact, then under conditions a. and b. the triv-
ial section Θ of NDS 〈(X,T1, π), (Y,T2, σ), h)〉 is globally asymptotically
stable.

Proof. Let Y be compact, (X,T1, π) be asymptotically compact and the trivial
section Θ of 〈(X,T1, π), (Y,T2, σ), h)〉 be globally asymptotically stable. According
to Theorem 3.5 the dynamical system (X,T1, π) is compactly dissipative and its
Levinson center JX is included in Θ. Hence, every positively semi-trajectory Σ+

x :=
{π(t, x) : t ≥ 0} is relatively compact and, in particular, it is bounded. Let now
γ ∈ F(π) be an arbitrary entire trajectory of dynamical system (X,T1, π) bounded
on S. Since the dynamical system (X,T1, π) is asymptotically compact, then γ(S)
is relatively compact. Taking into account that Levinson center JX is a maximal
compact invariant set of dynamical system (X,T1, π), then γ(S) ⊆ JX ⊆ Θ. Thus
the first statement of Theorem is proved.

Now we will establish the second statement of Theorem. From condition a. and
asymptotically compactness of (X,T1, π) it follows that every semi-trajectory Σ+

x

is relatively compact and, consequently, every ω–limit set ωx (x ∈ X) is non-empty,
compact and invariant. Note that ωx ⊆ Θ. In fact, let x ∈ X and p ∈ ωx be an
arbitrary point from ωx. Since the set ωx is compact and invariant, then there
exists an entire trajectory γ ∈ Fx such that γ(S) ⊆ ωx. According to condition
b. we have γ(0) = p ∈ γ(S) ⊆ Θ. Thus we established the inclusion ΩX :=⋃{ωx : x ∈ X} ⊆ Θ. This means that the dynamical system (X,T1, π) is point
dissipative. By Theorem 1.10 [10, Ch.I] it is also compactly dissipative. Let JX be
its Levinson center and x ∈ JX . Since JX is a compact invariant set of dynamical
system (X,T1, π), then there exists an entire motion γ ∈ Fx such that γ(S) ⊆ JX .
According to condition b. we obtain x ∈ γ(S) ⊆ Θ and, consequently, JX ⊆ Θ.
Now to finish the proof of Theorem it sufficient to apply Theorem 3.5. ¤
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Remark 3.7. Under the conditions of Theorem 3.6 condition a. is equivalent to
the following one: lim

t→+∞
|π(t, x)| = 0 for all x ∈ X.-

Remark 3.8. It is not difficult to check that Theorem 3.6 remains true if we replace
condition b. by the following one:

b1. the dynamical system (X̃,T1, π) does not have nontrivial entire bounded
on S motions.

This statement directly follows from Theorem 3.6. In fact, if γ ∈ F(π) is a bounded
on S motion of (X,T1, π), then under the conditions of Theorem 3.6 the set γ(S)
is relatively compact and, consequently, ν := h ◦ γ (i.e., ν(s) := h(γ(s)) ∀ s ∈ S) is
an entire trajectory with relatively compact rank ν(S). This means that ν(S) ⊆ JY

and, consequently, γ(S) ⊆ X̃.

Remark 3.9. Note that the completely continuous dynamical system (X,T, π) is
asymptotically compact and locally compact.

From Theorem 3.6 and Remark 3.9 directly it follows the following statement.

Corollary 3.10. Let 〈(X,T1, π), (Y,T2, σ), h〉 and the following conditions are ful-
filled:

(i) Y is compact;
(ii) the dynamical system (X,T1, π) is completely continuous.

Then the trivial section Θ is globally asymptotically stable if and only if conditions
a. and b. of Theorem 3.6 hold.

Remark 3.11. Corollary 3.10 was established in [5] in the case particular, when
(X, h, Y ) is finite-dimensional and Y is a compact and invariant set.

Theorem 3.12. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS and Y be compact. The
trivial section Θ of 〈(X,T1, π), (Y,T2, σ), h〉 is globally asymptotically stable if and
only if the following conditions hold:

1. the trivial section Θ̃ of 〈(X̃,T1, π), (JY ,T2, σ), h〉 is globally asymptotically
stable;

2. for all compact subset K ⊆ X the set Σ+
K := {π(t, x) : t ≥ 0, x ∈ K} is

relatively compact.

Proof. Necessity. Suppose that the trivial section Θ of 〈(X,T1, π), (Y,T2, σ),
h〉 is globally asymptotically stable, then by Theorem 3.5 the dynamical system
(X,T1, π) is compactly dissipative and its Levinson center JX is contained in Θ.
Since Levinson center JY of (Y,T2, σ) is its maximal compact invariant set, then
the set Θ̃ is also invariant and, consequently, JX = Θ̃. Taking into account that
Θ ⊇ Θ̃ = JX , then it is easy to check that Θ̃ is globally asymptotically stable set of
NDS 〈(X̃,T1, π), (JY ,T2, σ), h〉. To finish the proof of the first statement of Theo-
rem it is sufficient to note that since the dynamical system (X,T1, π) is compactly
dissipative, then by Theorem 1.5 [10, Ch.I] for every compact subset K ⊆ X the
set Σ+

K is relatively compact.
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Sufficient. Let the trivial section Θ̃ of NDS 〈(X̃,T1, π), (JY ,T2, σ), h〉 be globally
asymptotically stable. By Theorem 3.5 the dynamical system (X̃,T1, π) is com-
pactly dissipative and its Levinson center JX̃ is included in Θ̃. Reasoning as well
as in the proof of the first statement of Theorem and taking into account the in-
variance of the set JY we conclude that JX̃ = Θ̃. Now we will establish that the
dynamical system (X,T1, π) is also compactly dissipative. To prove this statement,
according to Theorem 1.15 [10, Ch.I], it is sufficient to establish that (X,T1, π) is
point dissipative. Let x be an arbitrary point of X, since its positive semi-trajectory
Σ+

x is relatively compact, then its ω–limit set ωx is a non-empty, compact, invariant
set, and

lim
t→+∞

ρ(π(t, x), ωx) = 0.

Note that h(ωx) ⊆ JY , since JY is a maximal compact invariant set of (Y,T2, σ)),
and, consequently, ωx ⊆ X̃. On the other hand Θ̃ is a maximal compact invariant
set of (x̃,T2, σ), hence ωx ⊆ Θ̃. Thus we have ΩX := {ωx : x ∈ X} is a compact
set, i.e., the dynamical system system (X,T1, π) is compactly dissipative. Let now
JX be its Levinson center, then h(JX) ⊆ JY and, consequently, JX ⊆ X̃. On
the other hand JX̃ = Θ̃ is a maximal compact set of (X̃,T1, π) and, consequently,
JX ⊆ Θ̃. Now we will prove that the set Θ is uniformly stable. Suppose that it is
not true, then there are δn → 0 (δn > 0), {xn} ⊆ X and tn → +∞ such that

