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Abstract. This paper is dedicated to the study of asymptotic stability of
asymptotically almost periodic systems. We formulate and prove the analog of
Markus-Sell’s theorem for asymptotically almost periodic systems (both finite
and infinite dimensional cases). We study this problem in the framework of
general non-autonomous dynamical systems.The obtained general results we
apply to different classes of non-autonomous evolution equations: Ordinary
Differential Equations, Difference Equations, Functional Differential Equations
and Semi-Linear Parabolic Equations.

1. Introduction

Denote by R := (−∞,+∞), Rn is a product space of n copies of R, F (t, x) := f(x)+
p(t, x) ∈ C(R+×Rn,Rn) the right hand side of system (1), where C(R+×Rn,Rn)
is the space of all continuous functions F : R+ × Rn 7→ Rn equipped with the
compact open topology.

A system of differential equation

(1) x′ = f(x) + p(t, x)

is said to be asymptotically autonomous, if the function p ∈ C(R+×Rn,Rn) satisfies
the following condition

(2) lim
t→∞

|p(t, x)| = 0

uniformly in x on every compact subset from Rn, where | · | is a norm on Rn.
Autonomous system

(3) x′ = f(x)

is called a limiting system for (1).

Example 1.1. (Bessel’s equation) Consider the equation

t2x′′ + tx′ + (t2 − α2)x = 0,

or equivalently {
x′ = y

y′ = − 1
t y + (α2

t2 − 1)x,
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with limiting system {
x′ = y
y′ = −x .

Denote by C1(Rn,Rn) the space of all continuously differentiable functions f :
Rn 7→ Rn.

Theorem 1.2. (L. Markus [10]) Let f ∈ C1(Rn,Rn), O = (0, 0) be a critical point
of limiting system (3), i.e, f(0) = 0. Assume that the variational system of (3)
based on origin O have characteristic values with negative real parts. Then there
exists a neighborhood U of O and a time T such that lim

t→∞
|x(t)| = 0 for any solution

of equation (1) intersecting U no later than T , i.e., the origin is an attracting point
for (1).

Let (C(R+ × Rn,Rn),R+, σ) be the shift dynamical system [11, 12] (or Bebutov’s
dynamical system) on C(R+ × Rn,Rn). For every function F ∈ C(R+ × Rn,Rn)
we denote by H+(F ) := {Fτ : τ ∈ R+} the closure of all positive translations
of the function F and by ΩF its ω-limit set, i.e., ΩF := {G : there exists a
sequence τn → +∞ such that Fτn → G}, where Fτ is τ -shift of the function F , i.e.,
Fτ (t, x) := F (t + τ, x) for all (t, x) ∈ R+ × Rn.

Let F ∈ C(R+ × Rn,Rn) be an arbitrary function. Consider the equation

(4) x′ = F (t, x).

Along with equation (4) we consider its H+-class, i.e., the following family of equa-
tions

y′ = G(t, y) (G ∈ H+(F )).

Example 1.3. 1. Let F ∈ C(R+ × Rn;Rn) be asymptotically autonomous, i.e.,
F (t, x) = f(x) + p(t, x) and p satisfies condition (2). In this case ΩF = {f}, i.e.,
its ω-limit set contains a single function.

2. Let F ∈ C(R+ × Rn;Rn) be asymptotically T periodic, i.e., F (t, x) = f(t, x) +
p(t, x), f(t + T, x) = f(t, x) for all (t, x) ∈ R × Rn and p satisfies condition (2).
In this case ΩF = {fτ : τ ∈ [0, T )}, i.e., its ω-limit set contains a continuum
functions and it is homeomorphic to unitary circle.

3. If F ∈ C(R+ ×Rn;Rn) is asymptotically quasi periodic, i.e., F (t, x) = f(t, x) +
p(t, x), where f(t, x) is a quasi periodic function with the spectrum of frequency
ν1, ν2, . . . , νm and p satisfies condition (2). In this case its ω-limit set is homeo-
morphic to an m-torus.

Theorem 1.4. (G. Sell [11, Ch.VIII]) Let F ∈ C(Rn,Rn) be regular, asymptot-
ically autonomous and O ∈ Rn be the null solution equation (4), i.e, F (t, 0) = 0
for all t ∈ R+. Assume that the null solution of limiting equation (3) is uniformly
asymptotically stable. Then the null solution of equation (4) is uniformly asymp-
totically stable.

Remark 1.5. 1. Note that Theorem 1.4 generalizes Theorem of L. Markus in the
following directions:
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a. right hand side f of the limiting equation is only continuous (L. Markus,
f ∈ C1(Rn,Rn));

b. the null solution of limiting equation (3) is only uniformly asymptotically
stable (L. Markus, O is uniformly exponentially stable (In fact, Reλi < 0
(i = 1, . . . , n), λ1, . . . , λn are characteristic values of the origin for the
variational equation for (3)).

