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Abstract. The aim of this paper is to describe the structure of global at-
tractors for infinite-dimensional non-autonomous dynamical systems with re-

current coefficients. We consider a special class of this type of systems (the

so–called weak convergent systems). We study this problem in the frame-
work of general non-autonomous dynamical systems (cocycles). In particular,

we apply the general results obtained in our previous paper [6] to study the
almost periodic (almost automorphic, recurrent, pseudo recurrent) and asymp-

totically almost periodic (asymptotically almost automorphic, asymptotically

recurrent, asymptotically pseudo recurrent) solutions of different classes of dif-
ferential equations (functional-differential equations, evolution equation with

monotone operator, semi-linear parabolic equations).

1. Introduction

The objective of this paper is to analyze the well-known Seifert’s problem for sev-
eral types of infinite-dimensional non-autonomous dynamical systems with weak
convergence. To be more precise, consider a differential equation

(1) x′ = f(t, x),

where f ∈ C(R × Rn,Rn). Assume that the right-hand side of (1) satisfies hy-
potheses ensuring existence, uniqueness and extendability of solutions of (1), i.e.,
for all (t0, x0) ∈ R × Rn there exists a unique solution x(t; t0, x0) of equation (1)
with initial data t0, x0, and defined for all t ≥ t0.

Then, we can establish the following interesting problem.

Seifert’s Problem (see [15] for more details): Suppose that equation (1) is dissi-
pative and the function f is almost periodic (with respect to time). Does equation
(1) possess an almost periodic solution?

Fink and Fredericson [15] and Zhikov [26] established that, in general, even when
equation (1) is scalar, the answer to Seifert’s question is negative.
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In our previous paper [6], we included several comments concerning some aspects
related to this problem, and some relevant references dealing with it. In addition,
we showed that if equation (1) is weak convergent (i.e., there exists a positive num-
ber L such that lim

t→+∞
|ϕ(t, x1, g) − ϕ(t, x2, g)| = 0 for all |xi| ≤ L (i = 1, 2) and

g ∈ H(f)), and f is pseudo recurrent with respect to the time variable (in partic-
ular, f is recurrent, almost automorphic, Bohr almost periodic or quasi periodic),
then, equation (1) admits a unique pseudo recurrent (respectively, recurrent, al-
most automorphic, Bohr almost periodic, quasi periodic) solution. If this solution
is Lyapunov stable, then the Levinson center (the compact global attractor) is a
minimal almost periodic set. If it is not Lyapunov stable, then the Levinson center
contains a minimal almost periodic set, but it is not minimal (this means, in par-
ticular, that equation (1) admits a family (more than one) of solutions which are
bounded on R). In [7] we generalize this result to the case of difference equations.

In this paper we will carry out a similar analysis to prove analogous results for the
following three classes of differential equations:

- Functional differential equations (FDEs)

(2) x′ = f(t, xt)

with finite delay.
- Evolution equations x′ + Ax = f(t) with monotone (generally speaking

nonlinear) operator A.
- Semi-linear parabolic equations x′+Ax = F (t, x) with linear (unbounded)

operator A.

We present our results in the framework of general non-autonomous dynamical
systems (cocycles) and we apply our abstract theory mainly developed in [6] to the
three classes of differential equations mentioned previously.

In order not to be repetitive with our previous papers on this topic, especially [6, 7],
we will skip to recall preliminary definitions and results which are necessary for our
analysis and refer the reader to these papers. However, to make easier the reading,
we have included some of this material in Appendix A at the end of this paper.

The paper is organized as follows.

Section 2 is devoted to the study of asymptotic behavior of non-autonomous FDEs
with finite delay. In particular, we give a description of the structure of the compact
global attractor for weak convergent FDEs (Theorem 2.5). We study the almost
periodic and asymptotically almost periodic solutions (Subsection 2.1), uniformly
compatible (by the character of recurrence with the right–hand side) solutions of
strict dissipative equations (Subsection 2.2), convergence and weak convergence for
functional-differential equations (FDEs) with finite delay, and also the problem of
existence of almost periodic solutions of uniformly dissipative FDEs are studied
(Subsection 2.3).

In Sections 3 and 4 we present some results about convergence and/or weak conver-
gence of two classes of infinite-dimensional differential equations with unbounded
operators: evolution equations x′ + Ax = f(t) with monotone operator (generally
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speaking non-linear) A, and semi–linear equation x′ + Ax = F (t, x) with linear
(unbounded) part A, respectively.

2. Functional differential equations (FDEs) with finite delay

Let us first recall some notions and notations concerning functional differential
equations (see [16] for more details). Let r > 0, C([a, b],Rn) be the Banach space
of all continuous functions ϕ : [a, b]→ Rn equipped with the sup–norm. If [a, b] =
[−r, 0], then we set Cr := C([−r, 0],Rn). Let τ ∈ R, A ≥ 0 and u ∈ C([τ − r, τ +
A],Rn). We will define ut ∈ Cr for all t ∈ [τ, τ + A] by the equality ut(θ) :=
u(t+ θ), −r ≤ θ ≤ 0. Consider a functional differential equation

(3) u̇ = f(t, ut),

where f : R× Cr → Rn is continuous.

Let us set H(f) := {fs : s ∈ R}, where fs(t, ·) = f(t + s, ·) and by bar we denote
the closure in the compact-open topology on C(R× Cr,Rn).

Along with equation (3) let us consider the family of equations

(4) v̇ = g(t, vt),

where g ∈ H(f).

A function f ∈ C(R × Cr,Rn) (respectively, equation (3)) is called regular (see
[24]), if for every v ∈ Cr and g ∈ H(f), equation (4) admits a unique solution
passing through v at the initial moment t = 0.

Below, in this section, we suppose that equation (3) is regular.

Remark 2.1. 1. Denote by ϕ̃(t, u, f) the solution of equation (3) defined on R+

(respectively, on R) with the initial condition u ∈ Cr, i.e., ϕ̃(s, u, f) = u(s) for
all s ∈ [−r, 0]. By ϕ(t, u, f) we will denote below the trajectory of equation (3),
corresponding to the solution ϕ̃(t, u, f), i.e., the mapping from R+ (respectively, R)
into Cr, defined by ϕ(t, u, f)(s) := ϕ̃(t+ s, u, f) for all t ∈ R+ (respectively, t ∈ R)
and s ∈ [−r, 0].

2. Taking into account item 1. in this remark, we will use below the notions of
“solution” and “trajectory” for equation (3) as synonym concepts.

2.1. Weak convergent FDEs with finite delay. Consider a differential equa-
tion

(5) u′ = f(σ(t, y), ut) (y ∈ Y ),

where f ∈ C(Y × Cr,Rn), and (Y,R, σ) is a dynamical system.

Following [24], the function f ∈ C(Y × Cr,Rn) (respectively, equation (5)) is said
to be regular, if for all u ∈ Cr and y ∈ Y , equation (5) admits a unique solution
ϕ(t, u, y) passing through the point u ∈ Cr at the initial moment t = 0 and defined
on R+.

It is well known [3, 24] that the mapping ϕ : R+ × Cr × Y 7→ Rn possesses the
following properties:
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(i) ϕ(0, u, y) = u for all u ∈ Cr and y ∈ Y ;
(ii) ϕ(t+ τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all t, τ ∈ R+, u ∈ Cr and y ∈ Y ;
(iii) the mapping ϕ is continuous.

Thus, the triplet 〈Cr, ϕ, (Y,R, σ)〉 is a cocycle (non-autonomous dynamical system)
which is associated to (generated by) equation (5). In this case the dynamical
system (Y,R, σ) is called base dynamical system (or driving system).

Example 2.2. We consider equation (3). Along with equation (3) consider the
family of equations (4), where g ∈ H(f) := {fτ : τ ∈ R} and fτ is the τ -shift of
f with respect to time, i.e., fτ (t, u) := f(t + τ, u) for all (t, u) ∈ R × Cr. Suppose
that the function f is regular [24], i.e., for all g ∈ H(f) and u ∈ Rn there exists
a unique solution ϕ(t, u, g) of equation (4). Denote by Y = H(f) and (Y,R, σ) a
shift dynamical system on Y induced by the Bebutov dynamical system (C(R ×
Cr,Rn),R, σ). Now the family of equations (4) can be written as

u′ = F (σ(t, y), ut) (y ∈ Y )

if we define F ∈ C(Y × Cr,Rn) by the equality F (g, u) := g(0, u) for all g ∈ H(f)
and u ∈ Cr.

Below we suppose that equation (5) is regular. Equation (5) is called dissipative
(see [8]), if there exists a positive number r such that

(6) lim sup
t→+∞

||ϕ(t, u, y)|| < r

for all u ∈ Cr and y ∈ Y , where || · || is the norm in Cr.

In this section we give a simple geometric condition which guarantees existence of
a unique almost periodic solution and this solution, generally speaking, is not the
unique solution of equation (5) which is bounded on R.

A function f ∈ C(Y ×Cr,Rn) is said to be completely continuous if for any bounded
subset A ⊂ Cr the set f(Y ×A) ⊂ Rn is bounded.

Lemma 2.3. Let H(f) be compact. The following statements hold:

(i) for any point x ∈ X := Cr×H(f) there exist a neighborhood Ux of the point
x and a positive number lx > 0 such that π(lx, Ux) is relatively compact,
i.e., the dynamical system (X,R+, π) is locally compact;

(ii) if the function f is completely continuous, then for any bounded and pos-
itively invariant subset A ⊂ X there exists a positive number t0 = t0(A)
such that π(t0, A) is a relatively compact subset of X.

Proof. This assertion follows from Lemma 6.1 and Corollary 6.3 in [16, Ch. III]
and from the compactness of H(f). �

Corollary 2.4. Under the conditions of Lemma 2.3 the dynamical system (X, R+,
π) is asymptotically compact.

We can now state the main results in this section.

Theorem 2.5. Suppose that the following conditions are fulfilled:
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(i) the function f is completely continuous;
(ii) equation (5) is regular and dissipative;
(iii) the space Y is compact, and the dynamical system (Y,R, σ) is minimal;
(iv) for all y ∈ Y

(7) lim
t→+∞

||ϕ(t, u1, y)− ϕ(t, u2, y)|| = 0,

where ϕ(t, ui, y) (i = 1, 2) is a solution of equation (5) which is bounded
on R.