(13) |xn| < δn and |π(tn, xn)| ≥ ε0

for all n ∈ N. By Lemma 2.6 Θ is a compact set and the dynamical system (X,T1, π)
is compactly dissipative, then without loss of generality, we can suppose that the
sequences {xn} and {π(tn, xn} are convergent. Denote by x0 (respectively, by x̄0)
the limit of {xn} (respectively, {π(tn, xn)}). Then by (13) we have x0 ∈ Θ and
|x̄| ≥ ε0 > 0. On the other hand x̄ ∈ JX ⊆ Θ̃ and, consequently, |x̄| = 0. The
obtained contradiction prove our statement. Let now x be an arbitrary point from
X, then lim

t→+∞
|π(t, x)| = 0. In fact, if we suppose the contrary, then there exist

x0 ∈ X, ε0 > 0, and tn → +∞ such that

(14) |π(tn, x0)| ≥ ε0

for all n ∈ N. Since the semi-trajectory Σ+
x0

of point x0 is relatively compact, then
we can suppose that the sequence {π(tn, x0)} is convergent. Let x̄0 be its limit,
then from (14) we have |x̄0| ≥ ε0 > 0. On the other hand x̄0 ∈ ωx0 ⊆ JX ⊆ Θ̃
and, consequently, |x̄0| = 0. The obtained contradiction complete the proof of the
global asymptotic stability of trivial section Θ. Theorem is proved. ¤

Theorem 3.13. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS, Y be compact and (X,T1, π)
be locally compact. The trivial section Θ of 〈(X,T1, π), (Y,T2, σ), h〉 is globally as-
ymptotically stable if and only if the following conditions hold:

1. the trivial section Θ̃ of 〈(X̃,T1, π), (JY ,T2, σ), h〉 is globally asymptotically
stable;

2. for all x ∈ X the set Σ+
x := {π(t, x) : t ≥ 0} is relatively compact.

Proof. The necessity of Theorem it follows from Theorem 3.12. To prove the suf-
ficiency, according to Theorem 3.12, it is sufficient to show that the set Σ+

K is
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relatively compact for all compact subset K ⊆ X. To this end we note (reason-
ing as well as in the proof of Theorem 3.12) that the dynamical system (X,T1, π)
is point dissipative. Since dynamical system (X,T1, π) is locally compact, then
by Theorem 1.10 [10, Ch.I] this system is also compactly dissipative. Conform to
Theorem 1.15 [10, Ch.I] for all compact subset K ⊆ X the set Σ+

K is relatively
compact. ¤

Corollary 3.14. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS, Y be compact and (X,T1, π)
be completely continuous. The trivial section Θ of 〈(X,T1, π), (Y,T2, σ), h〉 is glob-
ally asymptotically stable if and only if the following conditions hold:

1. the trivial section Θ̃ of 〈(X̃,T1, π), (JY ,T2, σ), h〉 is globally asymptotically
stable;

2. for all x ∈ X the set Σ+
x := {π(t, x) : t ≥ 0} is bounded.

Proof. This statement follows directly from Theorem 3.13. To this end it is sufficient
to note that every completely continuous dynamical system is locally compact and
every bounded semi-trajectory Σx is relatively compact, if (X,T1, π) is completely
continuous. ¤

Lemma 3.15. Suppose that the following conditions hold:

(i) 〈(X,T1, π), (Y,T2, σ), h〉 is a NDS;
(ii) Y is compact;
(iii) the trivial section Θ of (X, h, Y ) is positively invariant.

Then the following two statements are equivalent:

(i) Θ is uniformly stable;
(ii) Θ is orbitally stable with respect to (X,T1, π).

Proof. Let Θ be uniformly stable, then it is orbitally stable with respect to (X,T1, π).
If we suppose that it is not true, then there are ε0 > 0, 0 < δn → 0, {xn} and
tn → +∞ such that

(15) ρ(xn, Θ) < δn and ρ(π(tn, xn), Θ) ≥ ε0.

Since Θ is compact then, without loss of generality, we can suppose that the se-
quence {xn} is convergent. Denote its limit by x0, then y0 = lim

n→∞
yn, where

yn := h(xn). Denote by δ0 = δ(ε0/2) a positive number chosen for ε0/2 from the
uniform stability of Θ, i.e., |x| < δ0 implies |π(t, x)| < ε0/2 for all t ≥ 0 (t ∈ T1).
Since |xn| = ρ(xn, θyn) ≤ ρ(xn, θy0)+ρ(θy0 , θyn) → 0 as n →∞. Thus, there exists
a number n0 ∈ N such that |xn| < δ0 for all n ≥ n0 and, consequently, we obtain

(16) |π(tn, xn)| < ε0/2.

On the other hand from (15) we receive

(17) |π(tn, xn)| ≥ ρ(π(tn, xn), Θ) ≥ ε0.

The inequalities (16) and (17) are contradictory. The obtained contradiction proves
our statement.



16 DAVID CHEBAN

Now we show that from the orbital stability of Θ it follows that it is uniformly
stable. This statement may be proved using the same reasoning as in the proof of
Theorem 3.5. ¤

Theorem 3.16. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical sys-
tems, Y be a compact metric space, (X, h, Y ) be a finite-dimensional fiber space
and Θ be its null section. If Θ is uniformly stable, then the following properties are
equivalent:

1. for every ε > 0 and x ∈ X there exists a number τ = τ(ε, x) > 0 such that
|π(τ, x)| < ε;

2. for every ε > 0 and x ∈ X there exists a number l = l(ε, x) > 0 such that
|π(t, x)| < ε for all t ≥ l;

3. the dynamical system (X,T1, π) is point dissipative and ΩX ⊆ Θ;
4. ωx

⋂
Θ 6= ∅ for all x ∈ X;

5. for all ε > 0 and r > 0 there exists L = L(ε, r) > 0 such that

(18) |π(t, x)| < ε for all t ≥ L(ε, r) and |x| ≤ r.

Proof. It easy to check that, under the conditions of Theorem, the following impli-
cations 2. ⇐⇒ 3. ⇒ 4. ⇐⇒ 1. hold. Now we will establish the implication 4. ⇒ 3.
To this end we note that by Lemma 3.15 the set Θ is orbitally stable and, conse-
quently, D+(Θ) = Θ. According to Theorem 1.13 [10, Ch.I] the dynamical system
(X,T1, π) is compactly dissipative and its Levinson center JX is included in D+(Θ).
Thus we obtain JX ⊆ Θ. Since (X,T1, π) is point dissipative and ΩX ⊆ JX we
obtain the necessary statement.

To finish the proof of Theorem it is sufficient, for example, to show that 3. ⇐⇒ 5.
The implication 5. → 3. is evident. According to condition 3. the dynamical
system (X,T1, π) is point dissipative and ΩX ⊆ Θ. By Theorem 1.10 [10, Ch.I]
the dynamical system (X,T1, π) is compactly dissipative and JX = D+(ΩX) ⊆ Θ,
since the set Θ is uniformly stable. Since the Levinson center JX attracts every
compact subset from JX we have (18). Indeed, if we suppose that it is not true,
then there are ε0 > 0, r0 > 0, {xn} and tn → +∞ such that

(19) |xn| ≤ r0 and |π(tn, xn)| ≥ ε0

for all n ∈ N. Since Y compact, (X, h, Y ) is finite-dimensional and (X,T1, π) is com-
pact dissipative, then we can suppose that the sequence {π(tn, xn)} is convergent.
Denote by x̄ its limit, then passing into limit in (19) we obtain |x̄| ≥ ε0 > 0. On
the other hand x̄ ∈ JX ⊆ Θ and, consequently, |x̄| = 0. The obtained contradiction
complete the proof of Theorem. ¤

Remark 3.17. 1. Note that Theorem 3.16 remains true also for the infinite-
dimensional case too (i.e., (X, h, Y ) is infinite-dimensional), if we suppose that the
dynamical system (X,T1, π) is completely continuous.

