ALMOST PERIODIC MOTIONS IN SEMI-GROUP DYNAMICAL
SYSTEMS AND BOHR/LEVITAN ALMOST PERIODIC
SOLUTIONS OF LINEAR DIFFERENCE EQUATIONS WITHOUT
FAVARD’S SEPARATION CONDITION

TOMAS CARABALLO AND DAVID CHEBAN

ABSTRACT. The discrete analog of the well-known Favard Theorem states that
the linear difference equation

(1) z(t+1)=A@)x(t) + f(t) (t € Z)
with Bohr almost periodic coefficients admits at least one Bohr almost periodic

solution if it has a bounded solution. The main assumption in this theorem is
the separation among bounded solutions of the homogeneous equations

(2 z(t+1) = B(t)z(t),
where B € H(A) :={B | B(t) = liT A(t 4+ tn)}-
n— oo
In this paper we prove that the linear difference equation (1) with Levitan
almost periodic coefficients has a unique Levitan almost periodic solution,

if it has at least one bounded solution, and the bounded solutions of the
homogeneous equation

(3) a(t+1) = A (t)
are homoclinic to zero in the positive direction (i.e., . liT lo(t)] = 0 for all
— 100

relatively compact solutions ¢ of (3)). If the coefficients of (1) are Bohr almost
periodic and all relatively compact solutions of all limiting equations (2) tend
to zero as t — 400, then equation (1) admits a unique almost automorphic
solution.

We study the problem of existence of Bohr/Levitan almost periodic solu-
tions of equation (1) in the framework of general non-autonomous dynamical
systems (cocycles).

Dedicated to the memory of José Real

1. INTRODUCTION

Let R (respectively, Z) be the set of all real (respectively, entire) numbers and
S =R or Z . Recall (see, for example, [19],[23]-[25]) that a function ¢ defined on
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S with values in a Banach space F is called Bohr almost periodic, if for all € > 0
there exists a positive number [(g) such that, on every interval [a,a + ] (a € S),
there exists at least one number 7 € S such that

lp(t+7) — ()] <e

for all ¢ € S (the number 7 is called an € almost period of the function ).

A function ¢ : S — E is called [15, 25] Levitan almost periodic, if there exists a
Bohr almost periodic function ¢ : S — F (F is another Banach space) such that
Ny C N, where N, is the family of all sequences {t,} C S such that the functional
sequence {(- + t,)} converges to ¢(-) uniformly on every compact subset of S.

It is evident that every Bohr almost periodic function is Levitan almost periodic.
The converse statement is not true [25].

A function ¢ : S — F is called [1, 4] (see also [25, 28, 29]) almost automorphic
(or Bohr almost automorphic) if for every sequence {t, } there exists a subsequence
{tn} C S for which we have local convergence (i.e., uniform convergence on every
compact subset of S)

and the “returning” also holds:

Gt —tn) — o(t).

It is known (see, for example, [25] and also [15]) that every almost automorphic
function is Levitan almost periodic. The converse is not true in general, because
almost automorphic functions are bounded, but a Levitan almost periodic function
may be unbounded. Recall also that any Bohr almost periodic function is almost
automorphic.

This paper is dedicated to the study of linear difference equations with Bohr/Levitan
almost periodic and almost automorphic coefficients. This field is called Favard’s
theory [25, 39], due to the fundamental contributions made by J. Favard [21, 22].
In 1927, J. Favard published his celebrated paper, where he studied the existence
of almost periodic solutions of the following differential equation in R™:

(4) ¥ =A(t)x + f(t) (x € R")

with the n x n matrix A(¢) and the vector-function f(¢) almost periodic in the sense
of Bohr (see, for example, [24, 25]).

Along with equation (4), consider the homogeneous equation
¥ = A(t)x

and the corresponding family of limiting equations

(5) ' = B(t)z,

where B € H(A), and H(A) denotes the hull of the almost periodic matrix A(t)
which is composed by those functions B(t) obtained as uniform limits on R of the
type B(t) := lim A(t+t,), where {t,,} is some sequence in R.

n—oo

Let us now recall Favard’s result.
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Theorem 1.1. (Favard’s theorem [21]) The linear differential equation (4) with
Bohr almost periodic coefficients admits at least one Bohr almost periodic solution if
it has a bounded solution, and each bounded solution (t) of every limiting equation

(5) (B € H(A)) is separated from zero, i.e.,
inf |o(t)] > 0.

Using the same arguments (namely, the Favard min-max method) as in the proof
of Theorem 1.1, the following discrete analog can be established.

Theorem 1.2. (Discrete version of Favard’s theorem) The linear difference equa-
tion

(6) w(t+1) = AR)z(t) + f(t) (z€R"),

with Bohr almost periodic coefficients, admits at least one Bohr almost periodic

solution if it has a bounded solution, and each bounded solution p(t) of every limiting
equation

(7) y(t+1) =B@)y(t) (B H(A))
is separated from zero, i.e.,
(8) inf |(t)] > 0.

Remark 1.3. In this paper we study the problem of existence of Levitan/Bohr
almost periodic and almost automorphic solutions of linear difference equations in
a more general framework. Namely, we study the problem of existence of Poisson
stable solutions (in particular, periodic, Bohr almost periodic, almost automorphic,
recurrent in the sense of Birkhoff, Levitan almost periodic, almost recurrent in the
sense of Bebutov, Poisson stable) of linear difference equations with Poisson stable
coefficients. The powerful tool to study this problem is the notion of comparability
and uniform comparability of motions by the character of recurrence introduced by
B. Shcherbakov [32]-[34].

In our previous paper [8] some generalizations of Theorem 1.2 without Favard’s
separation condition (8) were proved. More precisely, denote by [E] the Banach
space of linear and bounded mappings from E into itself equipped with the operator-
norm.

Theorem 1.4. ([8, Theorem 4.16]) Let (A, f) € C(T, [E]) x C(T, E) and suppose
that the following conditions hold:

(i) Eq. (6) admits a solution o(t,uq, (A, f)) which is relatively compact on Z;
(ii) for all B € H(A) the solutions of equation (7), which are relatively compact
on 7, tend to zero as the time t tends to oo, i.e.,

(9) lim |o(t,u, B)| =0,
|t/ =00

if o(t,u, B) is relatively compact on Z .
If (A, f) € C(Z,[E]) x C(Z,E) is T-periodic (respectively, Bohr almost periodic,

almost automorphic, recurrent), then equation (6) admits a unique T-periodic (re-
spectively, Bohr almost periodic, almost automorphic, recurrent) solution.
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It is worth noticing that difference equations which appear in the appli-
cations are often defined only on the (discrete) semi-axis Z,. Therefore,
it is desirable to generalize Theorem 1.4 in the sense that we can also
handle equation (6) defined only on Z,. The main aim of this paper is
to study this problem.

More precisely, we generalize Theorem 1.4, in this paper, in the following two
directions:

(i) To replace condition (9) by a weaker (one-sided) one which reads as

Jim [o(t,u, B)| = 0;
(ii) To consider the difference equation (6) defined also on Z .

One of the main result that we will prove in our paper is the following.

Theorem 1.5. Let (A, f) € C(T,[E]) x C(T, E), where T = Z or Z, and suppose
that the following conditions hold:

(i) equation (6) admits a solution o(t,uq, (A, f)) which is relatively compact
on Zy ;

(ii) for all B € H(A) the solutions of equation (7), which are relatively compact
on 7, tend to zero as the time variable t tends to +oo, i.e.,

(10) Jim_fo(t,u, B)| =0,

if p(t,u, B) is defined on Z and is relatively compact.

Then, if (A, f) € C(Z,[E]) x C(Z, E) is T-periodic (respectively, Bohr almost pe-
riodic, almost automorphic, recurrent), equation (6) admits a unique T-periodic
(respectively, Bohr almost periodic, almost automorphic, recurrent) solution.

Remark 1.6. In our opinion, condition (10) seems much more natural
than condition (9) when the equation (6) is defined on Z.. In addi-
tion, condition (10) is simpler to verify than condition (9). Moreover,
condition (10) takes place, for example, if t_l}gloo|gp(t,u,B)| = 0 for all

solution ¢(t,u, B) of equation (7) defined on Z, with relatively compact
rank (o(Z4,u,B) is relatively compact). In particular, this condition is
fulfilled if the trivial solution of equation (7) is attracting, i.e., condition
(10) holds true for all solution of equation (7).