Then,

(i) if the point y is τ–periodic (respectively, quasi periodic, Bohr almost peri-
odic, almost automorphic, recurrent), then equation (40) admits a unique
τ–periodic (respectively, quasi periodic, Bohr almost periodic, almost au-
tomorphic, recurrent) solution ϕ(t, uy, y) (uy ∈ Cr);

(ii) every solution ϕ(t, u, y) is asymptotically τ–periodic (respectively, asymp-
totically quasi periodic, asymptotically Bohr almost periodic, asymptoti-
cally almost automorphic, asymptotically recurrent)

Proof. Let 〈Cr, ϕ, (Y,R, σ)〉 be the cocycle associated to equation (5). Denote by
(X,R+, π) the skew-product dynamical system, where X := Cr×Y and π := (ϕ, σ)
(i.e., π(t, (u, y)) := (ϕ(t, u, y), σ(t, y)) for all x := (u, y) ∈ Cr × Y and t ∈ R+).
Consider the non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉 generated
by the cocycle ϕ (respectively, by equation (5)), where h := pr2 : X 7→ Y . Since Y
is compact, it is evident that the dynamical system (Y,R, σ) is compact dissipative
and its Levinson center JY coincides with Y . Now we will show that the skew-
product dynamical system (X,R+, π) is point dissipative. Indeed. Let x := (u, y) ∈
Cr × Y = X be an arbitrary point. Notice that the set

∑+
x :=

⋃
{π(t, x)| t ∈

R+} is relatively compact. To this end, it is sufficient to show that the set A :=
pr1(

∑+
x ) =

⋃
{ϕ(t, u, y)| t ∈ R+} is relatively compact in the phase space Cr.

But the last statement follows from the complete continuity of f , the boundedness
of ϕ(t, u, y) on R+, and the Arzelá-Ascoli Theorem. Thus, the ω–limit set ωx of
the point x is a nonempty, compact and invariant set of (X,R+, π). Denote by
ΩX :=

⋃
{ωx| x ∈ X}. It is easy to see from our assumptions that ΩX is a compact

set. Indeed, it is sufficient to note that the set pr1(ωx) = {v ∈ Cr| (v, y) ∈ ωx} is a
bounded set because, according to the dissipativity of equation (5), we have

(8) ||v|| ≤ r
for all v ∈ pr1(ωx) and x ∈ X, where r is the positive number appearing in (6).
Taking into account (8), the invariance of the set ΩX , and the complete continuity
of f , we conclude that the set A = pr1(ΩX) is relatively compact in Cr and,
consequently, the set ΩX is relatively compact in X. Thus, the dynamical system
is point dissipative. Since, thanks to Lemma 2.3, (X,R+, π) is locally dissipative,
then by Theorem 1.10 in [8, Ch. 1], it is compactly dissipative. Denote by JX
its Levinson center and Iy := pr1(JX

⋂
Xy) for all y ∈ Y , where Xy := {x ∈

X : h(x) = y}. According to the definition of the set Iy ⊆ Cr and Theorem
2.24 in [8, Ch. 2, p. 95] (see also Theorem A.1 in Appendix A), u ∈ Iy if and
only if the solution ϕ(t, u, y) is defined on R and relatively compact (i.e., the set
ϕ(R, u, y) ⊆ Cr is compact). Thus Iy = {u ∈ Cr : such that (u, y) ∈ JX}. It is
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easy to see that condition (7) means that the non-autonomous dynamical system
〈(X,R+, π), (Y,R, σ), h〉 is weak convergent. Now, to finish the proof of the theorem,
it is sufficient to apply Theorem 3.5 in [6] (see Theorem A.4 in Appendix A) to the
non-autonomous system 〈(X,R+, π), (Y,R, σ), h〉 generated by equation (5). �

Remark 2.6. 1. Notice that condition (7) is equivalent to

(9) lim
t→+∞

|ϕ̃(t, u1, y)− ϕ̃(t, u2, y)| = 0.

2. Under the assumptions in Theorem 2.5, there exists a unique almost periodic
solution of equation (5), but equation (5) may have more than one solution defined
on R and relatively compact.

2.2. Convergent FDEs with finite delay. Let ϕ(·, φ, g) denote the solution of
(4) passing through the point φ ∈ Cr for t = 0 defined for all t ≥ 0.

Let Y := H(f) and denote by (Y,R, σ) the dynamical system of translations on
H(f). Let X := Cr × Y , (X,R+, π) be the dynamical system on X defined in
the following way: π((φ, g), τ) := (ϕ(τ, φ, g), gτ ). We prove now a very important
property of the non-autonomous dynamical system

〈
(X,R+, σ), (Y,R, σ), h

〉
, where

h = pr2 : X 7→ Y . Namely, we can establish the following result.

Theorem 2.7. Suppose that the following conditions are fulfilled:

(i) equation (3) is regular;
(ii) for every bounded subset A ⊂ Cr, the set f(R×A) is bounded in Rn;
(iii) the function f is pseudo recurrent, i.e., the shift dynamical system (H(f),

R, σ)) is pseudo recurrent;
(iv) equation (3) is strictly dissipative, i.e.,

(10) 〈g(t, φ1)− g(t, φ2), φ1(0)− φ2(0)〉 < 0

for all g ∈ H(f) and φi ∈ Cr (i = 1, 2) with φ1(0) 6= φ2(0);
(v) equation (3) admits a solution ϕ(t, u0, f) which is bounded on R+.

Then,

(i) equation (3) is convergent, i.e., the non-autonomous dynamical system〈
(X,R+, σ), (Y,R, σ), h

〉
generated by equation (3) is convergent;

(ii) if the function f is τ–periodic (respectively, quasi periodic, almost periodic,
almost automorphic, recurrent, pseudo recurrent), then the equation (3)
admits a unique τ–periodic (respectively, quasi periodic, almost periodic,
almost automorphic, recurrent, pseudo recurrent) solution.

Proof. Let ϕ̃(t, ui, g) (i = 1, 2) be two solutions of equation (4) defined on R+

(respectively, on R) and denote by α̃(t) := |ϕ̃(t, u1, g) − ϕ̃(t, u2, g)|2 for all t ∈ R+

(respectively, on R), then by (10) we have

(11)
dα̃(t)
dt

= 2〈g(t, ϕ(t, u1, g))− g(t, ϕ(t, u2, g), ϕ̃(t, u1, g)− ϕ̃(t, u2, g)〉 ≤ 0

for all t ∈ R+ (respectively, t ∈ R) and consequently we obtain

(12) α̃(t2) ≤ α̃(t1)
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for all t1, t2 ∈ R+ (respectively, t1, t2 ∈ R) with t2 ≥ t1. From (12) it follows that

(13) |ϕ̃(t, u1, g)− ϕ̃(t, u2, g)| ≤ |u1(0)− u2(0)|

for all u1, u2 ∈ Cr, g ∈ H(f) and t ≥ 0.

Notice that, under our assumptions, every equation (4) admits at least one solution
which is defined and bounded on R. Indeed. Since f is pseudo recurrent then, in
particular, f is Poisson stable and, consequently, ωf = H(f), where ωf is ω–limit
set of the function f in the Bebutov dynamical system (C(R×Cr,Rn),R, σ). Thus
for every g ∈ H(f) there exists a sequence tn → +∞ such that ftn → g as n→ +∞.
Since the solution ϕ(t, u0, f) is bounded on R+, without loss of generality, we can
assume that the sequence {ϕ(τn, u0, g)} is convergent and denote by v its limit.
Then, we have ϕ(t+ τn, u0, f) = ϕ(t, ϕ(τn, u0, f), fτn) → ϕ(t, v, g). It is clear that
the solution ϕ(t, v, g) of equation (4) is defined and bounded on R. From this fact
and inequality (13) it follows that every solution of every equation (4) is bounded
on R+. From Corollary 2.4 it follows that every positively semi-trajectory of the
skew-product dynamical system (X,R+, π) is relatively compact.

Consider the non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉 generated
by equation (3). We define the function V : X×̇X 7→ R+ as follows:

(14) V ((u1, g), (u2, g)) := ||u1 − u2||.

Note that under the conditions of the theorem, and by the facts established above,
the following conditions are fulfilled:

(i) by Corollary 2.4, the dynamical system (X,R+, π) is asymptotically com-
pact;

(ii) by (13), the non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉
associated to equation (3) is V –monotone, where V : X×̇X 7→ R+ is
defined by (14);

(iii) if ϕ̃(t, ui, g) (i = 1, 2) are two solutions of equation (4) which are bounded
on R, then, by Theorem 4.10 in [9, p. 677] (see Theorem A.6 in Appendix
A), the trajectories ϕ(t, ui, g) (respectively, the solutions ϕ̃(t, ui, g)) (i =
1, 2) are jointly Poisson stable. Since the function α(t) := ||ϕ(t, u1, g) −
ϕ(t, u2, g)|| (for all t ∈ R) (respectively, the function α̃) is Poisson stable
and monotone, then, it is a constant, i.e.,

|ϕ̃(t, u1, g)− ϕ(t, u2, g)| = |u1(0)− u2(0)| (∀ t ∈ R)

(respectively,

(15) ||ϕ(t, u1, g)− ϕ(t, u2, g)|| = ||u1 − u2|| (∀ t ∈ R) );

(iv) the positive semi-trajectory
∑+
x0

, where x0 := (u0, f) ∈ Xf = {(u, f) :
u ∈ Cr}, is relatively compact in X;

(v) the dynamical system (Y,R, σ) if pseudo recurrent.

If u1 6= u2, then it follows from (15) that u1(0) 6= u2(0).