2. Theorem 3.16 remains true if we replace the uniform stability of- the set Θ by
uniform stability of Θ′ = h−1(JY )

⋂
Θ.
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4. Asymptotical Stability of NDS with Minimal Base

In this section we suppose that the complete metric space Y is compact and the
dynamical system (Y,T2, σ) is minimal, i.e., every trajectory Σy := {σ(t, y) : t ∈
T2} is dense in Y (this means that H(y) = Y for all y ∈ Y , where H(y) := Σy).

Theorem 4.1. Suppose that the following conditions are fulfilled:

(i) the trivial section Θ is uniformly stable with respect to NDS 〈(X,T1, π),
(Y,T2, σ), h〉;

(ii) L+(X) = X, where L+(X) := {x ∈ X : Σ+
x is relatively compact };

(iii) there exists a point y0 ∈ Y such that Xs
y0

= Xy0 , where Xy := {x ∈ X :
h(x) = y} and Xs

y := {x ∈ Xy : lim
t→+∞

|π(t, x)| = 0}.

Then Xs
y = Xy for all y ∈ Y .

Proof. Suppose that there exists ỹ ∈ Y such that Xs
ỹ 6= Xỹ and let x̃ ∈ Xx̃ \Xs

ỹ .
Since Σ+

x̃ is relatively compact, then the omega limit set ωx̃ of the point x̃ is a
nonempty compact and invariant set. According to choose of the point x̃ there
exists at least one point x̄ ∈ ωx̃ such that |x̄| 6= 0. Let γ ∈ Fx̄(π) be an entire
trajectory of (X,T1, π) passing through the point x̄ at initial moment with the
condition γ(S) ⊆ ωx̃. We will show that

(20) α := inf
s≤0

|γ(s)| > 0.

If we suppose that (20) is not true, then there exists a sequence sn → −∞ such
that |γ(sn)| → 0 as n →∞. Since Θ is uniformly stable then for all 0 < ε < |x̄|/2
there exists a positive number δ = δ(ε) such that |x| < δ implies the inequality
|π(t, x)| < ε for all t ≥ 0. Let n0 ∈ N be a sufficiently large number (such that
|γ(sn)| < δ for all n ≥ n0), then we have |x̄| = |π(−sn0 , γ(sn0))| < ε < |x̄|/2. The
obtained contradiction proves our statement. Denote by ν the entire trajectory of
the dynamical system (Y,T2, σ) defined by equality ν := h◦γ, i.e., ν(s) = h(γ(s)) for
all s ∈ S, then ν ∈ Fȳ(σ), where ȳ := h(x̄). Since Y is minimal, then there exists a
sequence {τn} from S such that τn → −∞ and ν(τn) → y0. Under the conditions of
Theorem, without loss of generality, we may suppose that the functional sequences
{γ(t + τn)}t∈S and {ν(t + τn)}t∈S are convergent (uniformly with respect to t on
every compact subset from S). Let γ̃ (respectively, ν̃) be the limit of the sequence
{γ(t+τn)}t∈S (respectively, {ν(t+τn)}t∈S). Then it is clear that γ̃ ∈ Fγ̃(0)(π), γ̃(S)
⊆ αγ := {z : there exists a sequence sn → −∞ such that γ(sn) → z} and |γ̃(s)| ≥ α
for all s ∈ S. On the other hand γ̃(t) = π(t, γ̃(0)) for all t ≥ 0, γ̃(0) ∈ Xy0 and,
consequently, lim

t→+∞
|π(t, γ̃(0))| = 0. The obtained contradiction complete the proof

of Theorem. ¤

Lemma 4.2. Suppose that the trivial section Θ is uniformly stable with respect to
NDS 〈(X,T1, π), (Y,T2, σ), h〉. Let y0 ∈ Y be an arbitrary point, then the following
conditions are equivalent:

1. Xs
y0

= Xy0 ;
2. for every x ∈ Xy0 the semi-trajectory Σ+

x := {π(t, x) : t ≥ 0} is relatively
compact and ωx ⊆ Θ;
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3. ωx

⋂
Θ 6= ∅ for all x ∈ Xy0 ;

4. for arbitrary ε > 0 and x ∈ Xy0 there exists a positive number τ = τ(x, ε)
such that |π(τ, x)| < ε.

Proof. Note that the implications 1. =⇒ 2. =⇒ 3. =⇒ 4. are evident. To finish the
proof of Lemma it is sufficient that 4. implies 1.. Indeed, let ε > 0 be an arbitrary
positive number, x ∈ X, εk := 1/k (k ∈ N), and τk be a positive number such that
|π(τk, x)| < 1/k. Denote by δ(ε) the positive number from uniform stability of Θ
for ε (i.e., |x| < δ implies |π(t, x)| < ε for all t ≥ 0), then for the sufficiently large
k (1/k < δ) we have |π(t + τk, x)| < ε for all t ≥ 0. Thus for ε > 0 there exists
l(ε, x) > 0 such that |π(t, x)| < ε for all t ≥ l(ε, x), i.e., x ∈ Xs

y0
. ¤

Remark 4.3. 1. The implications 1. =⇒ 2. =⇒ 3. =⇒ 4. are true without assump-
tion of uniform stability of Θ.

2. Lemma 4.2 remains true without assumption of compactness and minimality of
Y .

3. If (X, h, Y ) is finite-dimensional, then Lemma 4.2 follows from Theorem 3.16.

From Theorem 4.1 and Lemma 4.2 we have the following statement.

Corollary 4.4. Suppose that the following conditions are fulfilled:

(i) the trivial section Θ is uniformly stable with respect to NDS 〈(X,T1, π),
(Y,T2, σ), h〉;

(ii) L+(X) = X, where L+(X) := {x ∈ X : Σ+
x is relatively compact };

(iii) there exists a point y0 ∈ Y such that one of the conditions 1.–4. of Lemma
4.2 is fulfilled.

Then Xs
y = Xy for all y ∈ Y .

Below we give a local version of Theorem 4.1.

Theorem 4.5. Suppose that the following conditions are fulfilled:

(i) the dynamical system (X,T1, π) is asymptotically compact;
(ii) the trivial section Θ is uniformly stable with respect to NDS 〈(X,T1, π),

(Y,T2, σ), h〉;
(iii) there exist positive number δ0 and point y0 ∈ Y such that B(θy0 , δ0) ⊂ Xs

y0
,

where B(θy, r) := {x ∈ Xy : |x| < r}.