This paper is organized as follows.

In Section 2 we study the almost periodic motions of semi-group dynamical systems.
In the mathematical literature there are two definitions of almost periodicity (in the
sense of Bohr) of motions. The first one was introduced by Bhatia and Chow [7] (see
also [30, Ch. III]) and the second was introduced by Seifert [31]. We establish the
equivalence of both notions of almost periodicity for semi-group dynamical systems
(Theorem 2.9).

Section 3 is dedicated to the study of comparability for the motions of dynamical
systems by the character of their recurrence. We also prove some generalizations of
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the well-known B. A. Shcherbakov principle of comparison for motions of dynamical
systems by the character of their recurrence. Our main abstract result is Theorem
3.24 which guarantees the existence of a unique uniformly compatible solution of
some abstract evolution equation, if the complete compact trajectories tend to zero
as the time goes to infinity.

In Section 4 we analyze the compatible (respectively, uniformly compatible) solu-
tions of linear difference and functional-difference equations with finite delay in a
Banach space. Here we present a test for the existence of Bohr (respectively, Levi-
tan) almost periodic and almost automorphic solutions of non-homogeneous linear
difference equations with Bohr (respectively, Levitan) almost periodic and almost
automorphic coefficients.

2. ALMOST PERIODIC MOTIONS IN SEMI-GROUP DYNAMICAL SYSTEMS

Although we could refer to other references for some of the preliminaries below,
we prefer to include them here for the sake of completeness and convenience of the
readers.

2.1. Poisson Stable Motions. Let us collect in this subsection some well-known
concepts and results from the theory of dynamical systems which will be necessary
for our analysis in this paper.

Let (X, p) be a complete metric space. By S we will denote either R or Z and by
T=SorS;:={se€S|s>0}).

Unlike the definitions established in [8], the ones below are also valid
when we are working with a semigroup instead of a group dynamical
system.

Let (X, T,n) be a dynamical system on X, i.e., let m : TxX—X be a continuous
function such that 7(0,2) =z for all z € X, and 7 (t1 + t2,z) = 7(ta, 7(t1, x)), for
all x € X, and t1,t5 € T.

Let 7 € T be a positive number. A point = € X is called 7—periodic, if 7(t+7,2) =
m(t,z) for all t € T. If the point x € X is 7—periodic for all 7 > 0, then it is called
a stationary point.

Given € > 0, a number 7 € T is called an e—shift (respectively, an e— almost period)
of x, if p(n(7,z),x) < € (respectively, p(w(T + t,x),7(t,z)) < e for all t € T).

A point 2 € X is called [37] almost recurrent (respectively, Bohr almost periodic),
if for any € > 0 there exists a positive number [ such that in any segment of length
[ there is an e—shift (respectively, an e—almost period) of the point z € X.

If the point z € X is almost recurrent and the set H(x) := {n(¢t,z) | t € T} is
compact, then x is called recurrent, where the bar denotes the closure in X.

Denote by M, := {{t,} C T : such that {7(t,,z)} — z}, N = {{t,} € N,
such that ¢, — oo as n — oo}.
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A point z € X is said to be Levitan almost periodic (see [15] and also [25]) for the
dynamical system (X, T, ) if there exists a dynamical system (Y, T, \), and a Bohr
almost periodic point y € Y such that 91, C 91,.

Remark 2.1. Let z; € X; (i = 1,2,...,m) be a Levitan almost periodic point of
the dynamical system (X;,T,m;). Then the point x = (x1,%2,...,%m)) € X =
X1 x Xo x ... x Xy, is also Levitan almost periodic for the product dynamical
system (X, T,w), where 7 : T x X — X is defined by the equality w(t,z) =
(mi(t, 1), m2(t,x2), ..oy T (b, @) for allt € T and x := (z1,22,...,2m) € X.

A point x € X is called stable in the sense of Lagrange (st.L), if its trajectory
{m(t,z) : t € T} is relatively compact.

A point € X is called almost automorphic (see [15, 25, 36]) for the dynamical
system (X, T, ), if the following conditions hold:

(i) z isst.L;

(i) there exists a dynamical system (Y, T, A), a homomorphism h from (X, T, )
onto (Y, T, ) and an almost periodic (in the sense of Bohr) point y € Y
such that h=1(y) = {z}.

Remark 2.2. Let x € X be a st.L point, y € Y an almost automorphic point, and
My C Ng. Then, the point x is almost automorphic too.

Denote by w, the w-limit set of the point z € X, i.e., w, := {p € X : there exists
a sequence {t,} C T such that ¢, — 400 and {7 (t,,2)} — p as n — oco}.

A point z € X is said to be (positively) Poisson stable if z € w,.

A point z € X is called uniformly (respectively, uniformly positively) Poisson stable
if there exists a sequence {t, } € M (respectively, {t,} € M) such that

(11) lim sup p(n(t + ty,x), 7(t,z)) = 0.

n—oo teT

Remark 2.3. FEvery almost periodic point is uniformly Poisson stable.

2.2. Two definitions of almost periodicity for semi-group dynamical sys-
tems. Let (X, p) be a complete metric space and (X, T, 7) be a dynamical system
on X.

A subset P C T is said to be relatively dense in T if there exists a positive number
[ € T such that [t,t+I]] (P # 0 for allt € T, where [¢,t+]] :={s € T: t < s < t+l}.

Bhatia & Chow’s definition. A point z € X (respectively, a motion 7(¢,x)) is
called almost periodic [7] (see also [16, Ch.I]), if for any positive number e there
exits a relatively dense subset P. in T such that

(12) p(r(t+72), 7t ) <e

forallt € T and 7 € P-.

Seifert’s definition. In the work [31] it was introduced another definition of
almost periodicity for semi-group dynamical systems. Namely, the point z € X
is called almost periodic (in the semi-group dynamical system (X, T, r)) if for any
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positive number ¢ there exits a relatively dense subset P. in S such that (12) holds
for all t € T and 7 € P. with the condition ¢t +7 € T.

Bhatia & Chow’s definition seems to be more appropriate (in our opin-
ion) to study the problem of almost periodicity of solutions of difference
equations defined only on the semi-axis Z;,. We study below the rela-
tionship between these two definitions introduced above.

Remark 2.4. [t is easy to see that almost periodicity in the sense of Seifert [31]
implies almost periodicity in the sense of Bhatia & Chow [7]. Now we will show
that the converse also holds and, consequently both concepts are equivalent, but let
us first recall two results which will be necessary.

Lemma 2.5. ([16, Chl]) Let x € X be an almost periodic point (in the sense of
Bhatia & Chow). Then, the following statements hold:

(1) for every e > 0 there exists a subset P. which is relatively dense in T and
such that

p(r(t+7,p),7(t,p) <e

forallt €T, 7€ P: and p € H(z) := {n(t,x): t € T};

(i) the set H(x) is uniformly Lyapunov stable (in the positive direction), i.e.,
for all € > 0 there exists a positive number § = §(€) such that p(p,q) < 6
(p,q € H(x)) implies p(w(t,p), 7(t,q)) < e for all t > 0;

(iii) the dynamical system (H(x),T,n) is distal, i.e.,

inf(n(t,p), 7(t,9)) > 0

forallp,q € H(x) (p # q).

Lemma 2.6. ([30, Ch.I)). Let (X,S;,m) be a semigroup dynamical system and
assume that for any t € Sy the map 7wt = w(-,t) : X — X is a homeomorphism and
7: X xS — X is the map defined by the equality

~ . m(x,t), (x,t)€e X xS,
il t) = { (7=)"Yz), (2,£) € X x S_.

Then, the triple (X,S,7) is a group dynamical system.

To formulate the next statement we need the notion of V-monotony (see, for ex-
ample, [15]) for a group dynamical system.

Let V: X x X — Ry be a continuous function. A dynamical system (X, T, ) is
said to be V-monotone, if V(n(t, z1), 7(t,z2)) < V(x1,22) for all (x1,22) € X x X
and t > 0.