Now we will establish that, for u1, u2 ∈ Cr, (u1(0) 6= u2(0) and (ui, g) ∈ LX
(i = 1, 2))

||ϕ(t, u1, g)− ϕ(t, u2, g)|| < ||u1 − u2||,
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for all t > 0, where || · || is the norm on the space Cr. Indeed, consider the
function α̃ : R 7→ R+ defined above. Since u1 6= u2, then from (15) it follows that
u1(0) 6= u2(0) and ϕ̃(t, u1, g) 6= ϕ̃(t, u1, g) for all t ∈ R. Then, from (10) and (11)
it follows that

dα̃(t)
dt

= 2〈g(t, ϕ(t, u1, g))− g(t, ϕ(t, u2, g), ϕ̃(t, u1, g)− ϕ̃(t, u2, g)〉 < 0

for all t ∈ R and, consequently the function α̃ is strictly monotone decreasing on
R. Note that

||ϕ(t, u1, g)− ϕ(t, u2, g)|| = max
−r≤s≤0

|ϕ̃(t+ s, u1, g)− ϕ̃(t+ s, u2, g)| =

|ϕ̃(t+ st, u1, g)− ϕ̃(t+ st, u2, g)| < |ϕ̃(st, u1, g)− ϕ̃(st, u2, g)| ≤ ||u1 − u2||,
for all t > 0, g ∈ H(f) and u1, u2 ∈ Cr (u1 6= u2), where st is some number
(depending on t) in the segment [−r, 0] .

Now, to finish the proof, it is sufficient to apply Corollary 3.12 in [6] (see Theorem
A.7 in Appendix A). �

Remark 2.8. Theorem 2.7 remains true if we replace the standard scalar product
〈·, ·〉 on the space Rn by an arbitrary scalar product 〈u, u〉W := 〈Wu, u〉, where
W = (wij)ni,j=1 (wij ∈ R) is a symmetric and positive defined n× n–matrix.

2.3. Uniform dissipative FDEs with finite delay. Below we will show that
if we replace assumption (10) by a stronger condition, then Theorem 2.7 is true
without the requirement that there exists at least one solution which is bounded
on R+. Namely, we will establish the following theorem.

Denote by C(Y,Cr) the Banach space of all continuous mappings γ : Y 7→ Cr
endowed with the norm ||γ|| := max

y∈Y
||γ(y)||Cr .

Theorem 2.9. Suppose that the following conditions are fulfilled:

(i) equation (3) is regular;
(ii) for every bounded subset A ⊂ Cr the set f(R×A) is bounded in Rn;
(iii) the function f is pseudo recurrent, i.e., the shift dynamical system (H(f),

R, σ)) is pseudo recurrent;
(iv) equation (3) is uniformly strictly dissipative, i.e., there exists a number β

such that

(16) 〈g(t, φ1)− g(t, φ2), φ1(0)− φ2(0)〉 ≤ −β|φ1(0)− φ2(0)|2

for all t ∈ R+, g ∈ H(f) and φi ∈ Cr (i = 1, 2) with φ1(0) 6= φ2(0).

Then, the following statements hold:

(i) there exists a unique mapping γ ∈ C(Y,Cr) such that γ(σ(t, g)) = ϕ(t,
γ(g), g) for all g ∈ H(f) and t ∈ R+;

(ii) the equality

lim
t→+∞

||ϕ(t, u, g)− ϕ(t, γ(g), g)|| = 0

holds for all g ∈ H(f) and v ∈ Cr.
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Proof. According to (16) we have

d ˜α(t)
dt

= 2〈g(t, ϕ(t, u1, g))− g(t, ϕ(t, u2, g), ϕ̃(t, u1, g)− ϕ̃(t, u2, g)〉

≤ −2β|ϕ̃1(t)− ϕ̃2(t)|2

for all t ∈ R+ and, consequently,

(17) ˜α(t) ≤ |u1(0)− u2(0)|2 exp (−βt)

for all t ∈ R+. From (17) we obtain

||ϕ(t, u1, g)− ϕ(t, u2, g)|| = max
−r≤s≤0

|ϕ̃(t+ s, u1, g)− ϕ̃(t+ s, u2, g)|(18)

= |ϕ̃(t+ st, u1, g)− ϕ̃(t+ st, u2, g)|
≤ |ϕ̃(st, u1, g)− ϕ̃(st, u2, g)| exp (−βt)
≤ ||u1 − u2|| exp (−βt),

for all t ≥ 0, g ∈ H(f) and u1, u2 ∈ Cr, where st is some number (depending on t)
in the segment [−r, 0] .

Consider the cocycle 〈Cr, ϕ, (Y,R, σ)〉 generated by equation (3), where Y = H(f)
and ϕ(t, v, g) is a unique solution of equation (4) passing through v ∈ Cr at the
initial moment t = 0. For all t ∈ R+ we define a mapping St : C(Y,Cr) 7→ C(Y,Cr)
by the equality

(19) (Stη)(g) := ϕ(t, η(g), g−t)

for all η ∈ C(Y,Cr), g ∈ H(f) = Y and t ∈ R+. It is clear that, under the
conditions of our theorem and thanks to (19), we can define correctly a continuous
mapping St (t ∈ R+) from C(Y,Cr) into itself and the equality

(20) St ◦ Sτ = St+τ

holds for all t, τ ∈ R+, where ◦ is the composition of mappings St and Sτ . Equality
(20) means that the family of nonlinear operators {St}t∈R+ forms a commutative
semigroup. Let now γi ∈ C(Y,Cr) (i = 1, 2). Then, according to inequality (18),
we have

||Stγ1 − Stγ2|| = max
g∈H(f)

||ϕ(t, γ1(g), g−t)− ϕ(t, γ2(g), g−t)||(21)

≤ exp (−βt) max
g∈H(f)

||γ1(g)− γ2(g)||Cr

= exp (−βt)||γ1 − γ2||

for all t ∈ R+ and γ1, γ2 ∈ C(Y,Cr). From (21) it follows that Lip(St) ≤ exp (−βt)
(Lip(F ) is the Lipschitz constant of F ) and, consequently, for t > 0 the mapping
St is a contraction. Since the semigroup {St}t∈R+ is commutative, then it admits
a unique fixe point γ, i.e., γ(σ(t, g)) = ϕ(t, γ(g), g) for all g ∈ H(f) and t ∈ R+.
Thus the first statement of our theorem is proved.

The second statement follows from the inequality (18). In fact, we have

(22) ||ϕ(t, u, g)− ϕ(t, γ(g), g)|| ≤ ||u− γ(g)|| exp (−βt)

for all g ∈ H(f), t ∈ R+ and u ∈ Cr. Passing to the limit in (22) we obtain the
necessary statement. The result is completely proved. �
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Corollary 2.10. Under the conditions of Theorem 2.9 the following statements
hold:

(i) equation (3) is convergent;
(ii) if the function f is τ–periodic (respectively, quasi periodic, almost peri-

odic, almost automorphic, recurrent, pseudo recurrent), the equation (3)
admits a unique τ–periodic (respectively, quasi periodic, almost periodic,
almost automorphic, recurrent, pseudo recurrent) solution and every solu-
tion of equation (3) is asymptotically τ–periodic (respectively, asymptoti-
cally quasi periodic, asymptotically almost periodic, asymptotically almost
automorphic, asymptotically recurrent, asymptotically pseudo recurrent).

Proof. This statement follows from Theorem 2.9. �

Remark 2.11. 1. Actually Theorem 2.9 establishes the convergence of equation
(3).

2. Theorem 2.9 remains true if we replace (16) by a more general condition: there
are numbers β > 0 and δ ≥ 0 such that

〈g(t, φ1)− g(t, φ2), φ1(0)− φ2(0)〉 ≤ −β|φ1(0)− φ2(0)|2+2δ

for all g ∈ H(f), t ∈ R+ and φ1, φ2 ∈ Cr. More information about different
generalizations of this type can be found in the work [11]. Below we will prove this
fact which is not based on the ideas used in the proof of Theorem 2.9.

Theorem 2.12. Suppose that the following conditions are fulfilled:

(i) equation (3) is regular;
(ii) for every bounded subset A ⊂ Cr the set f(R×A) is bounded in Rn;
(iii) the function f is pseudo recurrent, i.e., the shift dynamical system (H(f),

R, σ)) is pseudo recurrent;
(iv) equation (3) is uniformly strictly dissipative, i.e., there exist numbers β > 0

and δ ≥ 0 such that

(23) 〈g(t, φ1)− g(t, φ2), φ1(0)− φ2(0)〉 ≤ −β|φ1(0)− φ2(0)|2+2δ

for all t ∈ R+, g ∈ H(f) and φi ∈ Cr (i = 1, 2) with φ1(0) 6= φ2(0).

Then,

(i) equation (3) is dissipative;
(ii) there exists a unique mapping γ ∈ C(Y,Cr) such that γ(σ(t, g)) = ϕ(t,

γ(g), g) for all g ∈ H(f) and t ∈ R+;
(iii) the equality

lim
t→+∞

||ϕ(t, u, g)− ϕ(t, γ(g), g)|| = 0

holds for all g ∈ H(f) and v ∈ Cr.
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Proof. First, we will show that equation (3) is dissipative. Indeed, denote by w(t) :=
|ϕ̃(t, u, g)|2. Then, according to (23), we have

dw(t)
dt

= 2〈g(t, ϕ(t, u, g))− g(t, 0), ϕ̃(t, u, g)〉+ 2〈g(t, 0), ϕ̃(t, u, g)〉(24)

≤ −2β|ϕ̃(t, u, g)|2+2δ + 2M |ϕ̃(t, u, g)|

for all t ∈ R+, where M := sup
t∈R
|f(t, 0)| ≥ sup

t∈R
|g(t, 0)| (for all g ∈ H(f)). Consider

the scalar differential equation

(25) x′ = −2βx1+β + 2Mx1/2

on the semi-axis R+. It is easy to check that this equation possesses two fixed
points x0 = 0, x1 = (Mβ )2/(1+2β) and the segment [x0, x1] is the global attractor for
(25). This means, in particular, that

(26) lim sup
t→+∞

φ(t, x) ≤ r0

for all x ∈ R+, where r0 := x1 and by φ(t, x) we denote the unique solution of
equation (25) with initial condition φ(0, x) = x (x ∈ R+). Note that from (24) and
(25) it follows that

|ϕ̃(t, u, g)| ≤
√
φ(t, |u(0)|2)

for all t ∈ R+ and, consequently,

(27) lim sup
t→+∞

|ϕ̃(t, u, g)| ≤
(M
β

)1/(1+2β)
.

From (27) we obtain

(28) lim sup
t→+∞

||ϕ(t, u, g)|| = lim sup
t→+∞

|ϕ̃(t+ st, u, g)| ≤
(M
β

)1/(1+2β)
,

where st ∈ [−r, 0] is some number depending on t. Taking into account (28) and the
fact that

(
M
β

)1/(1+2β) is an absolute constant, we conclude that (3) is dissipative.