Then the trivial section Θ is asymptotically stable, i.e., there exists a positive num-
ber β such that B(Θ, β) ⊂ Xs, where B(Θ, β) :=

⋃{B(θy, β) : y ∈ Y } and
Xs :=

⋃{Xs
y : y ∈ Y }.

Proof. Since Θ is uniformly stable, then there exists a positive number δ1 such that
|π(t, x)| ≤ δ0 for all t ≥ 0 and x ∈ X with |x| ≤ δ1. Let now β := min{δ0, δ1}. We
will show that B(Θ, β) ⊂ Xs. If we suppose that it is not so, then using the same
reasoning as in the proof of Theorem 4.1 we obtain a contradiction which proves
our statement. ¤
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Remark 4.6. All results of Sections 3–4 remain true if:

1. we replace the positive invariance of the trivial section Θ by the following condi-
tion: there exists a compact positively invariant set M ⊆ X such that My := {x ∈
M : h(x) = y} consists a single point for all y ∈ Y ;

2. the compact metric space Y we replace by an arbitrary compact regular topological
space.

5. Some Applications

5.1. Ordinary differential equations. Let E be a Banach space with the norm
| · |, W be an open subset of E and 0 ∈ W . Denote by C(S×W,E) the space of all
continuous mappings f : S×W 7→ E equipped with the compact open topology. On
the space C(S×W,E) it is defined a shift dynamical system [10, ChI] (dynamical
system of translations or Bebutov’s dynamical system) (C(S×W,E), S, σ), where σ
is a mapping from S×C(S×W,E) onto C(S×W,E) defined as follow σ(τ, f) := fτ

for all (τ, f) ∈ S × C(S × W,E), where fτ is the τ -translation of f with respect
to time t, i.e., fτ (t, x) := f(t + τ, x) for all (t, x) ∈ S ×W . Consider a differential
equation

(21) u′ = f(t, u),

where f ∈ C(R×W,E).

The function f (respectively, equation (21) is said to be regular, if for all v ∈ W and
g ∈ H+(f) := {fτ : τ ∈ R+}, where by bar is denoted the closure in C(R×W,E),
the equation

(22) v′ = g(t, v)

admits a unique solution ϕ(t, v, g) passing through the point v ∈ W at moment
t = 0 and defined on R+.

If the function f is regular, then the equation (21) naturally defines a cocycle
〈W,ϕ, (H+(f),R+, σ)〉, where (H+(f),R+, σ) is a (semi-group) dynamical system
on H+(f) induced by Bebutov’s dynamical system.

Applying the general results from Sections 3-4 we will obtain a series of results for
equation (21). Below we formulate some of them.

Denote by Ωf := {g ∈ H+(f) : there exists a sequenceτn → +∞ such that g =
lim

n→∞
fτn} the ω-limit set of f .

The null solution of equation (21) with f ∈ C(R × E, E) is said to be globally
asymptotically stable if it is asymptotically stable and

lim
t→+∞

|ϕ(t, v, g)| = 0

for all (v, g) ∈ E ×H+(f).

A trivial solution of equation (21) is called uniformly attracting (respectively, even-
tual uniform attracting [2]), if for every compact subset K ⊂ E and for every
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ε > 0 there exists T = T (K, ε) > 0 (respectively, there exist γ = γ(K) > 0 and
T = T (K, ε) > 0) such that

x0 ∈ K, t ≥ t0 + T implies |xf (t; t0, x0)| < ε

(respectively,

x0 ∈ K, t0 ≥ γ, t ≥ t0 + T implies |xf (t; t0, x0)| < ε),

where by xf (t; t0, x0) is denoted a unique solution x(t) of equation (21) with initial
data x(t0) = x0.

The solutions of equation (21) are said to be uniformly bounded [2] if for all α > 0
there exists β = β(α) > 0 such that

|x0| ≤ α, t0 ∈ R+, t ≥ t0 → |xf (t; t0, x0)| ≤ β.

Lemma 5.1. Suppose that the following conditions are fulfilled:

(i) f ∈ C(R× E,E);
(ii) the function f is regular;
(iii) the set H+(f) is compact;
(iv) f(t, 0) = 0 for all t ∈ R+.

Let ϕ be a cocle, generated by equation (21), then the following statements hold:

(i) if the trivial solution of equation (21) is uniformly attraction, then the
trivial solution/motion of the cocycle ϕ is uniformly attracting;

(ii) if the trivial solution of equation (21) is eventual uniform attracting, then
the trivial solution/motion of the cocycle ϕ possesses the following prop-
erty:

(23) lim
t→+∞

max
x∈K,g∈Ωf

|ϕ(t, x, g)| = 0

for all compact subset K from E;
(iii) if the solutions of equation (21) are uniformly bounded, then the solu-

tions/motions of the cocycle ϕ uniformly bounded, i.e., for all α > 0 there
exists β = β(α) > 0 such that |x| ≤ α implies |ϕ(t, x, g)| ≤ β for all t ∈ R+

and g ∈ H+(f).

Proof. The first statement of Lemma is well known [22, Ch.VIII].

To prove the second statement we note that

(24) ϕ(t, x, ft0) = x(t + t0; t0, x)

for all t, t0 ∈ R+ and x ∈ E. Let now K be an arbitrary compact subset from E
and ε > 0 be an arbitrary positive number. Denote by γ = γ(K) and T = T (K, ε)
positive numbers from eventual uniform attractivity of null solution of equation
(21). Let now x ∈ K and g ∈ Ωf , then there exists a sequence tn → +∞ such that
ftn → g (in the space C(R×E, E)) and, consequently, tn ≥ γ for sufficiently large
n. Note that

|ϕ(t, x, g)| = lim
n→+∞

|ϕ(t, x, ftn)| = lim
n→+∞

|xf (t + tn; tn, x)| ≤ ε(25)

for all t ≥ T (K, ε).
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From (23) evidently it follows (23).

Finally we will prove the third statement. Let α > 0 and β = β(α) > 0 is taken
from the uniformly boundedness of the solutions of (21). Let |x| ≤ α, g ∈ H+(f)
and t ∈ R+, then there exists a sequence {tn} ⊆ R+ such that g = lim

t→+∞
ftn

. Note

that
|ϕ(t, x, g)| = lim

n→∞
|ϕ(t, x, ftn)| = lim

n→∞
|xf (t + tn; tn, x)| ≤ β(α).

Lemma is completely proved. ¤

Theorem 5.2. Let f ∈ C(R × E, E). Assume that the following conditions are
fulfilled:

(i) the function f is regular;
(ii) the set H+(f) is compact;
(iii) f(t, 0) = 0 for all t ∈ R+;
(iv) the cocycle ϕ generated by equation (21) is locally compact, i.e., for every

point u ∈ E there exists a neighborhood U of the point u and a positive
number l such that the set ϕ(l, U,H+(f)) is relatively compact.

Then the null solution of equation (21) is globally asymptotically stable if and only
if the following conditions hold:

(i)

(26) lim
t→+∞

sup
v∈K,g∈Ωf

|ϕ(t, v, g)| = 0

for every compact subset K from E;
(ii) for every v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g) of equation (22) is

relatively compact on R+.