Lemma 2.7. Let x € X be an almost periodic point (in the sense of Bhatia &
Chow), then the following statements hold:

(i) the set H(x) is compact;
(ii) there exists a sequence {t,} C T such that t,, — +oo and w(t,,p) — p as
n — oo uniformly with respect to p € H(x);
(ili) the set H(x) is invariant, i.e., w(t, H(z)) = H(zx) for all t € T;
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(iv) there exists a group dynamical system (H(x),S,7) such that w(t,p) =
w(t,p) for allt € T and p € H(x), i.e., the semi-group dynamical sys-
tem (H(x),T,n) admits a group extension on H(x);

(v) the dynamical system (H(z),T,n) is V-monotone, where

(13) V(p,q) == sup{p(r(t,p),7(t,q)) : t €T}
(vi) the group dynamical system (H(x),S, ) is bilaterally Lyapunov stable, i.e.,
for all e > 0 there exists a 6 = () > 0 such that p(p,q) <9 (p,q € H(x))
implies p(7(t,p), 7(t,q)) < e for allt €S;
(vil) the point x € X is almost periodic with respect to the group dynamical
system (H(x),S, 7).

Proof. Let € be an arbitrary positive number. Then, by the almost periodicity of
x there exists a relatively dense subset P, /4 such that

(14) p(r(t+7,2),7(t x)) <c/4
for all t € T and 7 € P, /4 and, consequently, we have

p(r(t+m,2), 7t +71,2)) < p(r(t +m,2),7(t2) + p(n(t, 2), 7(t + 72, 7))

(15) ; e/d+e/d=¢/2

for all t € T and 71,75 € P./3. Denote by a. := inf{7: 7 € P./3}, then from (15)
we obtain

pr(t+a,z),m(t+1,2)) <e/2
forallt € T and 7 € P./4. Let now s > a and I(¢/4) the positive number from the
definition of relatively density of P, /4, then we can find a number 7 € P, /4 such
that 0 < s — 7 <l(e/4) and hence, taking into account (14) and (15), we have

pr(s,z),m(s—74+ ) < plr(s,z),7(s+7,z))+p(r(s+7,2),7(s — 7+ ))
< e/d+e/2<e¢,

ie, 7(s,x) € B(w([0,l(g/4) + a],x),e). Since the set Q. := 7([0,1(¢/4) + ], x)
is compact and the space X is complete, then by the Hausdorff theorem the
set {m(s,z) : s € T} is relatively compact. This means that the set H(x) =
{m(t,z) : ¢t € T} is compact.

By Lemma 2.5 for €, := 1/n there exists a number ¢, > n (¢, € T) such that
p(m(tnp),p)) < 1/n (¥ p € H(x)) and, consequently, {x(tn,p)} — p a5 n — +0
uniformly with respect to p € H(z).

By the second statement we have H(z) = w,. For the w-limit set w, we have
7m(t,wy) C wy for all t € T. Now it is sufficient to establish that under the conditions
of Lemma we have the inverse inclusion too. In fact, let ¢ € T and p € w,, then
there exists a sequence 7,, — 400 such that m(7,,z) — p. Let n be sufficiently
large (such that 7, > t) and consider the sequence {m(r, —t,x)}. Since H(z) is
a compact set, then without loss of generality, we may suppose that the sequence
{m(m —t,x)} is convergent. Denote by p its limit, then we have 7(¢,p) = p. It is
evident that p € w, and, consequently, w, C 7(t,w,) for all ¢t € T.

Consider a semi-group dynamical system (H(z),T,n). Without loss of generality
we may suppose that T = S;. Under the conditions of Lemma the set H(z) = w,
is a compact and invariant set, in particular, 7(¢,-) is a mapping from H(z) onto
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H(z). By Lemma 2.5 the dynamical system (H(z),T,) is distal, and, conse-
quently, w(t,p) # w(t,q) for all p,q € H(z) (p # q) and t € T. Thus =(¢,-) is
an homeomorphism from H(z) onto itself. Now to finish the proof of the fourth
statement it is sufficient to apply Lemma 2.6.

Denote by V : H(x) x H(x) — R4 the mapping defined by equality (13). Note that
V is a new metric on the space H(x) topologically equivalent to p. Observe that

(16) [V (u,v) = V(p,q)| < V(u,p) +V(v,q)

for all w,v,p,q € H(x). Since the dynamical system (H (z), T, 7) is Lyapunov stable,
then V(u,p) + V(v,q) — 0 as u — p and v — ¢, hence from (16) it follows the
continuity of V. Finally, notice that by definition of V' we have V (n(¢,p), 7(t,q)) <
V(p,q) for all t € T and p,q € H(x). Thus the fifth statement is proved.

Let p,q € H(z), consider the function ¥(t) := V(7 (¢,p),7(t,p)) (for all t € S).
Note that ¥ : S — R is a continuous mapping and
¢(t2) = V(ﬁ'(tz,p),’f((tg,p)) = V(ﬁ—(tQ —t1, ﬁ—(tlvp))a ﬁ—(tQ - t177~T(t1,p))) <
V(ﬁ—(thp)vﬁ-(tlap)) = 1/)(’51)

for all t; <ty (t1,t2 € S). Thus ¢ is a monotone decreasing function and, conse-
quently, there exists the limit . ligl Y(t) = C, where C' is a nonnegative constant.
By the second statement of the Lemma, there exists a sequence t,, — +00 such that
7(tn,p) — p and 7(t,, q) — q as n — oo. Since the function V' : H(x)x H(z) — R4
is continuous, we have

(7) V(7 (s,p), 75, )) = lim (s + ) = C

for all s € S. Using the identity (17) it is not difficult to finish the proof of the
sixth statement. Indeed, if we suppose that it is not true, then there are a positive
number g > 0, sequences {s,} C'S, {6,} and {pn}, {g.} C H(x) such that 6, > 0,
0np — 0 as n — oo,

(18) P(Pnsqn) < 0p and p(7(Sp,Pn)s T(Sn, qn) > €o-

Now, without loss of generality, we may suppose that s,, — —oo. Since H(x) is com-
pact, then we may suppose that the sequence {7 (s, pn)} (respectively, {7 (sn, qn)})
is convergent. Denote by p (respectively, q) its limit. Note that

V(ﬁ—(sm 7pn)7 7~r(+5n7 Qn)) = V(ﬁ(_sn + Snapn)7 7~T(_Sn + Sn, Qn))
= V(’;r(fsna7~r(+snapn))77~r(75n,7~r(+5naqn))
V(pna Qn) —0

as n — oo and, consequently, p = g. On the other hand, taking limit in (18) as
n — oo we obtain p(p,q) < €g. The obtained contradiction proves our statement.

The seventh statement follows from the statements (i), (vi) and Markov’s Theorem
(see, for example, [37, ChV]). O

Remark 2.8. The statements (i),(iv) and (vii) were established in the work [7]
(see also the book [30, Ch.II]). We include here these statements with their proofs
for completeness and the convenience of the reader.

Theorem 2.9. Let (X, T,7) be a semi-group dynamical system and x € X. The
following statement are equivalent:
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(i) the point x is almost periodic in the sense of Bhatia & Chow;
(ii) the point x is almost periodic in the sense of Seifert.

Proof. This statement follows from Remark 2.4 and Lemma 2.7 (item (vii)). O

3. COMPARABILITY BY RECURRENCE OF MOTIONS OF DYNAMICAL SYSTEMS

One of the fundamental question of the qualitative theory of non-autonomous dif-
ferential /difference equations is the problem of almost periodicity, or more generally
Poisson stability (in particular, Levitan almost periodcity, Bochner almost automor-
phy, almost recurrence in the sense of Bebutov, recurrence in the sense of Birkhoff,
etc) of solutions. B. A. Shcherbakov [32, 33, 34] introduced the notion of com-
parability and uniform comparability for the motions of dynamical systems by the
character of their recurrence which plays a very important role in the study of Pois-
son stability of the solutions of differential /difference equations. B. A. Shcherbakov
also formulated and proved the principle of compatibility (a series of abstract results
which permit in many cases to solve the problem of Poisson stability of solutions
for some classes of differential /difference equations) of solutions by the character of
recurrence.

Note that the theory developed by B. A. Shcherbakov is appropriate for
differential /difference equations defined on the whole axis S (S =R or
Z). However, as our aim is to apply this theory to equations defined
only on the semi-axis, we need to modify this theory so that it can be
applied to more general cases.

Therefore we will prove some generalizations of these results which will allow us to
apply Shcherbakov’s principle to a wider class of differential /difference equations.