Consider the non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉 generated
by equation (3). Note that, owing to our assumptions and the facts established
above, the following conditions are fulfilled:

(i)
〈g(t, φ1)− g(t, φ2), φ1(0)− φ2(0)〉 < 0

for all t ∈ R+, g ∈ H(f) and φi ∈ Cr (i = 1, 2) with φ1(0) 6= φ2(0).
(ii) by Lemma 2.3 the skew-product dynamical system (X,R+, π) associated

to equation (3) is locally compact;
(iii) by Corollary 2.4 the dynamical system (X,R+, π) is asymptotically com-

pact;
(iv) every positive semi-trajectory

∑+
x , where x := (u, g) ∈ Xg = {(u, g) : u ∈

Cr}, is relatively compact in X;
(v) the dynamical system (Y,R, σ) if pseudo recurrent.

Now to finish the proof of our theorem it is sufficient to apply Corollary 3.12 in [6]
(see Theorem A.7 in Appendix A) and Theorem 2.7. �
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Remark 2.13. Theorem 2.12 remains true if we replace condition (23) by

〈g(t, φ1)− g(t, φ2), φ1(0)− φ2(0)〉 ≤ −ζ(|φ1(0)− φ2(0)|2),

where ζ ∈ K possessing the following properties:

(i) x−1/2ζ(x)→ +∞ as x→ +∞;
(ii) the differential equation x′ = −2ζ(x) + Mx1/2 defines a semi-flow on R+

(M is a constant defined in the proof of Theorem 2.12).

This statement can be proved using the same reasoning as that in the proof of
Theorem 2.12.

3. Convergent evolution equations with monotone operators

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm | · | =
√
〈·, ·〉,

and E be a reflexive Banach space contained in H algebraically and topologically.
Furthermore, let E be dense in H, and here H can be identified with a subspace of
the dual E′ of E and 〈·, ·〉 can be extended by continuity to E′ × E.

Let A be an operator (generally speaking, nonlinear) with the domain of definition
D(A) ⊆ H.

Recall (see [2, 22]) that the operator A is said to be

- monotone, if
〈Au1 −Au2, u1 − u2〉 ≥ 0

for all u1, u2 ∈ D(A);
- strictly monotone, if

〈Au1 −Au2, u1 − u2〉 > 0

for all u1, u2 ∈ D(A) (u1 6= u2);
- semi-continuous, if for each u, v ∈ D(A) and w ∈ H the function ϕ : R 7→ R

defined by the equality ϕ(t) := 〈A(u+ tv), w〉 (for all t ∈ R) is continuous;
- uniformly monotone, if there exist positive numbers α and p ≥ 2 such that

〈Au1 −Au2, u1 − u2〉 ≥ α|u− v|p

for all u, v ∈ D(A).

Note that the family of monotone operators can be partially ordered by including
graphics. A monotone operator is called maximal, if it is maximal among the
monotone operators.

Let (Y,R, σ) be a dynamical system on the metric space Y . In this subsection we
suppose that Y is a compact space. We consider the initial value problem

(29) u′(t) +Au(t) = f(σ(t, y)) (y ∈ Y )

(30) u(0) = u,

where A : E → E′ is bounded (generally non-linear),

|Au|E′ ≤ C|u|p−1
E +K,u ∈ E, p > 1,
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coercive,
〈Au, u〉 ≥ a|u|pE , u ∈ E, a > 0,

monotone,
〈Au1 −Au2, u1 − u2〉 ≥ 0, u1, u2 ∈ E,

and semi-continuous (see [23]).

A nonlinear “elliptic” operator given by

Au = −
n∑
i=1

∂

∂xi
φ(
∂u

∂xi
) in D ⊂ Rn

u = 0 on ∂D,

where D is a bounded domain in Rn, φ(·) is an increasing function satisfying

φ|[−1,1] = 0, c|ξ|p ≤
n∑
i=1

ξiφ(ξi) ≤ C|ξ|p ( for all |ξ| ≥ 2 ),

provides an example of such kind of operator with H = L2(D), E = W 1,p
0 (D), E′ =

W−1,p′(D), p′ = p
p−1 .

The following result is established in [23] (Ch. 2 and Ch. 4). If x ∈ H and
f ∈ C(Ω, E′), p′ = p

p−1 , then there exists a unique solution ϕ ∈ C(R+, H) of (29)
– (30).

Let (R,B;µ) be a space where µ is a Radon measure and B is a Banach space with
norm | · |.

Let 1 ≤ p ≤ +∞. By Lp(R; B, µ) we denote the space of all measurable functions
(classes of functions) f : R→ B such that |f | ∈ Lp(R; R;µ), where |f |(s) = |f(s)|.
The space Lp(R; B;µ) is endowed with the norm

(31) ||f ||Lp = (
∫

R
|f(s)|pdµ(s))1/p and ||f ||∞ = ess sups∈R|f(s)|.

Lp(R; B;µ) with norm (31) is a Banach space.

Denote by Lploc(R; B;µ) the set of all function f : R→ B such that fl ∈ Lp([−l, l]∩
R; B;µ) for every l > 0, where fl is the restriction of the function f onto [−l, l]∩R.

In the space Lploc(R; B;µ) we define the following family of semi-norms || · ||l,p :

(32) ||f ||l,p = ||fl||Lp([−l,l]∩R;B;µ) (l > 0).

These semi-norms in (32) define a metrizable topology on Lploc(R; B;µ). The metric
given by this topology can be defined, for instance, by

dp(ϕ,ψ) =
∞∑
n=1

1
2n

||ϕ− ψ||n,p
1 + ||ϕ− ψ||n,p

.

Let us define a mapping σ : Lploc(R; B;µ)×R→ Lploc(R; B;µ) as follows: σ(f, τ) =
f(τ) for all f ∈ Lploc(R; B;µ) and τ ∈ R, where f(τ)(s) := f(s+ τ) (s ∈ R).

Lemma 3.1. [10, Ch. 1] (Lploc(R; B;µ),R, σ) is a dynamical system.
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Let Y := H(f) = {f(τ)| τ ∈ R}, where by bar it is denoted the closure in L1(R, H).
By (Y,R, σ) we denote the dynamical system of shifts on Y induced by the dynami-
cal system (L1

loc(R, H),R, σ). Put X := D(A)×Y and define π : R+×D(A)×Y →
D(A)×Y by the equality π(t, (v, g)) := (ϕ(t, v, g), gt) and h := pr2 : X → Y . As it
is shown in the work [18], the triplet 〈(X,R+, π), (Y,R, σ), h〉 is a non-autonomous
dynamical system.

Applying the general theory developed in [6] (i.e. the results in Appendix A) to
the constructed non-autonomous dynamical systems, we obtain the corresponding
statements for equation (29). Let us establish some of them.

Theorem 3.2. Suppose that the following conditions are fulfilled:

(i) equation (29) is compact dissipative, i.e., the cocycle ϕ (or equivalently,
the skew-product dynamical system generated by equation (29)) generated
by equation (29) is compact dissipative;

(ii) the space Y is compact, and the dynamical system (Y,R, σ) is minimal;
(iii) for all y ∈ Y

(33) lim
t→+∞

|ϕ(t, u1, y)− ϕ(t, u2, y)| = 0,

where ϕ(t, ui, y) (i = 1, 2) is solution of equation (29) passing through ui
at the initial moment t = 0 which is relatively compact on R.

Then,

(i) if the point y is τ–periodic (respectively, quasi periodic, Bohr almost peri-
odic, almost automorphic, recurrent), then equation (29) admits a unique
τ–periodic (respectively, quasi periodic, Bohr almost periodic, almost au-
tomorphic, recurrent) solution ϕ(t, uy, y) (uy ∈ D(A));

(ii) every solution ϕ(t, x, y) is asymptotically τ–periodic (respectively, asymp-
totically quasi periodic, asymptotically Bohr almost periodic, asymptoti-
cally almost automorphic, asymptotically recurrent)

Theorem 3.3. Let (Y,R, σ) be pseudo recurrent, operator A be strictly monotone,
and there exists at least one solution ϕ(t, x0, y) of equation (29) which is relatively
compact on R+.

Then,

(i) equation (29) is convergent, i.e., the cocycle ϕ associated to equation (29)
is convergent;

(ii) for all y ∈ Y , equation (29) admits a unique solution ϕ(t, xy, y) which is
relatively compact on R and uniformly compatible, i.e., My ⊆Mϕ(·,xy,y);

(iii) if the point y is τ–periodic (respectively, quasi periodic, Bohr almost peri-
odic, almost automorphic, recurrent), then
(a) equation (29) has a unique τ–periodic (respectively, quasi periodic,

Bohr almost periodic, almost automorphic, recurrent) solution;
(b) every solution ϕ(t, x, y) is asymptotically τ–periodic (respectively, asymp-

totically quasi periodic, asymptotically Bohr almost periodic, asymp-
totically almost automorphic, asymptotically recurrent);

(c) lim
t→∞

|ϕ(t, x, y)− ϕ(t, xy, y)| = 0 for all x ∈ D(A) and y ∈ Y .
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Remark 3.4. If we suppose that operator A is uniformly monotone, then Theorem
3.3 is also true without the requirement that there exists at least one solution which
is relatively compact on R+. Below we will prove this statement.

Let ϕ : R+ → R+. Denote by ϕ(t0 + 0) := lim
t→t0,t>t0

ϕ(t) if the last limit exists.

The mapping ϕ is called upper semi-continuous from the right at the point t0 ∈ R+,
if there exists lim sup

t→t0,t>t0
ϕ(t) ≤ ϕ(t0).

The mapping f : X → X is called a ϕ-contraction, if ρ(f(x1), f(x2)) ≤ ϕ(ρ(x1, x2))
for all x1, x2 ∈ X, where ϕ is some mapping from R+ to itself.

Then, we recall the following well-known result which will be useful in our proofs.