Proof. Consider the dynamical system (H+(f),R+, σ). Since the space H+(f)
is compact, then (H+(f),R+, σ) is compactly dissipative and its Levinson cen-
ter (maximal compact invariant set) JH+(f) evidently coincides with ω-limit set
Ωf of f . Let Y := H+(f) and (Y,R+, σ) be the shift dynamical system on
Y . Denote by X := W × Y and (X,R+, π) the skew-product dynamical sys-
tem generates by (Y,R+, σ) and cocycle ϕ, i.e., π(t, (v, g)) := (ϕ(t, v, g), σ(t, g)) for
all t ∈ R+ and (v, g) ∈ X. Now consider a non-autonomous dynamical system
〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated by equation (21). It easy to verify
that this NDS possesses the following properties:

(i) by Lemma 2.1 the dynamical system (Y,R+, σ) is compactly dissipative
and its Levinson center JY coincides with Ωf ;

(ii) the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;
(iii) Θ is a positively invariant subset of (X,R+, π);
(iv) according to (26) the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ), h〉

is uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for all t ∈ R+ and
x := (v, g) ∈ X;

(v) every trajectory Σ+
(u,g) ((u, g) ∈ E×H+(f)) of the skew-product dynamical

system (X,R+, π), generated by equation (21), is relatively compact.
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Now to finish the proof it is sufficient to apply Theorem 3.5 and Theorem 3.13. ¤

Corollary 5.3. Let f ∈ C(R × E, E). Assume that the following conditions are
fulfilled:

(i) the function f is regular;
(ii) the set H+(f) is compact;
(iii) f(t, 0) = 0 for all t ∈ R+;
(iv) the cocycle ϕ generated by equation (21) is locally compact;
(v) the null solution of equation (21) is eventual uniform attracting;
(vi) for every v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g) of equation (22) is

relatively compact on R+.

Then the null solution of equation (21) is globally asymptotically stable.

Proof. This statement follows from Theorem 5.2. In fact. According to Lemma
5.1 from uniform eventual attraction of the null solution of equation (21 it follows
condition (26). Now to finish the proof of this statement it is sufficient to apply
Theorem 5.2. ¤

Remark 5.4. 1. For finite-dimensional equation (21) Corollary 5.3 generalizes
a statement (Theorem 2.6) established in the work [2] (see also [20, Ch.I] and the
bibliography therein).

2. If the cocycle ϕ associated by equation (21) is asymptotically compact (in partic-
ularly, if it is completely continuous), then Theorem 5.2 remains true if we replace
condition (ii) by the following: for all v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g)
is bounded on R+.

Theorem 5.5. Let f ∈ C(R × E, E). Assume that the following conditions are
fulfilled:

(i) the function f is regular;
(ii) the set H+(f) is compact;
(iii) f(t, 0) = 0 for all t ∈ R+;
(iv) the cocycle ϕ generated by equation (21) is completely continuous, i.e., for

every bounded subset M ∈ E there exists a positive number l such that the
set ϕ(l, M, H+(f)) is relatively compact.

Then the null solution of equation (21) is globally asymptotically stable if and only
if the following conditions hold:

a. for every g ∈ Ωf limiting equation (22) does not a nontrivial bounded on
R solutions;

b. for every v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g) of equation (22) is
bounded on R+.

Proof. This statement can be proved using the same arguments as in the proof of
Theorem 5.2 plus application Corollary 3.10. ¤

Remark 5.6. Theorem 5.5 remains true if we replace the completely continuity by
the following two conditions:
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(i) the cocycle ϕ is asymptotically compact:
(ii) the cocycle ϕ is locally completely continuous.

Theorem 5.7. Suppose that the following conditions are fulfilled:

(i) the function f ∈ C(R×W,E) is recurrent with respect to t ∈ R uniformly
with respect to spacial variable u on every compact subset from W ;

(ii) f(t, 0) = 0 for all t ∈ R+;
(iii) the function f is regular;
(iv) the cocycle ϕ associated by equation (21) is asymptotically compact;
(v) the null solution of equation (21) is uniformly stable;
(vi) there exists a positive number a such that

lim
t→+∞

|ϕ(t, u, f)| = 0

for all |u| ≤ a.

Then the null solution of equation (21) is asymptotically stable.

Proof. This statement it follows directly from Theorem 4.5 using the same argu-
ments as in the proof of Theorem 5.2. ¤

Remark 5.8. For finite-dimensional equation (21) with almost periodic hand right
side f Theorem 5.7 was established by Z. Artstein [3] (see also [1], [18] and [20,
Ch.I]).

5.2. Functional differential-equations. We will apply now the abstract theory
developed in the previous Sections to the analysis of a class of functional differential
equations.

5.2.1. Functional-differential equations (FDEs) with finite delay. Let us first recall
some notions and notations from [16]. Let r > 0, C([a, b],Rn) be the Banach
space of all continuous functions ϕ : [a, b] → Rn equipped with the sup–norm.
If [a, b] = [−r, 0], then we set C := C([−r, 0],Rn). Let σ ∈ R, A ≥ 0 and u ∈
C([σ − r, σ + A],Rn). We will define ut ∈ C for all t ∈ [σ, σ + A] by the equality
ut(θ) := u(t + θ), −r ≤ θ ≤ 0. Consider a functional differential equation

(27) u̇ = f(t, ut),

where f : R× C → Rn is continuous.

Denote by C(R × C,Rn) the space of all continuous mappings f : R × C 7→ Rn

equipped with the compact open topology. On the space C(R × C,Rn) is defined
(see, for example, [10, ChI]) a shift dynamical system (C(R × C,Rn),R, σ), where
σ(τ, f) := fτ for all f ∈ C(R× C,Rn) and τ ∈ R and fτ is τ -translation of f , i.e.,
fτ (t, φ) := f(t + τ, φ) for all (t, φ) ∈ R× C.
Let us set H+(f) := {fs : s ∈ R+}, where by bar we denote the closure in C(R ×
C,Rn).

Along with the equation (27) let us consider the family of equations

(28) v̇ = g(t, vt),
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where g ∈ H+(f).

A function f ∈ C(R× Cr,Rn) (respectively, equation (27)) is called [22] regular, if
for v ∈ Cr and g ∈ H+(f) equation (28) admits a unique solution passing through
v at the initial moment t = 0.

Below, in this subsection, we suppose that equation (27) is regular.

Remark 5.9. 1. Denote by ϕ̃(t, u, f) the solution of equation (27) defined on R+

(respectively, on R) with the initial condition ϕ(0, u, f) = u ∈ Cr, i.e., ϕ(s, u, f)
= u(s) for all s ∈ [−r, 0]. By ϕ(t, u, f) we will denote below the trajectory of
equation (27), corresponding to the solution ϕ̃(t, u, f), i.e., the mapping from R+

(respectively, R) into Cr, defined by ϕ(t, u, f)(s) := ϕ̃(t + s, u, f) for all t ∈ R+

(respectively, t ∈ R) and s ∈ [−r, 0].

2. Due to item 1. of this remark, below we will use the notions of “solution” and
“trajectory” for equation (27) as synonym concepts.