3.1. B. A. Shcherbakov’s principle of comparability of motions by their
character of recurrence. In this subsection we will recall a short survey of some
notions and results stated and proved by to B. A. Shcherbakov [32, 33, 34]. The
main reason is that these results were published in Russian and may be a little
unknown for many readers.

Let (X,T,n) and (Y, T, o) be two dynamical systems. A point x € X is said to be
comparable with y € Y by the character of recurrence, if for all € > 0 there exists
a 0 = d(g) > 0 such that every d—shift of y is an e-shift for x, i.e., d(o(7,y),y) <
implies p(7 (7, z), x) < €, where d (respectively, p) is the distance on Y (respectively,
on X).

Theorem 3.1. The following conditions are equivalent:

(i) the point x € X is comparable with y by the character of recurrence;
(ii) there exists a continuous mapping h : 3, = {o(t,y) : t € T} — 3, =
{n(t,z) : t € T} such that h(o(t,y)) = w(t,x) for allt € T;
(iii) 9, C N,
(iv) 915° C M°.
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Theorem 3.2. Let x € X be comparable with y € Y. If the point y € Y is sta-
tionary (respectively, T—periodic, Levitan almost periodic, almost recurrent, Poisson
stable), then so is the point © € X.

A point x € X is called uniformly comparable with y € Y by the character of
recurrence, if for all € > 0 there exists a 6 = d(¢) > 0 such that every d-shift of
o(t,y) is an e-shift for n(¢,x) for all t € T, i.e., d(o(t + 7,y),0(t,y)) < J implies
p(r(t+ 7,2),z) < e for all t € T (or equivalently, d(o(t1,y),0(t2,y)) < § implies
p(m(t1,x), m(te,z)) < e for all t1,t2 € T).

Theorem 3.3. The following condition are equivalent:

(i) the point x € X 1is uniformly comparable with y € Y by the character of
recurrence;

(ii) there exists a uniformly continuous mapping h : 3, — 3, with the follow-
ing property h(o(t,y)) = w(t,z) for allt € T.

Denote by M, := {{t,} C T : such that {m(¢t,,z)} converges }, M := {{t,} €
M, : such that t, — 0o as n — oo}.

Theorem 3.4. ([16, Ch.II],[18] ) The following conditions are equivalent:

() M, C M, ;

(ii) there exists a continuous mapping h : ¥, — X, with the following proper-
ties:
(a) h(y) =a;

(b) h(o(t,q)) =m(t,h(q)) for allt € T and q € %,,.
Corollary 3.5. If M, C M, then N, C N,.

Proof. This statement follows from Theorems 3.1 and 3.4. O

Theorem 3.6. Let y be stable in the sense of Lagrange. Then, the following con-
ditions are equivalent:

(i) the point x € X is uniformly comparable with y € Y by the character of
recurrence;

(ii) 2, C M, .

Theorem 3.7. Let y be T—periodic (1 > 0). Then, the following conditions are
equivalent:

(i) the point x € X is comparable with y € Y by character of recurrence;
(ii) the point x € X is uniformly comparable with y € Y by character of
recurrence.

Denote by B, := {{t,} : such that (11) holds}.
Remark 3.8. The point y € Y is uniformly Poisson stable (with respect to the
dynamical system (Y, T,0)) if and only if P, # 0.

Theorem 3.9. Let x € X be uniformly comparable with y € Y by the character of
recurrence. If the point y € Y is recurrent (respectively, almost periodic, uniformly
Poisson stable), then so is the point x € X.
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Proof. When the point y is recurrent (respectively, almost periodic), the statement
was proved by B. Shcherbakov [33]. Let now y be uniformly Poisson stable. Since
the point z is uniformly comparable with y by the character of recurrence, then there
exists a uniformly continuous mapping h : ¥, — X, such that h(o(t,y)) = 7(z,t)
for all t € T. Let ¢ be an arbitrary positive number and 6 = §(¢) > 0 taken from
the uniform continuity of the mapping h. If {¢,} € ,, then for given 6 = d(¢) > 0
there exists a natural number N () such that

(19) d(o(t+tn,y),0(t,y)) <o

for all n > N(e) and t € T. According to the choice of ¢ and the uniform compa-
rability of « with y, we have from (19) that

p(r(t+ty,x),w(t,x)) <e

for all m > N(e) and t € T. This means that {¢,} € P, and, consequently, B, # 0.
Thus the point = is uniformly Poisson stable. (I

Let z € X be an almost periodic (respectively, almost automorphic) point of the
dynamical system (X, T, 7). If the space X is linear (in particular, it is a Ba-
nach space), then it can be defined the Fourier modulus M, of the point = (see,
for example, [25] and [36]). (SHOULD WE INSERT THE DEFINITION
HERE?)

Theorem 3.10. Let X and Y be two linear metric space, (X, T,w) (respectively,
(Y, T,0)) be a dynamical system on X (respectively, on'Y ) andy € Y be an almost
periodic (respectively, almost automorphic) point. Then the following conditions
are equivalent:

1. the point x € X is uniformly comparable with y by the character of recur-
rence;

2. M, CM,;

3. the point x is almost periodic (respectively, almost automorphic) and M, C

M,.

Proof. Let T = S. The equivalence of conditions 1. and 2. is established in Theorem
3.6. The equivalence of conditions 2. and 3. is a classical result (see, for example,
[25]) if the point y is almost periodic. The case in which y is almost automorphic,
the equivalence of conditions 2. and 3. was established in the work [36].

If T = S the equivalence of conditions 1.-3. can be established using the same
arguments (with slight modifications) as in the case T = S. O

Theorem 3.11. Let y € Y be an almost automorphic point. If the point x € X is
uniformly comparable with y by the character of recurrence, then x is also almost
automorphic and My, C M,.

Proof. Let T = S. Let y € Y be an almost automorphic point and x € X is
uniformly comparable with y by the character of recurrence. Since the point y € Y
is stable in the sense of Lagrange, then the point x also is stable in the sense of
Lagrange and, by Theorem 3.6, we have 9, C 9,. According to Corollary 3.5 we
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obtain 91, C 91, and, by Remark 2.2, the point x is also almost automorphic. Now
the inclusion M, C M, follows from Theorem 3.8 [36, Part I].

If T =S, the statement can be established using the same arguments (with slight
modifications) from the case T = S. (]

3.2. Some generalization of B. A. Shcherbakov’s results. In this Subsection
we will give some generalization of B. A. Shcherbakov’s results concerning the
comparability of points by the character of their recurrence. Let Ty C Ty be two
sub-semigroups of group S (T; = S or S; and ¢ = 1,2). Consider two dynamical
systems (X, Ty, 7) and (Y, T, 0).

Let 9F>° := {{t,} € M, : such that ¢, — +o00 as n — oo} and NF> := {{t,} €
M, : such that ¢, — +o00 as n — oo}.

Denote by M/ % := {{t,} € M > : such that o(t,,y) — ¢ as n — oo} and
ML(M) := {0 : g€ M}.

Theorem 3.12. ([12],[16, Ch.IT]) Let M}/ (M) C ML, then the following state-
ments take place:

(i) Moo (Xar) € ME®, where Xy :={o(t,q): t € Ty and g € M};
(ii) for every q € Xps there exists a unique p € w, such that

(20) Myq S M
(iil) the mapping h : ¥pr — w, defined by the equality h(q) = p for all ¢ € Xy,

where the point p € w, is defined by (20), is continuous and
h(o(t,q)) = =(t, h(q))
forall g € Xpr and t € Ty;

(iv) if the point y € Y is Poisson stable (in the positive direction), then the
point © is also Poisson stable (in the positive direction) and h(y) = x.

Theorem 3.13. Let y € Y be a Poisson stable (in the positive direction) point.
Then, the following conditions are equivalent:

a. M, CM,;
b. MPe C M and N C N
c. there exists a continuous mapping h : w, — w, with the properties:

(22) h(a(t,q)) = n(t, h(q))
forallt € T and q € wy.

Proof. To prove this theorem it is sufficient to establish the implication b.= c.
According to Theorem 3.12 there exists a continuous mapping h : w, — w, with
properties (21) and (22). Implication ¢. = a. is evident and the proof is complete.