Theorem 3.5. [1, 4, 21] Let f : X → X be a ϕ-contraction. Suppose that the
mapping ϕ : R+ → R+ satisfies the following conditions:

(G1) ϕ(t) < t for all t > 0;
(G2) ϕ s monotonically increasing, i.e. t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2);
(G3) ϕ is right continuous on R+, i.e. ϕ(t0 + 0) = ϕ(t0) for all t0 ∈ R+.

Then f has a unique fixed point x0 and lim
n→∞

fn(x) = x0 for all x ∈ X.

Theorem 3.6. Let (Y,R, σ) be pseudo recurrent and operator A be uniformly mono-
tone.

Then,

(i) equation (29) is convergent, i.e., the cocycle ϕ associated to equation (29)
is convergent;

(ii) for all y ∈ Y , equation (29) admits a unique solution ϕ(t, xy, y) which is
relatively compact on R and uniformly compatible, i.e., My ⊆Mϕ(·,xy,y);

(iii) if the point y is τ–periodic (respectively, quasi periodic, Bohr almost peri-
odic, almost automorphic, recurrent), then
(a) equation (29) has a unique τ–periodic (respectively, quasi periodic,

Bohr almost periodic, almost automorphic, recurrent) solution;
(b) every solution ϕ(t, x, y) is asymptotically τ–periodic (respectively, asymp-

totically quasi periodic, asymptotically Bohr almost periodic, asymp-
totically almost automorphic, asymptotically recurrent);

(c) lim
t→∞

|ϕ(t, x, y)− ϕ(t, xy, y)| = 0 for all x ∈ D(A) and y ∈ Y .

Proof. Let ui ∈ D(A) (i = 1, 2) and ϕ(t, ui, y) be a unique solution of equation
(29). By uniform monotony of operator A we have

d|ϕ(t, u1, y)− ϕ(t, u2, y)|2

dt
(34)

= −2〈A(ϕ(t, u1, y))−A(ϕ(t, u2, y), ϕ(t, u1, y)− ϕ(t, u2, y)〉
≤ −2α|ϕ(t, u1, y)− ϕ(t, u2, y)|p
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for all t ∈ R+. Denote by ω(t) := |ϕ(t, u1, y) − ϕ(t, u2, y)|2, then from (34) we
obtain

(35) ω′(t) ≤ −2αω(t)p/2.

We will consider two cases.

1. If p = 2, then from (35) we have |ϕ(t, u1, y)− ϕ(t, u2, y)| ≤ e−αt|u1 − u2| for all
t ∈ R+, u1.u2 ∈ D(A) and y ∈ Y . To finish the proof in this case it is necessary to
use the same reasoning as in the proof of Theorem 2.9.

2. Let now p > 2. By inequality (35) we obtain

(36) |ϕ(t, u1, y)− ϕ(t, u2, y)| ≤ |u1 − u2|
(1 + |u1 − u2|

p−2
p α(p− 2)t)

2
p−2

for all t ∈ R+, u1, u2 ∈ D(A) and y ∈ Y . Thus we have

(37) |ϕ(t, u1, y)− ϕ(t, u2, y)| ≤ ω(t, |u1 − u2|)

for all t ∈ R+, u1, u2 ∈ D(A) and y ∈ Y , where

(38) ω(t, r) := r(1 + α(p− 2)t|u1 − u2|
p−2
p )−

2
p−2

is the function with the following properties:

(i) ω(0, r) = r for all r ∈ R+;
(ii) ω′(t) = −2αω(t);
(iii) the mapping ω(t, ·) : R+ 7→ R+ is strict increasing;
(iv) ω(t, r) < r for all t > 0 and r > 0.

Let C(Y,D(A)) be the Banach space of all continuous ν : Y 7→ D(A) with the
sup-norm. Now we define for all t ∈ R+ a mapping St from C(Y,D(A)) into itself
by following rule (Stν)(y) := ϕ(t, ν(y), σ(−t, y)) for all y ∈ Y . It easy to check that
the family of maps {St}t≥0 forms a semigroup with respect to composition (more
exactly StSτ = St+τ for all t, τ ∈ R+). Notice that from (37) and the fact that
ω(t, ·) is increasing we have

d(Stν1, S
tν2) := max

y∈Y
|ϕ(t, ν1(y), σ(−t, y))− ϕ(t, ν2(y), σ(−t, y))|

≤ max
y∈Y

ω(t, |ν1(y)− ν2(y)|) ≤ ω(t, d(ν1, ν2))

for all t ∈ R+ and ν1, ν2 ∈ C(Y,D(A)).

Note that for all t > 0 the operator St acting on the complete metric space
(C(Y,D(A)), d) is a ϕ–contraction possessing the properties (G1) − (G3), where
ϕ := ω(t, ·). Let t0 > 0. According to Theorem 3.5 St0 has a unique fixed
point γ ∈ C(Y,D(A)). Since the semi-group {St}t≥0 is commutative, then γ is
a unique common fixed point of this semi-group. This means, in particular, that
ϕ(t, γ(y), y) = γ(σ(t, y)) for all t ∈ R+. Thus, equation (29) has at least one
relatively compact on R+ solution ϕ(t, γ(y), y). In addition we have

(39) sup
|u|≤r,y∈Y

|ϕ(t, u, y)− ϕ(t, γ(y), y)| ≤ e−αt sup
|u|≤r,y∈Y

|u− γ(y)| → 0
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as t → +∞ for every r > 0. From (39) it follows that the cocycle ϕ is compact
dissipative. Now to finish the proof it is sufficient to apply Theorem 3.2. �

Remark 3.7. Theorem 3.6 generalizes and precises Theorem 7.10 in [11].

4. Semi-linear parabolic equations

Let H be a separable Hilbert space with inner product 〈·, ·〉, and associated norm
| · | := 〈·, ·〉1/2, and A be a self-adjoint operator with domain D(A).

An operator is said (see, for example, [12, Ch. II]) to have a discrete spectrum in
the space H, if there exists an orthonormal basis {ek} of eigenvectors, such that
〈ek, ej〉 = δkj , Aek = λkek (k, j = 1, 2, . . .) and 0 < λ1 ≤ λ2 ≤ . . . , λk ≤ . . ., and
λk → +∞ as k → +∞.

One can define an operator f(A) for a wide class of functions f defined on the
positive semi-axis as follows:

D(f(A)) := {h =
∑∞
k=1 ckek ∈ H :

∑∞
k=1 ck[f(λk)]2 < +∞},

f(A)h :=
∑∞
k=1 ckf(λk)ek, h ∈ D(f(A)).(40)

In particular, we can define operators Aα for all α ∈ R. For α = −β < 0 this
operator is bounded. The space D(A−β) can be regarded as the completion of the
space H with respect to the norm | · |β := |A−β · |.

The following statements hold [12, Ch. II]:

(i) The space F−β := D(A−β) with β > 0 can be identified with the space of
formal series

∑∞
k=1 ckek such that

∞∑
k=1

ckλ
−2β
k < +∞;

(ii) For any β ∈ R, the operator Aβ can be defined on every space D(Aα) as
a bounded operator mapping D(Aα) into D(Aα−β) such that

AβD(Aα) = D(Aα−β), Aβ1+β2 = Aβ1Aβ2 .

(iii) For all α ∈ R, the space F := D(Aα) is a separable Hilbert space with the
inner product 〈·, ·〉α := 〈Aα·, Aα·〉 and the norm | · |α := |Aα · |.

(iv) The operator A with the domain F1+α is a positive operator with discrete
spectrum in each space Fα.

(v) The embedding of the space Fα into Fβ for α > β is continuous, i.e.,
Fα ⊂ Fβ and there exists a positive constant C = C(α, β) such that
| · |β ≤ C| · |α.

(vi) Fα is dense in Fβ for any α > β.
(vii) Let α1 > α2, then the space Fα1 is compactly embedded into Fα2 , i.e.,

every sequence bounded in Fα1 is relatively compact in Fα2 .
(viii) The resolvent Rλ(A) := (A−λI)−1, λ 6= λk is a compact operator in each

space Fα, where I is the identity operator.

According to (40) we can define an exponential operator e−tA, t ≥ 0, in the scale
spaces {Fα} . Note some of its properties [12, Ch. II]:
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a. For any α ∈ R and t > 0 the linear operator e−tA maps Fα into
⋂
β≥0

Fβ

and

(41) |e−tAx|α ≤ e−λ1t|x|α
for all x ∈ Fα.

b. e−t1Ae−t2A = e−(t1+t2)A for all t1, t2 ∈ R+;
c.

(42) |e−tAx− e−τAx|β → 0

as t→ τ for every x ∈ Fβ and β ∈ R;
d. For any β ∈ R the exponential operator e−tA defines a dissipative compact

dynamical system (Fβ , e−tA);
e.

|Aαe−tAh| ≤
[(
α−β
t

)α−β + λα−β1

]
e−tλ1 |Aβh|, α ≥ β

||Aαe−tA|| ≤
(
α
t

)α
e−α, t > 0, α > 0.(43)

Let (Y, ρ) be a compact complete metric space and (Y,R, σ) be a dynamical system
on Y . Consider an evolutionary differential equation

(44) u′ +Au = F (σ(t, y), u) (y ∈ Y )

in the separable Hilbert space H, where A is a linear (generally speaking un-
bounded) positive operator with discrete spectrum, and F is a non-linear continuous
mapping acting from Y ×Fθ into H, 0 ≤ θ < 1, possessing the property

(45) |F (y, u1)− F (y, u2)| ≤ L(r)|Aθ(u1 − u2)|

for all u1, u2 ∈ Bθ(0, r) := {u ∈ Fθ : |u|θ ≤ r}. Here L(r) denotes the Lipschitz
constant of F on the set Bθ(0, r).

A function u : [0, a) 7→ Fθ is said to be a weak solution (in Fθ) of equation (44)
passing through the point x ∈ Fθ at the initial moment t = 0 (notation ϕ(t, x, y))
if u ∈ C([0, T ],Fθ) and satisfies the integral equation

(46) u(t) = e−tAx+
∫ t

0

e−(t−τ)AF (σ(τ, y), u(τ))dτ

for all t ∈ [0, T ] and 0 < T < a.

In the book [12, Ch. II], it is proved that, under the conditions listed above, there
exists a unique solution ϕ(t, x, y) of equation (45) passing through the point x at
the initial moment t = 0, and it is defined on a maximal interval [0, a), where a is
some positive number depending on (x, y) ∈ Fθ × Y . Below we will generalize this
result.