It is well known [7, 22] that the mapping ϕ : R+ × C ×H+(f) 7→ Rn possesses the
following properties:

(i) ϕ(0, v, g) = u for all v ∈ C and g ∈ H+(f);
(ii) ϕ(t + τ, v, g) = ϕ(t, ϕ(τ, v, g), σ(τ, g)) for all t, τ ∈ R+, v ∈ C and g ∈

H+(f);
(iii) the mapping ϕ is continuous.

Thus, a triplet 〈C, ϕ, (H+(f),R+, σ)〉 is a cocycle which is associated to equation
(27). Applying the results from Sections 3-4 we will obtain a series of results for
functional differential equation (27). Below we formulate some of them.

Lemma 5.10. [13] Suppose that the following conditions hold:

(i) the function f ∈ C(R×W,Rn) is regular;
(ii) the set H+(f) is compact;
(iii) the function f is completely continuous, i.e., the set f(R+×A) is bounded

for all bounded subset A ⊆ C.

Then the cocycle ϕ associated by (27) is completely continuous, i.e., for all bounded
subset A ⊆ W there exists a positive number l = l(A) such that the set ϕ(l, A,H+(f))
is relatively compact in C.

The null solution of equation (27) with f ∈ C(R × C, C) is said to be globally
asymptotically stable if it is asymptotically stable and lim

t→+∞
|ϕ(t, v, g)| = 0 for all

(v, g) ∈ C ×H+(f).

Theorem 5.11. Let f ∈ C(R × C,Rn). Assume that the following conditions are
fulfilled:

(i) the function f is regular;
(ii) the set H+(f) is compact;
(iii) f(t, 0) = 0 for all t ∈ R+;
(iv) the function f is completely continuous.
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Then the null solution of equation (27) is globally asymptotically stable if and only
if the following conditions hold:

(i)
lim

t→+∞
sup

|v|≤a,g∈Ωf

|ϕ(t, v, g)| = 0

for every a > 0;
(ii) for every v ∈ C and g ∈ H+(f) the solution ϕ(t, v, g) of equation (28) is

bounded on R+.

Proof. Consider the dynamical system (H+(f),R+, σ). Since the space H+(f) is
compact, then (H+(f),R+, σ) is compactly dissipative and by Lemma 2.1 its Levin-
son center JH+(f) coincides with ω-limit set Ωf of f . Let Y := H+(f) and (Y,R+, σ)
be the shift dynamical system on Y . Denote by X := C × Y and (X,R+, π) the
skew-product dynamical system generates by (Y,R+, σ) and cocycle ϕ. Now con-
sider a NDS 〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated by equation (27). It
easy to verify this NDS posses the following properties:

(i) the dynamical system (Y,R+, σ) is compact dissipative and its Levinson
center JY coincides with Ωf ;

(ii) the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;
(iii) Θ is a positively invariant subset of (X,R+, π);
(iv) according to (29) the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ), h〉

is uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for all t ∈ R+ and
x := (v, g) ∈ X;

(v) according to Lemma 5.10 the dynamical system (X,R+, π) is completely
continuous;

(vi) every positive semi-trajectory Σ+
x of skew-product dynamical system (X,R+, π)

is relatively compact.

Now to finish the proof it is sufficient to apply Corollary 3.14. ¤

Theorem 5.12. Let f ∈ C(R × C,Rn). Assume that the following conditions are
fulfilled:

(i) the function f is regular;
(ii) the set H+(f) is compact;
(iii) f(t, 0) = 0 for all t ∈ R+;
(iv) the function f is completely continuous.

Then the null solution of equation (27) is globally asymptotically stable if and only
if the following conditions hold:

a. for every g ∈ Ωf limiting equation (28) does not a nontrivial bounded on
R solutions;

b. for every v ∈ C and g ∈ H+(f) the solution ϕ(t, v, g) of equation (28) is
bounded on R+.

Proof. This statement can be proved using the same arguments as in the proof of
Theorem 5.11 plus application Corollary 3.10. ¤
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Theorem 5.13. Suppose that the following conditions are fulfilled:

(i) the function f ∈ C(R × C, C) is recurrent with respect to t ∈ R uniformly
with respect to spacial variable u on every compact from C;

(ii) f(t, 0) = 0 for all t ∈ R+;
(iii) the function f is regular;
(iv) the function f is completely continuous;
(v) the null solution of equation (27) is uniformly stable;
(vi) there exists a positive number a such that

lim
t→+∞

sup
|u|≤a

|ϕ(t, u, f)| = 0.

Then the null solution of equation (27) is asymptotically stable.

Proof. This statement follows directly from Theorem 4.5 using the same arguments
as in the proof of Theorem 5.11. ¤

5.2.2. Neutral functional-differential equations. Now consider the neutral functional-
differential equation

(29)
d

dt
Dut = f(t, ut),

where f ∈ C(R × C, C) and the operator D : C 7→ Rn is atomic at zero [16,
p.67]. Like (27), equation (29) generates a NDS 〈(X,R+, π), (Y,R+, σ), h〉, where
X := C × Y, Y := H+(f), and π := (ϕ, σ).

An operator D is said to be stable, if the zero solution of difference equation Dyt = 0
is uniformly asymptotically stable (see, for example, [16, p.337]).

Lemma 5.14. Let H+(f) be compact. If the function f ∈ C(R × C,Rn) is com-
pletely continuous, then the NDS (X,R+, π), (Y,R, σ), h〉 generated by equation (29)
is asymptotically compact.

Proof. This statement can be proved by slight modification of the proof of Theorem
12.6.3 and Lemma 12.3.2 from [16, Ch.XII] and taking into account that Y =
H+(A) is compact. ¤

Theorem 5.15. Suppose that the following conditions are fulfilled:

(i) the function f ∈ C(R × C, C) is recurrent with respect to t ∈ R uniformly
with respect to spacial variable u on every compact subset from C;

(ii) f(t, 0) = 0 for all t ∈ R+;
(iii) the function f is regular;
(iv) the function f ∈ C(R× C,Rn) is completely continuous;
(v) the null solution of equation (29) is uniformly stable;
(vi) there exists a positive number a such that

(30) lim
t→+∞

|ϕ(t, u, f)| = 0

for all |u| ≤ a.
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Then the null solution of equation (29) is asymptotically stable, i.e., there exists a
positive number δ such that lim

t→+∞
|ϕ(t, v, g)| = 0 for all |v| < δ and g ∈ H+(f).

Proof. Let (X,R+, π), (Y,R, σ), h〉 be a NDS generated by equation (29). It is easy
to check that under the conditions of Theorem 5.15 the following conditions hold:

(i) the dynamical system (Y,R+, σ) is compact dissipative and its Levinson
center JY coincides with Y = H+(f) = Ωf ;

(ii) the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;
(iii) Θ is a positively invariant subset of (X,R+, π);
(iv) according to (30) we have (0f , a) ⊂ Xs

f , where 0f := (0, f) and 0 is the
null element of E;

(v) according to Lemma 5.14 the dynamical system (X,R+, π) is asymptoti-
cally compact.