O

Theorem 3.14. Let y € w,. Then, the following conditions are equivalent:
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N C NX;
N

a.
b. ; o0 C Moo,

Proof. The implication a. = b. is evident. Now we will establish the converse. If
‘ﬁ;‘ % C M1 then, by Theorem 3.12, there exists a continuous function h : ¥, —
wy satisfying the condition h(o(t,y)) = w(t, h(y)) for all ¢ € T;. Note that under
condition b. we have h(y) = x. In fact M o° = NF° C N> = M and,
consequently, by Theorem 3.12; h(y) = z. Now to finish the proof it is sufficient to
apply Theorem 3.1. [

Theorem 3.15. Lety € wy. Then, the following conditions are equivalent:

a. IMM° C M and N° C N5
b, M CIMI® and NS> C N>,

Proof. The implication a. = b. is evident. If 91/ C 9/>°, then by Theorem 3.12
there exists a continuous function h : w, — w, satisfying the condition h(o(¢,q)) =
m(t,h(q)) for all ¢ € wy, t € Ty and h(y) = z. Since y € wy, then ¥, = w,. Now,
to finish the proof it is sufficient to apply Theorems 3.4 and 3.13. (]

3.3. Compatibility and Uniform Compatibility of Motions by the Char-
acter of Recurrence in the Sense of Shcherbakov. We will prove now the
main abstract results in this paper. First, we start with the following definitions.

Let (X, h,Q) be a fiber space, i.e., X and {2 are two metric spaces and h : X —
is a homomorphism from X onto Q2. The subset M C X is said to be conditionally
relatively compact [13, 14], if the pre-image h=1(Q) (| M of every relatively compact
subset ' C Q is a relatively compact subset of X, in particular M, := h™*(w) M
is relatively compact for every w. The set M is called conditionally compact if it is
closed and conditionally relatively compact.

Let T; C Ty C S be two sub-semigroups of S and (Y, Ty, 0) be a dynamical
system on the metric space Y. Recall that a triplet (W, ¢, (Y,T2,0)) (or
shortly ), where IV is a metric space and ¢ is a mapping from Ty x W xY
into W, is said to be a cocycle over (Y,Ts,0) with the fiber W, if the
following conditions are fulfilled:

(i) ¢(0,u,y) =u for all u e W and y € Y
(i) pt+7u,y) = o, o(1,u,y),0(1,y)) for all t,7 € T;,u e W and y € V3
(iii) the mapping ¢ : Ty x W x Y — W is continuous.

Example 3.16. Consider the next difference equation

(23) x(t+1) = f(t,z(t))

with right hand side f € C(Zy x W,R"™), where W C R". Denote by
(H*(f),Z,,0) a semi-group shift dynamical system on H*(f) induced
by Bebutov’s dynamical system (C(Z, x W,R"),R,0), where HT(f) :=
{fr: 7€Z:}, and o(t,g9) = g1, for all g € H'(f), where g; is defined by
gi(x,8) = g(x,t + s). Let ¢(t,u,g) denote the unique solution of equation

y(t+1) =g(t,y(t), (g€ H(f)).
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Then, from the general properties of the solutions of non-autonomous
difference equations it follows that the following statements hold:

(i) »(0,u,g) =u for all u € W and g € H*(f);
(i) @(t+7,u,9) = o(t, o(1,u,9),9-) for all t,7 € Z,, u € Wand g € H(f);
(iii) the mapping ¢ :Z, x W x H*(f) — W is continuous.

Consequently, the triplet (W, p, (H"(f),Z,,0)) is a cocycle over (H™(f),
Z., o) with the fiber W C R". Thus, every non-autonomous difference
equation (23) naturally generates a cocycle which plays a very important
role in the qualitative study of equation (23).

Recall [14] that a triplet (X, Ty, 7), (Y, T2, 0), k) is said to be a non-autonomous
dynamical system (NDS), when (X, Ty, n) (respectively, (Y, Ty, 0)) is a dy-
namical system on X (respectively, Y) and h is a homomorphism from
(X, Ty,7) onto (Y, Tq,0).

Example 3.17. (NDS generated by a cocycle.) Note that every cocycle
(W, ¢, (Y, T, o)) naturally generates a NDS. Indeed, let X := W x Y
and assume that (X,Tq,n) is a skew-product dynamical system on X
(i.e., 7(t,z) = (o(t,u,y),0(t,y)) for all t € T; and z := (u,y) € X). Then
the triplet ((X,Ty,n),(Y,Ts,0),h), where h := pro : X — Y is the second
projection (i.e., h(u,y) =y for all u €¢ W and y € Y), is a NDS.

Lemma 3.18. ([8]) Let (W, ¢, (Q, T, \)) be a cocycle and ((X, Ty, 7), (2, Ta, A), h)
be a non-autonomous dynamical system associated to the cocycle ¢. Suppose that
ro = (up,wo) € X := W x Q, and that the set Q(yy.u,) = {9(t,uo,wo) | t € T1}
(respectively, an,wo) = {p(t,ug,wp) | t € Ty, t > 0}) is compact.

Then, the set H(xg) := {m(t,zo) | t € T} (respectively, {m(t,xo) | t € Ty, t > 0}
:= H™"(xg)) is conditionally compact.

Let (X, Ty, ), (2, T2, \), k) be a non-autonomous dynamical system and w € 2
be a positively Poisson stable point. Denote by

Er=1{¢| 3{tn} €M, suchthat 7(t,,-)|x, — & and t, — +oo},
where X, := {z € X| h(z) =w} and — means the pointwise convergence.

Recall that if X is a compact metric space, then X* denotes the collection of all
maps from X to itself, provided with the product topology, or, in other words, the
topology of pointwise convergence. By Tychonoff’s theorem, XX is compact.

XX possesses a semi-group structure defined by the composition of maps.

Remark 3.19. Let w € Q be a Poisson stable point, (X, Ty, 7), (Q, Ta, A),h) be a
non-autonomous dynamical system, and X be a conditionally compact space, then
(see [13],[14, Ch.IX]) &F is a nonempty compact sub-semigroup of the semigroup
Xffw (w.r.t. composition of mappings).

Theorem 3.20. [17, Ch.VI] Let X be a conditionally compact metric space and
(X, Ty,m), (2, T, ), h) be a non-autonomous dynamical system. Suppose that the
following conditions are fulfilled:
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(i) There exists a Poisson stable point w € Q;
(i) . liin p(m(t,z1),7(t,22)) = 0 for all z1,73 € X, = h7(w)={z € X

h(z) = w}.

Then there exists a unique point x,, € X, such that &(x,,) = x,, for all £ € Sj.

Now we will prove several results which are crucial for our objectives in
the next section. These results extend analogous ones in [8] to the case
of semigroup dynamical systems.

Lemma 3.21. Let X be a conditionally compact metric space and {((X,Tq, ),
(Q,Ta, A),h) be a non-autonomous dynamical system, and xo € X. Suppose that
the following conditions are fulfilled:

(i) the point w := h(xg) € Q is Poisson stable;
(ii) there exists a point z,, € X, such that &(xy,) = x,, for all € € EF.

Then the point x,, is comparable by character of recurrence with w.

Proof. Let {t,,} € MF>°. We will show that {7 (t,,z.,} converges to z,, as n — co.
If we suppose that it is not true, then there exist two subsequences {t’} C {t,}
(i = 1,2) such that w(¢t!) — 2 (i = 1,2) as n — oo and z' # 2. Since the space
X is conditionally compact and {t,} € M}, then without loss of generality we
may suppose that {m'»} is convergent. Denote by &' := nh_}n;o wtn, then ¢ € EF

(i = 1,2) and, consequently, 2' = £(x,). On the other hand by conditions of
Lemma we have ¢(z,,) = x, and, consequently, ! = 22 = z,. The obtained
contradiction prove our statement, i.e., M > C N>, Now, to finish the proof, it
is sufficient to apply Theorems 3.1 and 3.14. O

Corollary 3.22. Let X be a conditionally compact metric space and (X, Ty, ),
(Q, T, ), h) be a non-autonomous dynamical system. Suppose that the following
conditions are fulfilled:

(i) There exists a Poisson stable point w € Q;
(ii) , lir+n p(m(t,z1),m(t,22)) = 0 for all x1,22 € X, :=h Hw)={r € X

h(z) = w}.

Then, there exists a unique point x,, € X, which is comparable with w € Q by the
character of recurrence, such that

(24) lim p(w(t,x),7(t,2,)) =0

t——+oo

forall x € X,,.