Theorem 4.1. Let x0 ∈ Fθ, r > 0 and the conditions listed above be fulfilled. Then,
there exist positive numbers δ = δ(x0, r) and T = T (x0, r) such that equation (44)
admits a unique solution ϕ(t, x, y) (x ∈ Bθ[x0, δ] = {x ∈ Fθ | |x−x0|θ ≤ δ}) defined
on the interval [0, T ] with the conditions: ϕ(0, x, y) = x, |ϕ(t, x, y) − x0|θ ≤ r for
all t ∈ [0, T ] and the mapping ϕ : [0, T ]× B[x0, δ]× Y → Fθ ((t, x, y) 7→ ϕ(t, x, y))
is continuous.
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Proof. Let x0 ∈ Fθ, r > 0, δ > 0 and T > 0. We consider the space Cx0,r,δ,T of
all continuous functions ψ : [0, T ] × Bθ[x0, δ] × Y → Bθ[x0, r] equipped with the
distance

d(ψ1, ψ2) := sup{|ψ1(t, x, y)− ψ(t, x, y)|θ : 0 ≤ t ≤ T, x ∈ Bθ[x0, δ], y ∈ Y }

which is a complete metric space.

We define the operator Φ acting onto Cx0,r,δ,T by the equality

(Φψ)(t, x, ω) = e−Atx+
∫ t

0

e−A(t−s)F (σ(τ, y), ψ(s, x, y)))ds.

There exist δ1 = δ1(x0, r) > 0 and T1 = T1(x0, r) > 0 such that ΦCx0,r,δ,T ⊆
Cx0,r,δ,T for all δ ∈ (0, δ1] and T ∈ (0, T1]. In fact,

|(Φψ)(t, x, ω)− x0|Fθ ≤ |e−Atx− x0|Fθ

+|
∫ t

0

e−A(t−s)F (σ(τ, y), ψ(s, x, y)))ds|Fθ

≤ m(δ, T )

+
∫ t

0

[(
θ

t− τ
)θ + λθ1]dτ max

0≤τ≤t
|F (σ(τ, y), ψ(τ, x, y))|,(47)

where m(δ, T ) := sup{|e−tAx− x0|Fθ : t ∈ [0, T ], x ∈ Bθ[x0, r]}.

Note that

m(δ, T ) := sup{|e−tAx− x0|Fθ : t ∈ [0, T ], x ∈ Bθ[x0, r]}
≤ sup{|e−tAx− e−tAx0|Fθ : t ∈ [0, T ], x ∈ Bθ[x0, r]}

+ |e−tAx0 − x0|Fθ
≤ δ max

0≤t≤T
||e−tA||θ + max

0≤t≤T
|e−tAx0 − x0|,(48)

and by properties (41),(42), and from (48) we obtain m(δ, T )→ 0 as T + δ → 0.

Now we will estimate the second term in inequality (47). Notice that

|F (σ(τ, y), ψ(τ, x, y))| ≤ |F (σ(τ, y), ψ(τ, x, y))− F (σ(τ, y), x0)|
+ |F (σ(τ, y), x0)|

≤ L(|x0|+ r)|ψ(τ, x, y)− x0|θ +Mx0

≤ L(|x0|+ δ)δ +Mx0(49)

for all τ ∈ [0, T ], x ∈ Bθ[0, δ] and y ∈ Y , where Mx0 := max
y∈Y
|F (y, x0)|θ. Thus,

it follows from (49) that the second term of the right–hand side of inequality (47)
tends to zero as well, as δ + T → 0 and, consequently, the necessary statement is
proved.
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Let now ψ1, ψ2 ∈ Cx0,r,δ,T , then

|(Φψ1)(t, x, ω))− (Φψ2)(t, x, ω))|θ

= |
∫ t

0

e−(t−τ)A[F (στ, ψ1(τ, x, y))− F (στ, ψ2(τ, x, y))]dτ |θ

≤ L(δ + |x0|) sup
0≤t≤T,x∈Bθ[x0,δ],y∈Y

|ψ1(t, x, y)− ψ(t, x, y)|θ
∫ t

0

[(
θ

t− τ
)θ + λθ1]dτ

and, consequently, d(Φψ1,Φψ2) ≤ L(x0, δ, T )d(ψ1, ψ2), where

L(x0, δ, T ) = L(|x0|+ δ) max
0≤t≤T

∫ t

0

[(
θ

t− τ
)θ + λθ1]dτ

and L(x0, δ, T ) → 0 as T → 0. Thus there exists T2 = T2(x0, δ) > 0 such that
L(x0, δ, T ) < 1 for all T ∈ (0, T2]. Denote by δ(x0, r) := δ1(x0, r) and T (x0, r) :=
min(T1(x0, r), T2(x0, r)), then the mapping Φ : Cx0,r,δ,T → Cx0,r,δ,T is a contraction
and, consequently, there exists a unique function ϕ ∈ Cx0,r,δ,T satisfying equation
(44) on the interval [0, T ]. The theorem is proved. �

Remark 4.2. Theorem 4.1 holds true for the following equation

u′ +Au = F (σ(t, y), u)

if the continuous function F : Y ×Fθ → H satisfies the following conditions:

(i)
sup{|F (y, 0)|Fθ : y ∈ Y } <∞

(Y, generally speaking, is not compact);
(ii) F is locally Lipschitz, i.e., for every r > 0 there exists L(r) > 0 such that

|F (y, u1)− F (y, u2)|Fθ ≤ L(r)|u1 − u2|Fθ
for all u1, u2 ∈ Fθ with the condition that |ui|Fθ ≤ r (i = 1, 2).

Recall that a function F ∈ C(Y × Fθ, H) is said to be regular, if for any u ∈ Fθ
and y ∈ Y there exists a unique solution ϕ(t, u, y) of equation (44) passing through
the point u at the initial moment t = 0, defined on R+ and the mapping ϕ :
R+ ×Fθ × Y 7→ Fθ is continuous.

In the sequel, we suppose that the function F ∈ C(Y ×Fθ, H) is regular.

Lemma 4.3. Let 〈Fθ, ϕ, (Y,R, σ)〉 be the cocycle generated by equation (44) and
M ⊆ Xθ := Fθ×Y positively invariant (with respect to the skew-product dynamical
system (X,R+, π), where π := (ϕ, σ)) and bounded. Then, there exists a relatively
compact set K ⊆ Xα (α ∈ (θ, 1)) such that

lim
t→+∞

β(π(t,M),K) = 0,

where β(A,B) := sup
a∈B

ρα(a,B), ρα(a,B) := inf
b∈B

ρα(a, b), ρα(a, b) := ρ(ya, yb) +

|xa − xb|α, a := (xa, ya) and b := (xb, yb).

Proof. Let M ⊆ Xθ be a positively invariant and bounded set in (Xθ,R+, π), then
there exists a positive number R0 such that

|ϕ(t, x, y)|θ ≤ R0
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for all t ∈ R+ and (x, y) ∈ M . Let l be a positive number. Since ϕ(t + l, x, y) =
ϕ(l, ϕ(t, x, y), σ(t, y)) for all (x, y) ∈M and t ∈ R+, then from (46) we obtain

(50) ϕ(t+ l, x, y) = e−lAϕ(t, x, y) +
∫ l

0

e−(l−τ)AF (σ(t+ τ, y), ϕ(t+ τ, x, y)))dτ.

From (50) and (43) we obtain

|Aαϕ(t+ l, x, y)| ≤ |Aθϕ(t, x, y)|(51)

+
∫ l

0

|e−(l−τ)AF (σ(t+ τ, y), ϕ(t+ τ, x, y)))|dτ

≤ (α− θ)α−θe−(α−θ)|ϕ(t, x, y)|θ

+
∫ l

0

(
α

1− τ
)αe−α|F (σ(t+ τ, y), ϕ(t+ τ, x, y)))|dτ.

Note that

|F (σ(t, y), ϕ(t, x, y))| ≤ |F (σ(t, y), ϕ(t, x, y)))− F (σ(t, y), 0)|
+ |F (σ(t, y), 0)|
≤ L(R0)R0 +M0(52)

for all t ∈ R+ and (x, y) ∈M and, consequently, from (51) and (52) we obtain

|Aαϕ(t+ l, x, y)| ≤ Rα
for all t ∈ R+ and (x, y) ∈M , where

Rα := (α− θ)α−θe−(α−θ)R0 + αα
e1−2α

1− α
.

Since the space Fα is compactly embedded in Fθ (α ∈ (θ, 1)), then the set Ml :=
{π(t, (x, y)) : t ≥ l, (x, y) ∈ M} ⊆ M is a relatively compact set in Fθ and,
consequently, the omega limit set ω(M) is a nonempty, compact and invariant set
of the dynamical system (Xθ,R+, π) and

lim
t→+∞

β(π(t,M), ω(M)) = 0.

Our lemma is completely proved now. �

Equation (44) (equivalently, the cocycle ϕ generated by equation (44)) is said to be
dissipative if there exists a positive number R0 such that for all r > 0 there exists
a positive number l = l(r) such that

|ϕ(t, x, y)|θ ≤ R0

for all t ≥ l(r), ||x||θ ≤ r and y ∈ Y .

Theorem 4.4. If equation (44) is dissipative, then it admits a compact global
attractor, i.e., there exists a nonempty, compact and invariant subset J ⊆ Xθ =
Fθ × Y which attracts every bounded subset M ⊆ Xθ. This means that

lim
t→+∞

β(π(t,M), J) = 0

for all bounded subset M from Xθ.
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Proof. Let (44) be dissipative and R0 be the positive number appearing in (52).
Denote by M0 := {(x, y) ∈ Xθ : |x|θ ≤ R0 and y ∈ Y }. Then, by the dissipativity
(44) and the choice of R0, there exists a positive number l0 such that

⋃
{π(t,M0) :

t ≥ l0} ⊆ M0, i.e., the set M0 :=
⋃
{π(t,M0) : t ≥ l0} is bounded and positively

invariant. According to Lemma 4.3 there exists a nonempty and compact subset
Xθ which attract the set M0. Denote by J := ω(M0). The set J is nonempty,
compact, invariant and attract the set M0.