Now to finish the proof of Theorem it is sufficient to apply Theorem 4.5. ¤

5.3. Semi-linear parabolic equations. Let H be a separable Hilbert space with
inner product 〈·, ·〉 and the norm | · |2 := 〈·, ·〉, and A be a self-adjoint operator with
domain D(A).

An operator is said (see, for example, [14]) to have a discrete spectrum if in the space
H, there exists an ortho-normal basis {ek} of eigenvectors, such that 〈ek, ej〉 = δkj ,
Aek = λkek (k, j = 1, 2, . . .) and 0 < λ1 ≤ λ2 ≤ . . . , λk ≤ . . ., and λk → +∞ as
k → +∞.

One can define an operator f(A) for a wide class of functions f defined on the
positive semi-axis as follows:

D(f(A)) := {h =
∑∞

k=1 ckek ∈ H :
∑∞

k=1 ck[f(λk)]2 < +∞},
f(A)h :=

∑∞
k=1 ckf(λk)ek, h ∈ D(f(A)).(31)

In particular, we can define operators Aα for all α ∈ R. For α = −β < 0 this
operator is bounded. The space D(A−β) can be regarded as the completion of the
space H with respect to the norm | · |β := |A−β · |.
The following statements hold [14]:

(i) The space F−β := D(A−β) with β > 0 can be identified with the space of
formal series

∑∞
k=1 ckek such that

∞∑

k=1

ckλ−2β
k < +∞;

(ii) For any β ∈ R, the operator Aβ can be defined on every space D(Aα) as
a bounded operator mapping D(Aα) into D(Aα−β) such that

AβD(Aα) = D(Aα−β), Aβ1+β2 = Aβ1Aβ2 .

(iii) For all α ∈ R, the space Fα := D(Aα) is a separable Hilbert space with
the inner product 〈·, ·〉α := 〈Aα·, Aα·〉 and the norm | · |α := |Aα · |.

(iv) The operator A with the domain F1+α is a positive operator with discrete
spectrum in each space Fα.
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(v) The embedding of the space Fα into Fβ for α > β is continuous, i.e.,
Fα ⊂ Fβ and there exists a positive constant C = C(α, β) such that
| · |β ≤ C| · |α.

(vi) Fα is dense in Fβ for any α > β.
(vii) Let α1 > α2, then the space Fα1 is compactly embedded into Fα2 , i.e.,

every sequence bounded in Fα1 is relatively compact in Fα2 .
(viii) The resolvent Rλ(A) := (A−λI)−1, λ 6= λk is a compact operator in each

space Fα, where I is the identity operator.

According to (31) we can define an exponential operator e−tA, t ≥ 0, in the scale
spaces {Fα} . Note some of its properties [14]:

a. For any α ∈ R and t > 0 the linear operator e−tA maps Fα into
⋂

β≥0

Fβ

and
|e−tAx|α ≤ e−λ1t|x|α

for all x ∈ Fα.
b. e−t1Ae−t2A = e−(t1+t2)A for all t1, t2 ∈ R+;
c.

|e−tAx− e−τAx|β → 0
as t → τ for every x ∈ Fβ and β ∈ R;

d. For any β ∈ R the exponential operator e−tA defines a dissipative compact
dynamical system (Fβ , e−tA);

e.

|Aαe−tAh| ≤
[(

α−β
t

)α−β + λα−β
1

]
e−tλ1 |Aβh|, α ≥ β

||Aαe−tA|| ≤ (
α
t

)α
e−α, t > 0, α > 0.

Consider an evolutionary differential equation

(32) u′ + Au = F (t, u)

in the separable Hilbert space H, where A is a linear (generally speaking un-
bounded) positive operator with discrete spectrum, and F is a nonlinear continuous
mapping acting from R×Fθ into H, 0 ≤ θ < 1, possessing the property

(33) |F (t, u1)− F (t, u2)| ≤ L(r)|Aθ(u1 − u2)|
for all u1, u2 ∈ Bθ(0, r) := {u ∈ Fθ : |u|θ ≤ r}. Here L(r) denotes the Lipschitz
constant of F on the set Bθ(0, r).

A function u : [0, a) 7→ Fθ is said to be a weak solution (in Fθ) of equation (32)
passing through the point x ∈ Fθ at moment t = 0 (notation ϕ(t, x, F )) if u ∈
C([0, T ],Fθ) and satisfies the integral equation

u(t) = e−tAx +
∫ t

0

e−(t−τ)AF (τ, u(τ))dτ

for all t ∈ [0, T ] and 0 < T < a.

In the book [14], it is proved that, under the conditions listed above, there exists a
unique solution ϕ(t, x, F ) of equation (33) passing through the point x at moment
t = 0, and it is defined on a maximal interval [0, a), where a is some positive number
depending on (x, F ).
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Denote by C(R× Fθ,H) the space of all continuous mappings equipped with the
compact open topology and by (C(R×Fθ,H),R, σ) the shift dynamical system on
C(R×Fθ,H).

A function F ∈ C(R × Fθ,H) is said to be regular if for all v ∈ Fθ and G ∈
H+(F ) := {σ(τ, F ) : τ ∈ R+}, where by bar is denote the closure in the space
C(R×Fθ,H), there exists a unique (weak) solution ϕ(t, v,G) of equation

(34) u′ + Au = G(t, u)

defined on R+ and passing through the point v at moment. Denote by (H+(F ),R+, σ)
a shift dynamical system on H+(F ) induced by (C(R×Fθ,H),R, σ). From general
properties of solutions of evolution equation (32) and Theorem 5.1 [9] it follows that
the triplet 〈Fθ, ϕ, (H+(F ),R+, σ)〉 is a cocycle over (H+(F ),R+, σ) with the fiber
Fθ.

Applying results from Sections 3-4 we obtain a series of results for evolution equa-
tion (32). Now we will formulate some of them.

Lemma 5.16. Under the conditions listed above, if the function F is regular and the
set H+(F ) is compact, then the cocycle ϕ associated by equation (32) is completely
continuous.

Proof. This statement can be proved with the slight modification of the proof of
Lemma 5.3 [9]. ¤

Theorem 5.17. Let F ∈ C(R×Fθ,H). Assume that the following conditions are
fulfilled:

(i) the function F is regular;
(ii) the set H+(F ) is compact;
(iii) F (t, 0) = 0 for all t ∈ R+.

Then the null solution of equation (32) is globally asymptotically stable if and only
if the following conditions hold:

(i)
lim

t→+∞
sup

|v|≤a,g∈Ωf

|ϕ(t, v, G)| = 0

for every a > 0;
(ii) for every v ∈ Fθ and G ∈ H+(F ) the solution ϕ(t, v, G) of equation (34)

is bounded on R+.