Proof. According to Theorem 3.20, there exists a unique point x,, € X, such that
&(zw) = m, for all £ € £F. To finish the proof it is sufficient to apply Lemma
3.21. (I

Corollary 3.23. Let w € Q be a stationary (respectively, T-periodic, almost au-
tomorphic, recurrent, Levitan almost periodic, Poisson stable) point. Then under



ALMOST PERIODIC MOTIONS IN SEMI-GROUP DYNAMICAL SYSTEMS ... 17

the conditions of Corollary 3.22 there exists a unique stationary (respectively, -
periodic, almost automorphic, recurrent, Levitan almost periodic, Poisson stable)
point x,, € X, such that equality (24) holds for all x € X,,.

Theorem 3.24. Let X be a compact metric space and (X, T, ), (,T,\),h) be
a non-autonomous dynamical system. Suppose that the following conditions are
fulfilled:

(i) The point w € Q is recurrent;
(ii) , 1121 p(m(t,xy), m(t,x2)) =0 for all x1,x9 € X such that h(z1) = h(z2).

Then there exists a unique point x,, € X,, which is uniformly comparable with w € )
by the character of recurrence, and such that (24) holds for all x € X,,.

Proof. By Theorem 3.20 there exists a unique fixed point z,, € X,, of the semigroup
EF. Thanks to Corollary 3.23, the point x,, is recurrent. To prove this statement it
is sufficient to show that the point z,, is as required. Let M := {n(t,z,) :t € T}.
Then, it is a compact minimal set because the point x,, is recurrent. We will show
that M, := M N X, (for all ¢ € H(w) := {o(t,w) :t € T}) consists of a single
point. If we suppose that it is not true, then there exist go € H(w) and 1,29 €
M,, such that z1 # z2. By Corollary 3.22 there exists a unique point x4, € My,
which is comparable with point go by the character of recurrence. Without loss of
generality, we can suppose that x4, = x1. Since the set M is minimal, there exists
a sequence {t,} € M} such that {m(t,,z1)} — x2. On the other hand, in view of
the inclusion ‘ﬁ;};‘x’ C ‘ﬁ;floo, we have {m(t,, 1)} — 21 and, consequently, x; = z5.
This contradiction proves our statement.

Now we will prove that DMF> C MF>. Let {t,} € ML, then {t,} € MF>.

Arguing once more by contraction, if we suppose that it is not true, then there

are two subsequences {t,; } (i = 1,2) such that klim T(tni, 2w) = z; (i=1,2) and
— 400

x1 # x9. Denote by ¢ := lir_~r_1 o(tn,w), then qo € H(w) and 1,22 € M,,. But
n—-rroo

this is a contradiction, since we proved above that M, consisted of a single point
for all ¢ € H(w). Taking into account Corollary 3.22 to finish the proof of Theorem
it is sufficient to apply Theorem 3.15. (]

Corollary 3.25. Let w € Q be a stationary (respectively, T-periodic, Bohr almost
periodic, recurrent) point. Then, under the conditions of Theorem 3.24, there exists
a unique stationary (respectively, T-periodic, Bohr almost periodic, recurrent) point
x, € X, such that (24) is fulfilled for all x € X,,,.

4. SOME APPLICATIONS

Our results from Sections 2-3 can be applied to study the problem of Poisson
stability for different classes of differential/difference equations (both on the whole
and/or half axis). Below we apply these results to study the problem of almost
periodicity (respectively, Levitan almost periodicity, Bochner almost automorphy,
or Poisson stability) of solutions for linear difference equations and we obtain some
new and interesting results in this direction.
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4.1. Shift Dynamical Systems, Almost Periodic and Almost Automorphic
Functions. Let (X, T,n) be a dynamical system on X, Y be a complete pseudo
metric space, and P be a family of pseudo metrics on Y. We denote by C'(X,Y)
the family of all continuous functions f : X — Y equipped with the compact-
open topology. This topology is given by the following family of pseudo metrics
{d%} (pe P, K € K(X)), where

b (f, g) = iggp(f(l’),g(r))

and IC(X) denotes the family of all compact subsets of X. For all 7 € T we
define a mapping o, : C(X,Y) — C(X,Y) by the following equality: (o, f)(z) :=
f(n(r,x)), x € X. We note that the family of mappings {0, : 7 € T} possesses the
next properties:

a. oo = idc(x,y);
b. 07, 007y = 074755 Vr, 2 €T ;
c. o, is continuous V7 € T.

Furthermore, (C(X,Y), T, o) is a dynamical system (see [14] for the details).

Let us now recall an example of dynamical system of the form (C(X,Y), T, ) which
is useful in applications.

Example 4.1. Let X = T, and denote by (X,T,7) a dynamical system on T,
where w(t,x) := x +t. The dynamical system (C(T,Y),T,o) is called Bebutov’s
dynamical system [32] (a dynamical system of translations, or shifts dynamical
system). For example, the equality

d(f7 g) ‘= sup max{dL(fa g)7L71}7
L>0

where di(f,g) =

ric) on the space C(T,Y") which is compatible with the compact-open topology on
C(T,Y).

lg}gp(f(t),g(t)), defines a complete metric (Bebutov’s met-
<

We say that the function ¢ € C(T,Y) possesses a property (A), if the motion
o(,¢) : T — C(T,Y) possesses this property in the Bebutov dynamical system
(C(T,Y), T, o), generated by the function ¢. As property (A) we can take period-
icity, almost periodicity, almost automorphy, recurrence, etc.

4.2. Compatible and Uniformly Compatible Solutions of Linear Differ-
ence Equations. In this subsection we will apply our abstract theory, previously
developed in Section 3, to analyze two important applications: non-homogeneous
linear difference equations (on Z; or/and on Z), and non-homogeneous linear
functional-difference equations.

4.2.1. Linear Difference Equations (on Zy or/and on Z). Consider the following
difference equation

(25) u(t+1) = At)u(t) + f(t)
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with positively Poisson stable coefficients A(t) and f(¢) (i.e., there exists a se-
quence t, — +0o (t, € Zy) such that (A, , fi,) — (A, f) as n — 4o00) and its
corresponding homogeneous equation

(26) u(t+1) = At)u(d),

where (A, f) € C(T,[E]) x C(T,E), and A,, f; are defined as A.(t) = A(t +
T), fr(t) := f(t+7) for t € T. Along with equations (25) and (26), we consider also
the H-class of equation (25) (respectively, (26)), which is the family of equations

(27) ot +1) = BE)(t) + g(t),
(respectively,
(28) v(t+ 1) = B(t)v(t)

with (B,g) € H(A,f) := {(A;, f;) | 7 € T} (respectively, B € H(A)), where
the bar denotes the closure in C(T, [E]) x C(T, E) (respectively, C(T, [E])). Let
o(t, v, (B, g)) (respectively, ¢(t, v, B)) be the solution of equation (27) (respectively,
(28)) which satisfies the condition ¢(0, v, (B,g)) = v (respectively, ¢(0,v, B) = v)
and defined on Z, .

We set now Y := H(A, f), and denote the dynamical system of shifts on H(A, f)
by (Y, T, o). Consider X := F x Y, and define a dynamical system on X by setting
(T, (v, B,g)) := (p(r,v,(B,9)), Br,g-) for all (v,(B,g)) € ExY and 7 € Zy.
Then ((X,Z4,7),(Y,T,0),h) is a non-autonomous dynamical system, where h :=

pro : X — Y denotes the projection over the second variable, i.e., h(e,y) = y for
(e,y) € X.

Now we apply the results of Section 3 to this system, and obtain some results
concerning the difference equation (27).

A solution ¢ € C(T, E) of equation (25) is called [34] compatible by the character
of recurrence if 8?(+A°°f) C ML, where ‘J’I?Aoof) ={{t,} CTZ4 | (As,, fr,) — (A, f)

and t, — +oo} (respectively, NI := {{t,} CZy | @1, — ¢ and t, — +o0}).
The next result generalizes Theorem 4.12 in [8].

Theorem 4.2. Let (A, f) € C(T,[E]) x C(T, E) be positively Poisson stable. Sup-
pose that the following conditions hold:

(i) equation (25) admits a relatively compact on Z, solution @(t,ug, (A4, f)),
i.e., the set Quy,(a.)) = P(Z,uo, (A, f)) is compact in E;

(ii) all the relatively compact on Z solutions of equation (26) tend to zero as
the time t tends to +o00, i.e., tligloo lp(t,u, A)| = 0 if o(t, u, A) is relatively

compact (this means that the set o(Z,u, A)) is relatively compact in E).