Now, let M be an arbitrary bounded subset of Xθ. Then, there exists a positive
number r = r(M) such that M ⊆ Bθ[0, r] × Y . By the dissipativity of (44) there
exists a positive number l = l(r) such that π(t,M) ⊆ Bθ[0, r] × Y for all t ≥ l(r)
and, consequently, the set M is also attracted by J . �

The following result follows directly from Theorem 4.4 and Theorem 2.24 in [8, Ch.
2, p. 95] (see also Theorem A.1 in Appendix A).

Corollary 4.5. If equation (44) if dissipative, then the following statements hold:

(i) the set

Iy := {x ∈ Fθ| the solution of equation (44) ϕ(t, x, y)
is defined on R and sup

t∈R
|ϕ(t, x, y)|θ < +∞}

is not empty, compact and connected for each y ∈ Y ;
(ii) ϕ(t, Iy, y) = Iσ(t,y) for all t ∈ R+ and y ∈ Y ;
(iii) I :=

⋃
{Iy| y ∈ Y } is compact and connected if Y is compact and connected

as well;
(iv) the equalities

lim
t→+∞

β(ϕ(t,M, σ(−t, y)), Iy) = 0

and
lim

t→+∞
β(ϕ(t,M, y), I) = 0

take place for all y ∈ Y and bounded subset M ⊆ Fθ.

Finally, we can establish the next result.

Theorem 4.6. Suppose that the following conditions are fulfilled:

(i) Y is minimal, i.e., H(y) = Y for all y ∈ Y , where H(y) := {π(t, y)| t ∈ R};
(ii) equation (44) is dissipative;
(iii) for all pair of solutions ϕ(t, xi, y) (i = 1, 2) of equation (44) defined and

bounded on R we have

(53) lim
t→+∞

|ϕ(t, x1, y)− ϕ(t, x2, y)|θ = 0.

Then,

(i) if the point y is τ–periodic (respectively, quasi periodic, Bohr almost peri-
odic, almost automorphic, recurrent), then equation (44) admits a unique
τ–periodic (respectively, quasi periodic, Bohr almost periodic, almost au-
tomorphic, recurrent) solution ϕ(t, xy, y) (xy ∈ Fθ);
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(ii) every solution ϕ(t, u, y) is asymptotically τ–periodic (respectively, asymp-
totically quasi periodic, asymptotically Bohr almost periodic, asymptoti-
cally almost automorphic, asymptotically recurrent)

Proof. Let 〈Fθ, ϕ, (Y,R, σ)〉 be the cocycle associated to equation (44). Denote
by (Xθ,R+, π) the skew-product dynamical system, where Xθ := Fθ × Y and
π := (ϕ, σ) (i.e., π(t, (x, y)) := (ϕ(t, x, y), σ(t, y)) for all (x, y) ∈ Fθ×Y and t ∈ R+).
Consider a non-autonomous dynamical system 〈(Xθ,R+, π), (Y,R, σ), h〉 generated
by the cocycle ϕ (respectively, by equation (44)), where h := pr2 : X 7→ Y . Since Y
is compact, it is evident that the dynamical system (Y,R, σ) is compact dissipative
and its Levinson center JY coincides with Y . According to Theorem 4.4, the skew-
product dynamical system (X,R+, π) is compact dissipative. Denote by JX its
Levinson center and Iy := pr1(JX

⋂
Xy) for all y ∈ Y , where Xy := h−1(y).

According to the definition of the set Iy ⊆ Fθ and Theorem 2.24 in [8, Ch. 2, p.
95] (see also Theorem A.1 in Appendix A), u ∈ Iy if and only if the solution ϕ(t, u, y)
is defined on R and relatively compact (i.e., the set ϕ(R, u, y) ⊆ Fθ is compact).
Thus Iy = {u ∈ Fθ : if and only if (x, y) ∈ JX}. It is easy to see that condition
(53) means that the non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉 is
weak convergent. Now, to finish the proof of the theorem, it is sufficient to apply
Theorem 3.5 in [6] (see Theorem A.4 in Appendix A) for the non-autonomous
system 〈(X,R+, π), (Y,R, σ), h〉 generated by equation (44). �
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Appendix A. Definitions and Results on Non-autonomous Dynamical
Systems with Convergence

Let us start by recalling some concepts and notation about the theory of dynamical
systems (both autonomous and nonautonomous) which will be necessary for our
analysis.

Let (X, ρ) be a metric space, R (Z) be the group of real (integer) numbers, R+

(Z+) be the semi-group of nonnegative real (integer) numbers, S be one of the two
sets R or Z and T ⊆ S (S+ ⊆ T) be a sub-semigroup of the additive group S.
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A dynamical system is a triplet (X,T, π), where π : T × X → X is a continuous
mapping satisfying the following conditions:

π(0, x) = x (∀x ∈ X);

π(s, π(t, x)) = π(s+ t, x) (∀t, τ ∈ T and x ∈ X).

If T = R (R+) or Z (Z+), then the dynamical system (X,T, π) is called a group
(semi-group). When T = R+ or R the dynamical system (X,T, π) is called a flow,
but if T ⊆ Z, then (X,T, π) is called a cascade (discrete flow).

The function π(·, x) : T→ X is called a motion passing through the point x at the
moment t = 0 and the set Σx := π(T, x) is called a trajectory of this motion.

A nonempty set M ⊆ X is called positively invariant (negatively invariant, invari-
ant) with respect to the dynamical system (X,T, π) or, simply, positively invariant
(negatively invariant, invariant), if π(t,M) ⊆ M (M ⊆ π(t,M), π(t,M) = M) for
every t ∈ T.

A closed positively invariant set, which does not contain any own closed positively
invariant subset, is called minimal.

Let M ⊆ X. The set

ω(M) :=
⋂
t≥0

⋃
τ≥t

π(τ,M)

is called the ω-limit of M .

The dynamical system (X,T, π) is called:

− point dissipative if there exists a nonempty compact subset K ⊆ X such
that for every x ∈ X

(54) lim
t→+∞

ρ(π(t, x),K) = 0;

− compact dissipative if the equality (54) takes place uniformly w.r.t. x on
the compact subsets of X;

− locally compact if for any point p ∈ X there exist δp > 0 and lp > 0 such
that the set π(lp, B(p, δp)) is relatively compact, where B(p, δ) := {x ∈
X | ρ(x, p) < δ}.

Let (X,T, π) be compact dissipative and K be a compact set attracting every
compact subset from X. Let us set

(55) J := ω(K) :=
⋂
t≥0

⋃
τ≥t

π(τ,K).

It can be shown [8, Ch.I] that the set J defined by equality (55) does not depend
on the choice of the attractor K, but is characterized only by the properties of the
dynamical system (X,T, π) itself. The set J is called the Levinson center of the
compact dissipative dynamical system (X,T, π).

The triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism from (X,T1, π)
onto (Y,T2, σ) is called a non-autonomous dynamical system (NDS for short), and
(X,h, Y ) is a bundle [20].
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The triplet 〈W,ϕ, (Y,T2, σ)〉 (or shortly ϕ), where (Y,T2, σ) is a dynamical system
on Y , W is a complete metric space and ϕ is a continuous mapping from T1×W×Y
in W , possessing the following conditions:

a. ϕ(0, u, y) = u (u ∈W, y ∈ Y );
b. ϕ(t+ τ, u, y) = ϕ(τ, ϕ(t, u, y), σ(t, y)) (t, τ ∈ T1, u ∈W, y ∈ Y ),

is called [24] a cocycle on (Y,T2, σ) with fiber W .

Let X := W × Y and we define a mapping π : X × T1 → X as following:
π((u, y), t) := (ϕ(t, u, y), σ(t, y)) (i.e. π = (ϕ, σ)). Then it easy to see that
(X,T1, π) is a dynamical system on X which is called a skew-product dynamical
system [24] and h = pr2 : X → Y is a homomorphism from (X,T1, π) on (Y,T2, σ)
and, consequently, 〈(X,T1, π), (Y,T2, σ), h〉 is a non-autonomous dynamical sys-
tem.

Thus, if we have a cocycle 〈W,ϕ, (Y,T2, σ)〉 on the dynamical system (Y,T2, σ)
with fiber W , then it generates a non-autonomous dynamical system 〈(X,T1, π),
(Y,T2, σ), h〉 (X := W × Y ), which is called a non-autonomous dynamical system,
generated by the cocycle 〈W,ϕ, (Y,T2, σ)〉 on (Y,T2, σ).

Non-autonomous dynamical systems (cocycles) play a very important role in the
study of non-autonomous evolutionary differential equations. Under appropriate
assumptions every non-autonomous differential equation generates some cocycle
(non-autonomous dynamical system).

The family {Iy | y ∈ Y } (Iy ⊂ W ) of nonempty compact subsets W is called
(see, for example, [8]) a compact pullback attractor (uniform pullback attractor) of
a cocycle ϕ, if the following conditions hold:

(i) the set I :=
⋃
{Iy | y ∈ Y } is relatively compact;

(ii) the family {Iy | y ∈ Y } is invariant with respect to the cocycle ϕ, i.e.
ϕ(t, Iy, y) = Iσ(t,y) for all t ∈ T+ and y ∈ Y ;

(iii) for all y ∈ Y (uniformly in y ∈ Y ) and K ∈ C(W )

lim
t→+∞

β(ϕ(t,K, σ(−t, y)), Iy) = 0,

where β(A,B) := sup{ρ(a,B) : a ∈ A} is the Hausdorff semi-distance, and
C(W ) denotes the compact subsets of W .

Below in this Section we suppose that T2 = S.

The family {Iy | y ∈ Y }(Iy ⊂W ) of nonempty compact subsets is called a compact
global attractor of the cocycle ϕ, if the following conditions are fulfilled:

(i) the set I :=
⋃
{Iy | y ∈ Y } is relatively compact;

(ii) the family {Iy | y ∈ Y } is invariant with respect to the cocycle ϕ;
(iii) the equality

lim
t→+∞

sup
y∈Y

β(ϕ(t,K, y), I) = 0

holds for every K ∈ C(W ).
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Let M ⊆W and

ωy(M) :=
⋂
t≥0

⋃
τ≥t

ϕ(τ,M, σ(−τ, y))

for all y ∈ Y .