Proof. Consider the dynamical system (H+(F ),R+, σ). Since the space H+(F )
is compact, then (H+(f),R+, σ) is compactly dissipative and its Levinson center
JH+(F ) coincides with ω-limit set ΩF of F . Let Y := H+(F ) and (Y,R+, σ) be
the shift dynamical system on Y . Denote by X := Fθ × Y and (X,R+, π) the
skew-product dynamical system generates by (Y,R+, σ) and cocycle ϕ. Consider a
non-autonomous dynamical system 〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated
by equation (32). It easy to verify that this NDS posses the following properties:
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(i) the dynamical system (Y,R+, σ) is compact dissipative and by Lemma 2.1
its Levinson center JY coincides with ΩF ;

(ii) the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;
(iii) Θ is a positively invariant subset of (X,R+, π);
(iv) according to (35) the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ), h〉

is uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for all t ∈ R+ and
x := (v, g) ∈ X;

(v) by Lemma 5.16 the cocycle ϕ (and, consequently, the skew-product dy-
namical system (X,R+, π) too) is completely continuous;

(vi) every positive semi-trajectory Σ+
x of skew-product dynamical system (X,R+, π)

is relatively compact.

Now to finish the proof it is sufficient to apply Theorem 3.13. ¤

Theorem 5.18. Let F ∈ C(R×Fθ,H). Assume that the following conditions are
fulfilled:

(i) the function F is regular;
(ii) the set H+(F ) is compact;
(iii) F (t, 0) = 0 for all t ∈ R+.

Then the null solution of equation (32) is globally asymptotically stable if and only
if the following conditions hold:

a. for every G ∈ ΩF limiting equation (34) does not a nontrivial bounded on
R solutions;

b. for every v ∈ C and G ∈ H+(F ) the solution ϕ(t, v, g) of equation (34) is
bounded on R+.

Proof. This statement can be proved using the same arguments as in the proof of
Theorem 5.17 plus application Corollary 3.10. ¤

Theorem 5.19. Suppose that the following conditions are fulfilled:

(i) the function F ∈ C(R×Fθ,H) is recurrent with respect to t ∈ R uniformly
with respect to spacial variable u on every compact subset from W ⊆ Fθ;

(ii) F (t, 0) = 0 for all t ∈ R+;
(iii) the function F is regular;
(iv) the null solution of equation (32) is uniformly stable;
(v) there exists a positive number a such that

lim
t→+∞

|ϕ(t, u, F )| = 0

for all |u| ≤ a.

Then the null solution of equation (32) is asymptotically stable.

Proof. This statement follows directly from Theorem 4.5 using the same arguments
as in the proof of Theorem 5.17. ¤



ASYMPTOTIC STABILITY OF INFINITE-DIMENSIONAL ALMOST PERIODIC SYSTEMS 31

References

[1] Armando D’Anna, Total Stability Properties for an Almost Periodic Equation by Means of
Limiting Equations. Funkciolaj Ekvacioj, 27 (1984), pp.201-209.

[2] Armando D’Anna, Alfonso Maio and Vinicio Moauro, Global stability properties by means
of limiting equations. Nonlinear Analysis, Vol.4, No.2, pp.407-410, 1980.

[3] Artstein Zvi, Uniform asymptotic stability via the limiting equations. Journal of Differential
Equations, 27(2), 172-189, 1978.

[4] B.R. Basit, A connection between the almost periodic functions of Levitan and almost
automorphic fFunctions, Vestnik Moskov. Univ. Ser. I Mat. Meh. 26 (1971), no. 4, 11–15.

[5] Boularas Driss and Cheban David, Asymptototic Stability of Switching Systems. Electronical
Journal of Differential Equations, 2010 (2010), no.21, pp.1-18.

[6] Bondi P., Moaurd V. and Visentin F., Limiting equations in the stability problem. Nonlinear
Analisys, v.1, no.2, 123–128, 1977.

[7] Bronsteyn I. U., Extensions of Minimal Transformation Group, Noordhoff, 1979.
[8] Caraballo Tomas and Cheban David, On the Structure of the Global Attractor for Non-

autonomous Dynamical Systems with Weak Convergence. Communications in Pure and
Applied Analysis, Vol.11, no.2, 2012, pp.809-828.

[9] Caraballo Tomas and Cheban David, On the Structure of the Global Attractor for Infinite-
Dimensional Non-autonomous Dynamical Systems with Weak Convergence. Communica-
tions on Pure and Applied Analysis (CPAA), 2012 (to appear).

[10] Cheban D. N., Global Attractors of Non-Autonomous Dissipstive Dynamical Systems. In-
terdisciplinary Mathematical Sciences 1. River Edge, NJ: World Scientific, 2004, xxiii+502
pp.

[11] Cheban D. N., Levitan Almost Periodic and Almost Automorphic Solutions of V -monotone
Differential Equations. J.Dynamics and Differential Equations, Vol.20, No.3, 2008, pp.669–
697.

[12] Cheban D. N., Global Attractors of Set-Valued Dynamical and Control Systems. Nova Sci-
ence Publishers Inc, New York, 2010, xvii+269 pp.

[13] Cheban D. N., Sell’s Conjecture for Non-Autonomous Dynamical Systems. Nonlinear
Analysis: TMA, 2012 (in press). DOI: 10.1016/j.na.2012.01.002

[14] Chueshov, I. D., Vvedenie v teoriyu beskonechnomernykh dissipativnykh sistem. Univer-
sitetskie Lektsii po Sovremennoi Matematike. AKTA, Kharkiv, 1999. 436 pp. (in Russian)
[English translation: Introduction to the theory of infinite-dimensional dissipative systems.
University Lectures in Contemporary Mathematics. AKTA, Kharkiv, 1999. 436 pp.]

[15] J. Egawa, A characterization of almost automorphic functions, Proc. Japan Acad. Ser. A
Math. Sci. 61 (1985), no. 7, 203–206.

[16] Hale J. K., Theory of Functional-Differential Equations. Springer-Verlag, New York-
Heidelberg-Berlin, 1977. [Russian translation: Theory of Functional-Differential Equations.
Mir, Moscow, 1984.]

[17] Hale J. K., Asymptotic Behaviour of Dissipative Systems. Amer. Math. Soc., Providence,
RI, 1988.

[18] Junji Kato and Taro Yoshizawa, Remarks on Global Properties in Limiting Equations.
Funkciolaj Ekvacioj, 24 (1981), pp.363-371.

[19] B.M. Levitan, V.V. Zhikov, Almost Periodic Functions and Differential Equations, Cam-
bridge Univ. Press, London, 1982.

[20] Martyniuk A. A., Kato D. and Shestakov A. A., Stability of Motion : Method of Limit
Equations. Kiev, Naukova Dumka, 1990. (in Russian) [English translation in Gordon and
Breach Publishers, Luxembourg, 1996.]

[21] P. Milnes, Almost automorphic functions and totally bounded groups, Rocky Mountain J.
Math. 7(1977), no. 2, 231–250.

[22] Sell G. R., Topological Dynamics and Ordinary Differential Equations. Van Nostrand-
Reinhold, London, 1971.

[23] Sell G., Shen W. and Yi Y., Topological dynamics and differential equations. Topological
dynamics and applications (Minneapolis, MN, 1995), 279–297, Contemp. Math., 215, Amer.
Math. Soc., Providence, RI, 1998.

[24] W. Shen, Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semi-
flows, Mem. Amer. Math. Soc. 136 (1998), no. 647.



32 DAVID CHEBAN

(D. Cheban) State University of Moldova, Department of Mathematics and Informatics,
A. Mateevich Street 60, MD–2009 Chişinău, Moldova
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