Then, equation (25) has a unique compatible solution @(n, 4, f) with values from
the compact Q(uq,(A,f))-

Proof. Denote by ((X,Zy,n),(Y,T,0),h) the non-autonomous dynamical system,
generated by equation (25) (see construction above). By Lemma 3.18, the set
H*(x9) C X (where zg := (ug, (A, f)) € X and H'(z0) := {m(t,x0) | t € Z4})
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is conditionally compact. Let now 1,22 € H(xo) N X(4,f), Where X(4 5 := E X
{(4, )} (ie., z; = (us, (A, f)) and u; € E (i=1,2)), then

tlgi-noo p(ﬂ'(t, .131), ﬂ-(tv x2)) = tl}g_n |30(t’ U1, (A7 f)) - @(ta U2, (Av f))| =0.

o0

Now, to finish the proof it is sufficient to take into account Corollary 3.22. ([l

Corollary 4.3. Under the conditions of Theorem 4.2, if (A, f) € C(T,[E]) x
C(T, E) is T-periodic (respectively, Levitan almost periodic, almost recurrent, Pois-
son stable), then equation (25) admits a unique T-periodic (respectively, Levitan
almost periodic, almost recurrent, Poisson stable) solution.

Proof. This statement follows from Theorem 4.2 and Corollary 3.23. (]
Corollary 4.4. Under the conditions of Theorem 4.2, if (A, f) € C(T,[E]) x

C(T,E) is almost automorphic, then equation (25) admits a unique almost auto-
morphic solution.

Proof. Since the function ¢(t, @, (A, f)) is relatively compact, it easily follows that
@ := (-4, (A4, f)) € C(T,E) is a Lagrange stable point of the dynamical system
(C(T,E),T,0). On the other hand, by Corollary 4.3 the function ¢ is Levitan
almost periodic and, consequently, it is almost automorphic. (I

Corollary 4.5. Under the conditions of Theorem 4.2, if (A, f) € C(T,[E]) x
C(T, E) is Bohr almost periodic, then equation (25) admits a unique almost auto-
morphic solution.

Proof. This statement follows from Corollary 4.4 because every Bohr almost peri-
odic function is almost automorphic. O

A solution ¢ € C(T, E) of equation (25) is called [32, 34] uniformly compatible by
the character of recurrence, if E)J?E"Aoff) C ML, where m&o;) = {{t,} CT| such
that ¢, — +00 and the sequence {(A;,, ft,)} is convergent} (respectively, ML :=
{{tn} C T | such that ¢, — +oco and the sequence {¢;, } is convergent}).

Theorem 4.6. Let (A, f) € C(T,[E]) x C(T, E) be recurrent. Suppose that the
following conditions hold:

(i) equation (25) admits a solution p(t,ug, (A, f)) which is relatively compact
onZy ;

(ii) for all B € H(A) the solutions of equation (28), which are relatively com-
pact on Z, tend to zero as the time tends to 400, i.e., tligrnoo lo(t,u, B)| =0,

if p(t,u, B) is relatively compact on 7 .

Then equation (25) has a unique uniformly compatible solution (t, u, ) with values
Jrom the compact Q(uq,(A,1))-

Proof. Denote by ((X,Zy,n),(Y,T,0),h) the non-autonomous dynamical system,
generated by equation (25). Under the conditions of the theorem the set HT (x) C
X (where zg := (ug, (4, f)) € X and H* (z0) := {n(t,x0) | t € Z4}) is compact.
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Let now x1, 22 € H(x9)NX(p,g), where (B,g) € H(A, f) and X(p 4) := Ex{(B,9)}
(i.e., x; = (u4, (B, g)) and u; € E (i=1,2)). Then
)

tl}}fi»noo p(’”(tvxl 77T(t,£C2)) = tl}in “p(tvulv (ng)) - <p(y7uQ, (ng))| =0.

oo

Now to finish the proof it is sufficient to apply Theorem 3.24. O

Corollary 4.7. Under the conditions of Theorem 4.6, if (A, f) € C(T,[E]) x
C(T, E) is T-periodic (respectively, Bohr almost periodic, almost automorphic, re-
current), then equation (25) admits a unique T-periodic (respectively, Bohr almost
periodic, almost automorphic, recurrent) solution.

Proof. This statement follows from Theorem 4.6 and Corollary 3.25. ]

To conclude this subsection we consider particular examples that illustrate the
above results.

Example 4.8. Let a € C(R,R) be the Bohr almost periodic function defined by
the equality

= 1 t
29 t) = i .
(29) a(t) kz—:_()(2k+1)3/281n2k+1
Note that a(t + t,) — —a(t) uniformly on R, where ¢,, := (2n 4+ 1)!!. Therefore,

—a € H(a) := {a,; | 7 € R}. In the work [8] it is proved that the module of all
non-zero solutions of the equation

(30) ' =a(t)x
tends to +00 as [t| — +oo, whereas those of the equation
(31) y = b(t)y,

with b:= —a € H(a) tend to zero.

Thus, if g € C(R,R) is a Bohr almost periodic function and the equation

(32) y' =0b(t)y +g(t)
admits a bounded solution, then according to Theorem 4.1 and Corollary 4.4 from
[8] it has a unique almost automorphic solution.

Below we will construct a discrete analog of example (32). To this end we will use
the so called procedure of discretization [11].

Along with the homogeneous equation (30), we will consider the corresponding
non-homogeneous equation

(33) ¥ = alt)s + f(t),
where f € C(R,R).

Let (H(a),R, o) (respectively, (H(a, f),R, o)) be a shift dynamical system on H (a)
(respectively, on H(a, f)), where H(a) := {a, : 7 € R} (respectively, H(a, f) :=
{(ar, fr): 7 € R}), where a, (respectively, (ar, f;)) is the 7 shift of a (respec-
tively, (a, f)) and by bar is denoted the closure in the space C(R,R) (respec-
tively, in C(R,R) x C(R,R)). Denote by (R,¢,(H(a),R,5)) (respectively, by




22 TOMAS CARABALLO AND DAVID CHEBAN

(R,4, (H(a),R,5))) the cocycle generated by (30) (respectively, by (33)). Let now
(Z,p,(H(a),R,0)) (respectively, by (Z, v, (H(a),Z,0))) be the discretization (for

more details see [11]) of the cocycle ¢ (respectively, ¥). Then ©(n,z,a, f) is a
solution of the scalar difference equation

(34) 2(t+1) = A(t)z(t) + F(t),

where A(t) :=U(1,a), B(t) := fol U(1,a))U™ (s, a0) fi(s) and U(7,a) := exp [, a(s)ds
for all t € Z and 7 € R. According to this construction, we have the following prop-
erties:

(i) if the functions a, f € C(R,R) are Bohr almost periodic, then the functions
A,F € C(Z,R) are also almost periodic;
(ii) every bounded solution ¢(t, A, x) of equation
(35) x(t+1) = A(t)x(t)
possesses the following property ‘ |lim lo(t, z, A)| = 0, because p(t,z, A) =
t|—+oo
o(t,z,a) for all t € Z.

Thus if equation (34) admits a bounded (on Z) solution, then by Theorem 4.2 and
Corollary 4.5 it has a unique almost automorphic solution.

4.3. Linear Functional-Difference Equations with Finite Delay. Let r €
Zy, C([a,b], E) be the Banach space of all functions ¢ : [a,b] — E with the norm
sup. For [a,b] := [-7,0] we put C := C([-r,0],E). Let ¢,a € Z, a > 0, and
u € C([e —r,c+ al, E). We define u; € C for any t € [¢,c + a] by the relation
ue(s) == u(t + 8),—r < s < 0. Let 2A = 2(C, E) be the Banach space of all linear
operators that act from C into E equipped with the operator norm, let C(T,2)
be the space of all operator-valued functions A : T — 2 with the compact-open
topology, and let (C(T,2(), T, o) be the dynamical system of shifts on C(T,2(). Let
H(A):={A, | 7 € T}, where A, is the shift of the operator-valued function A by
7 and the bar denotes closure in C(T,2l).