A cocycle ϕ over (Y,S, σ) with the fiber W is said to be compactly dissipative, if
there exits a nonempty compact K ⊆W such that

(56) lim
t→+∞

sup{β(ϕ(t,M, y),K) | y ∈ Y } = 0

for any M ∈ C(W ).

Then, we have the following result.

Theorem A.1. [8, Ch. 2, Theorem 2.24] Let Y be compact, 〈W,ϕ, (Y,S, σ)〉 be
compact dissipative and K be the nonempty compact subset of W appearing in the
equality (56), then:

1. Iy = ωy(K) 6= ∅, is compact, Iy ⊆ K and

lim
t→+∞

β(ϕ(t,K, σ(−t, y)), Iy) = 0

for every y ∈ Y ;
2. ϕ(t, Iy, y) = Iσ(t,y) for all y ∈ Y and t ∈ S+;
3.

lim
t→+∞

β(ϕ(t,M, σ(−t, y)), Iy) = 0

for all M ∈ C(W ) and y ∈ Y ;
4.

lim
t→+∞

sup{β(U(t, σ(−t, y))M, I) | y ∈ Y } = 0

for any M ∈ C(W ), where I := ∪{Iy | y ∈ Y };
5. Iy = pr1Jy for all y ∈ Y , where J is the Levinson center of (X,T+, π),

and hence I = pr1J ;
6. the set I is compact.

Recall (see [8]) that a non-autonomous dynamical system 〈(X,T1,π),(Y,T2,σ),h〉 is
said to be convergent if the following conditions are valid:

(i) the dynamical systems (X,T1, π) and (Y,T2, σ) are compact dissipative;
(ii) the set JX

⋂
Xy contains no more than one point for all y ∈ JY , where

Xy := h−1(y) := {x|x ∈ X,h(x) = y} and JX (respectively, JY ) is the
Levinson center of the dynamical system (X,T1, π) (respectively, (Y,T2, σ)
).

Thus, a non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is convergent,
if the systems (X,T1, π) and (Y,T2, σ) are compact dissipative with Levinson cen-
ters JX and JY respectively and JX has “trivial” sections, i.e., JX

⋂
Xy consists of

a single point for all y ∈ JY . In this case the Levinson center JX of the dynamical
system 〈(X,T1, π) is a copy (an homeomorphic image) of the Levinson center JY
of the dynamical system (Y,T2, σ). Thus, the dynamics on JX is the same as on
JY .
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A point x ∈ X is called [10] asymptotically τ–periodic (respectively, asymptoti-
cally quasi periodic, asymptotically Bohr almost periodic, asymptotically recurrent,
asymptotically pseudo recurrent), if there exists a τ -periodic (respectively, quasi
periodic, Bohr almost periodic, recurrent, pseudo recurrent) point p ∈ X such that

lim
t→+∞

ρ(π(t, x), π(t, p)) = 0.

The following result holds.

Lemma A.2. [6, Lemma 2.4] Let 〈(X,T1, π), (Y,T2, σ), h〉 be a convergent non-
autonomous dynamical system and JX (respectively, JY ) be the Levinson center
of the dynamical system (X,T1, π) (respectively, (Y,T2, σ)) and y0 ∈ JY be a τ–
periodic (respectively, quasi periodic, Bohr almost periodic, recurrent, pseudo re-
current) point. Then, the following statements hold:

(i) the point x0 ∈ JX
⋂
Xy0 is also τ–periodic (respectively, quasi periodic,

Bohr almost periodic, recurrent, pseudo recurrent);
(ii) every point x ∈ Xy0 is asymptotically τ–periodic (respectively, asymptot-

ically quasi periodic, asymptotically Bohr almost periodic, asymptotically
recurrent, asymptotically pseudo recurrent).

A non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is said to be weak
convergent [6], if the following conditions hold:

(i) the dynamical systems (X,T1, π) and (Y,T2, σ) are compact dissipative
with Levinson centers JX and JY respectively;

(ii) it follows that

lim
t→+∞

ρ(π(t, x1), π(t, x2)) = 0,

for all x1, x2 ∈ JX with h(x1) = h(x2).

Remark A.3. It is clear that every convergent non-autonomous dynamical system
is weak convergent. The inverse statement, generally speaking, is not true. The
paper [6] contains an example confirming this statement.

Theorem A.4. [6, Theorem 3.5] Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous
dynamical system satisfying the following conditions:

(i) Y is a compact minimal set;
(ii) the dynamical system (X,T1, π) is compact dissipative with Levinson center

J ;
(iii)

lim
t→+∞

ρ(π(t, x1), π(t, x2)) = 0,

for all x1, x2 ∈ J with h(x1) = h(x2).

Then, the following statements hold:

(i) there exists a unique compact minimal set M ⊆ J such that
(a) the section M

⋂
Xy of the set M consists of a single point my for all

y ∈ Y ;
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(b)
lim

t→+∞
ρ(π(t, x),mσ(t,h(x))) = 0

holds for all x ∈ X;

Denote by Lx := {{tn} ∈ Mx : tn → +∞}, where Mx := {{tn} ⊆ T : such that
the sequence {π(tn, x)} is convergent}. Recall [10] that the point x ∈ X is called
comparable with y ∈ Y by the character of recurrence in infinity if Lx ⊆ Ly.

Theorem A.5. [10, Theorem 2.2.2, Ch. 2, p. 31] Suppose that the following
conditions hold:

(i) (X,T1, π) and (Y,T2, σ) are two dynamical systems;
(ii) the point y ∈ Y is asymptotically stationary (respectively, asymptotically

τ–periodic, asymptotically quasi-periodic, asymptotically almost periodic,
asymptotically almost automorphic, asymptotically recurrent);

(iii) the point x is comparable with y ∈ Y by the character of recurrence in
infinity.

Then, the point x is also asymptotically stationary (respectively, asymptotically τ–
periodic, asymptotically quasi-periodic, asymptotically almost periodic, asymptoti-
cally almost automorphic, asymptotically recurrent).

A non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is said to be uni-
formly stable in the positive direction on compacts of X if, for arbitrary ε > 0 and
K ∈ C(X), there is δ = δ(ε,K) > 0 such that inequality ρ(x1, x2) < δ (h(x1) =
h(x2)) implies that ρ(π(t, x1), π(t, x2)) < ε for t ∈ T+

1 , where T+
1 := {t ∈ T1 : t ≥

0}.

Let X×̇X := {(x1, x2) : x1, x2 ∈ X,h(x1) = h(x2)}. The function V : X×̇X →
R+ is said to be continuous, if xin → xi (i = 1, 2 and h(x1

n) = h(x2
n)) implies

V (x1
n, x

2
n)→ V (x1, x2).

If there exists a function V : X×̇X → R+ with the following properties:

(i) V is continuous;
(ii) V is positive defined, i.e., V (x1, x2) = 0 if and only if x1 = x2;
(iii) V (π(t, x1), π(t, x2)) ≤ V (x1, x2) for all (x1, x2) ∈ X×̇X and t ∈ T+

1 ,

then, the non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is called (see
[8], [22], and [27]) V - monotone.

Let (X,h, Y ) be a bundle [20]. The subset M ⊆ X is said to be conditionally
relatively compact, if the pre-image h−1(Y ′)

⋂
M of every relatively compact subset

Y ′ ⊆ Y is a relatively compact subset of X, in particular, My := h−1(y)
⋂
M is

relatively compact for every y. The set M is called conditionally compact if it is
closed and conditionally relatively compact.

Theorem A.6. [9, Theorem 4.10, p. 677] Let (X,T, π), (Y, S, σ)〉 be an NDS with
the following properties:

(i) It admits a conditionally relatively compact invariant set J .
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(ii) The NDS 〈(X,T, π), (Y,S, σ), h〉 is positively uniformly stable on J ;
(iii) every point y ∈ Y is Poisson stable.

Then,

(i) all motions on J can be uniquely continued to the left and define on J a
two-sided dynamical system (J, S, π), i.e., the semi-group dynamical system
(X,T, π) generates on J a two-sided dynamical system (J, S, π);

(ii) for every y ∈ Y , there are two sequences {t1n} → +∞ and {t2n} → −∞
such that

π(tin, x)→ x (i = 1, 2)

as n→∞ for all x ∈ Jy.

Denote by K := {a ∈ C(R+,R+)| a(0) = 0, a is strictly increasing}.

Recall that the dynamical system (X,T1, π) is called asymptotically compact if for
every positively invariant bounded subset M ⊆ X there exists a nonempty compact
subset K ⊆ X such that

lim
t→+∞

β(π(t,M),K) = 0.

Theorem A.7. [6, Corollary 3.12] Let 〈(X, T, π), (Y, S, σ), h〉 be a non-autonomous
dynamical system such that:

(i) the dynamical system (Y, S, σ) is transitive, i.e., there exists a point y0 ∈ Y
such that H(y0) = Y ;

(ii) the point y0 is τ–periodic (respectively, quasi periodic, Bohr almost peri-
odic, recurrent, pseudo recurrent);

(iii) the dynamical system (X,T, π) is asymptotically compact;
(iv) there exists a point x0 ∈ Xy0 with relatively compact positive semi-trajectory

Σ+
x0

:= {π(t, x0) : t ≥ 0};
(v) the non-autonomous dynamical system 〈(X,T,π),(Y,S,σ),h〉 is V –monotone;
(vi) for all (x1, x2) ∈ LX×̇LX \∆X (where ∆X := {(x, x) : x ∈ X}) there ex-

ists a positive number t0 = t0(x1, x2) ∈ T such that V (π(t0, x1), π(t0, x2)) <
V (x1, x2);

(vii) there are functions a, b ∈ K such that Im(a) = Im(b) and a(ρ(x1, x2) ≤
V (x1, x2) ≤ b(ρ(x1, x2)) for all (x1, x2) ∈ X×̇X.

Then,

(i) there exists a unique τ–periodic (respectively, quasi periodic, Bohr almost
periodic, recurrent, pseudo recurrent) point x0 ∈ Xy0 := {x ∈ X : h(x) =
y0};

(ii) every point x ∈ X is asymptotically τ–periodic (respectively, asymptoti-
cally quasi periodic, asymptotically Bohr almost periodic, asymptotically
recurrent, asymptotically pseudo recurrent).
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