Remark 4.9. Notice that we will use the same notation (A, and u,) for two
(slightly) different concepts, but no confusion should be with them and everything
will be clear by the context.

Example 4.10. Consider a non-homogeneous linear functional-difference equation
with finite delay (see, for example, [27, 38])

(36) u(t+1) = At)us + f(¢)

with positively Poisson stable coefficients A(t) and f(t) and the corresponding ho-
mogeneous linear equation

(37) u(t+1) = A(t + 1)uy,

where A € C(T,2) and f € C(T, E).

Remark 4.11. 1. Denote by ¢(t,u, A, f) the solution of equation (36) defined on
Zy (respectively, on Z) with initial condition p(0,u, A, f) =u € C. By ¢(t,u, A, f)
we will denote below the trajectory of equation (36), corresponding to the solution
o(t,u, A, f), i.e. the mapping from Zy (respectively, Z) into C, defined by equality
S(t,u, A, f)(s) == p(t+s,u, A, f) for allt € Z (respectively, t € Z) and s € [—r,0].



ALMOST PERIODIC MOTIONS IN SEMI-GROUP DYNAMICAL SYSTEMS ... 23

2. Let p(t,u;, A, f) (i =1,2) be two solutions of equation (36), then
tll{go “p(t’ulvAv f) - w(t7u27‘43 f)| = tll>Holo ‘¢(t7u17Aa f) - QZ(LUQ,A, f)|C

Along with equation (36) (respectively, (37)) we consider the family of equations

(38) v(t+1) = B(t)v, + g(t)
(respectively,
(39) v(t+1) = B(t)vy,

where (B,g) € H(A,f) := {(Br, fr) | 7 € T}. (respectively, B € {B, | 7 € T}
= H(A)). Let ¢(t,v,(B,g)) (respectively, @(t,v,B) be the solution of equation
(38) (respectively, (39)) satisfying the condition $(0,v,(B,g)) = v (respectively,
&(0,v,B) = v) and defined for allt > 0. Let Y := H(A, f) and denote the dy-
namical system of shifts on H(A, f) by (Y,T,0). Let X :== C XY and let 7 :=
(p,0) be the dynamical system on X defined by the equality (7, (v, (B,g))) =
(¢(1,v,(B,9)), Br,g-). The semi-group non-autonomous system ((X,Z,w), (Y,
T,o0), h) (h:=pro: X —Y) is generated by equation (36).

Lemma 4.12. Let p(n,u, (A4, f)) be the solution of equation (36) which is relatively
compact on' T, and (X, Z4,m), (Y, T,0),h) be a non-autonomous dynamical system
generated by equation (36). Then, the set

H+(uv (A, ) =1{(@(r,u, (A, f)), (Ar, f7)) | 7 > 0}
is conditionally compact with respect to (X, h,Y).

Proof. This statement is obvious. ([

Theorem 4.13. Let (A, f) € C(T,A) x C(T, E) be positively Poisson stable. Sup-
pose that the following conditions hold:

(i) equation (36) admits a solution p(t,ug, (A, f)) which is relatively compact
onZy ;

(ii) all the solutions of equation (37), which are relatively compact on Z, tend
to zero as the time tends to +oo, i.e., tETm lo(t, u, A)| =0 if p(t,u, A) is

relatively compact on Z.

Then, equation (36) has a unique compatible solution ¢(t,u, A, f).

Proof. First of all we will prove that equation (36) admits at most one compatible
solution. If we suppose that it is not true, then there would exist at least two
compatible solutions ¢(t,u;, (4, f)) (i=1,2, and u; # wus) defined and bounded
on Z. Since (A, f) is positively Poisson stable, then ¥(t) = p(t,u1, (A, f)) —
o(t,ug, (A, f)) (t € Z) is also positively Poisson stable. On the other hand, ¥ () =
o(t,u1 —ug, A) is a solution of equation (37) which is relatively compact on Z and,
consequently, fligloo |t(t)] = 0. From the last equality and the Poisson stability

of ¢ we obtain 1(t) = 0 for all ¢ € Z. In particular, u; — uy = 1(0) = 0. This
contradiction proves our statement.

Now we will prove that equation (36) admits at least one compatible solution. De-
note by ((X,Z,7),(Y,T,o),h) the non-autonomous dynamical system, generated
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by equation (36) (see Example 4.10). By Lemma 4.12; the positively invariant
set H'(z9) C X (where zo := (ug, (4, f)) € X :== C x H(A, f) and H"(z¢) :=
{m(t,z0) | t € Zy}) is conditionally compact. Let now x1,22 € H(x) N X(4 ),
where X4 5 :=C x {(A, f)} (e, 2; = (us, (A, f)) and u; € C (i=1,2)), then

t—1}+moo p<7r(t7$1)a ﬂ-(t’xQ)) = t—1}+moo |¢(tau1a (A’ f)) - (p(t,Ug, (A’ f))|C =0.

Now, to finish the proof, it is sufficient to apply Corollary 3.22. O

Corollary 4.14. Under the conditions of Theorem 4.13, if (A, f) € C(Z,2A) x
C(Z, E) is T-periodic (respectively, Levitan almost periodic, almost recurrent, Pois-
son stable), then equation (36) admits a unique T-periodic (respectively, Levitan
almost periodic, almost recurrent, Poisson stable) solution.

Proof. This statement follows from Theorem 4.13 and Corollary 3.23. (]

Corollary 4.15. Under the conditions of Theorem 4.13 if (A, f) € C(T,) x
C(T, E) is almost automorphic, then equation (36) admits a unique almost auto-
morphic solution.

Proof. Since the function ¢(t,a, (A, f)) is relatively compact on Z, then ¢ :=
o(,a, (A, f)) € C(Z, E) is a Lagrange stable point of the dynamical system (C(Z, E),
Z, o). On the other hand, by Corollary 4.15 the function @ is Levitan almost peri-
odic and, consequently, it is almost automorphic. O

Corollary 4.16. Under the conditions of Theorem 4.13, if (A, f) € C(Z,2) x
C(Z, E) is Bohr almost periodic, then equation (36) admits a unique almost auto-
morphic solution.

Proof. This statement follows from Corollary 4.15 because every Bohr almost pe-
riodic function is almost automorphic. (I

Theorem 4.17. Let (A, f) € C(T,A) x C(T, E) be recurrent. Suppose that the
following conditions hold:

(i) equation (36) admits a solution p(t,uo, (A, f)) which is relatively compact
onZy ;

(ii) for all B € H(A) the solutions of equation (39), which are relatively com-
pact on Z, tend to zero as the time tends to +oo, i.e., t£+moo lo(t,u, B)| =0

if o(t,u, B) is relatively compact on Z.

Then, equation (36) has a unique uniformly compatible solution o(t, @, A, f).

Proof. Note that equation (36) admits at most one uniformly compatible solution.
In fact, every uniformly compatible solution is compatible. On the other hand, by
Theorem 4.13, equation (36) admits at most one compatible solution.

Now we will prove that equation (36) admits at least one uniformly compatible
solution. Indeed, since the function (¢, ug, (A4, f)) is relatively compact on Z, then
P(Z4 ,uo, (A, f)) is relatively compact in C. Denote by ((X,Zy,7), (Y, T,0), h) the
semi-group non-autonomous dynamical system, generated by equation (36). Under
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the conditions of the theorem the positively invariant set HT(xo) C X (where
xo = (uo, (A, f)) € X and HV(xg) := {n(t,z0) | t € Z,}) is compact. Let now
x1,x2 € H (20) N X(p,4), where (B,g) € H(A, f) and X (5,4 :=C x {(B,g)} (ie.
x; = (ug, (B, g)) and u; € C (i=1,2)), then

tl}gloo p(w(t,xl),w(t,xg)) - tlzinoo |(p(t’u1a (B7g)) - (p(tvu% (ng))|c =0.
To finish the proof it is sufficient now to apply Theorem 3.24. 0
Corollary 4.18. Under the conditions of Theorem 4.17, if (A, f) € C(T,2) x

C(T, E) is T-periodic (respectively, Bohr almost periodic, almost automorphic, re-
current), then equation (36) admits a unique T-periodic (respectively, Bohr almost
periodic, almost automorphic, recurrent) solution.

Proof. This statement follows from Theorem 4.17 and Corollary 3.25. O
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