2. It is easy to see that there are examples with uniformly asymptotically stable
origin which is not uniformly exponentially stable. For example x′ = −x3 (n = 1).

Consider a differential equation

(5) x′ = f(t, x) (f ∈ C(R×W,Rn)),

where W is an open subset from Rn containing the origin (i.e., 0 ∈ W ), C(R×W,Rn)
is the space of all continuous functions f : R ×W 7→ Rn equipped with compact
open topology. Denote by (C(R×W,Rn),R, σ) the shift dynamical system [5, 11] on
the space C(R×W,Rn) (dynamical system of translations or Bebutov’s dynamical
system), i.e., σ(τ, f) := fτ for all τ ∈ R and f ∈ C(R ×W,Rn), where fτ (t, x) :=
f(t + τ, x) for all (t, x) ∈ R×W .

Below we will use the following conditions:

(A): for all (t0, x0) ∈ R+ × W the equation (5) admits a unique solution
x(t; t0, x0) with initial data (t0, x0) and defined on R+ := [0, +∞), i.e.,
x(t0; t0, x0) = x0;

(B): the hand right side f is positively compact, if the set Σ+
f := {fτ : τ ∈ R+}

is a relatively compact subset of C(R×W,Rn);
(C): the equation

(6) y′ = g(t, y), (g ∈ Ωf )

is called a limiting equation for (5), where Ωf is the ω-limit set of f with
respect to the shift dynamical system (C(R×W,Rn),R, σ), i.e., Ωf := {g :
there exists a sequence {τk} → +∞ such that fτk

→ g as k →∞};
(D): equation (5) (or its hand right side f) is regular , if for all p ∈ H+(f) the

equation
y′ = p(t, y)

admits a unique solution ϕ(t, x0, p) defined on R+ with initial condition
ϕ(0, x0, p) = x0 for all x0 ∈ W , where H+(f) = {fτ : τ ∈ R+} and by bar
is denoted the closure in the space C(R×W,Rn);

(E): equation (5) admits a null (trivial) solution, i.e., f(t, 0) = 0 for all t ∈ R+.

The trivial solution of equation (5) is said to be:

(i) uniformly stable, if for all positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |x| < δ implies |ϕ(t, x, fτ )| < ε for all t, τ ∈ R+;

(ii) uniformly attracting, if there exists a positive number a such that

lim
t→+∞

|ϕ(t, x, fτ )| = 0

uniformly in |x| ≤ a and τ ∈ R+;
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(iii) uniformly asymptotically stable, if it is uniformly stable and uniformly
attracting.

In connection with Theorems 1.2 and 1.4 by G. Sell was formulated the following
problem.

G. Sell’s conjecture ([11, Ch.VIII,p.134]). Let f ∈ C(R ×W,Rn) be a regular
function and f be positively pre-compact. Assume that W contains the origin 0
and f(t, 0) = 0 for all t ∈ R+. Assume further that there exists a positive number
a such that the equality

lim
t→+∞

|ϕ(t, x, g)| = 0

takes place uniformly in |x| ≤ a and g ∈ Ωf . Then the trivial solution of (5) is
uniformly asymptotically stable.

The positive solution of G. Sell’s conjecture was obtained by Z. Artstein [1] and
Bondi P. et al. [2].

Remark 1.6. 1. Bondi P. et al. [2] proved this conjecture under the additional
assumption that the function f is locally Lipschitzian.

2. Artstein Z. [1] proved this statement without Lipschitzian condition. In reality he
proved a more general statement. Namely, he supposed that only limiting equations
for (5) are regular, but the function f is not obligatory regular.

3. By D. Cheban [7] was formulated G. Sell’s conjecture for abstract NDSs (the both
with continuous and discrete time). In [7] it is given a positive answer to this conjec-
ture and also are presented some applications of this result to different classes of evo-
lution equations: infinite-dimensional differential equations, functional-differential
equations and semi-linear parabolic equations .

In the paper [13] it was published the following false [3] statement.

Theorem 1.7. Let f be a regular function with f(t, 0) = 0 for all t ≥ 0. If there
exits a function g ∈ Ωf such that the null solution of equation (6) is uniformly
asymptotically stable, then the null solution of equation (5) is uniformly asymptot-
ically stable.

Bondi P. at al. [3] give the following counterexample to Theorem 1.7.

(7) ax′′ + bx′ + cx = x sin
√

t (x ∈ R, t ∈ R+, a, b > 0, c ∈ (0, 1)).

For every µ ∈ [−1, 1]

(8) ax′′ + bx′ + cx = µx

is a limiting equation for (7). For µ ∈ [−1, c) the null solution of equation (8)
is uniformly asymptotically stable, but the null solution of equation (7) is not
uniformly stable.

Recall that a function f ∈ C(R×W,E) is called:
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- almost periodic (respectively, almost recurrent) in t ∈ R uniformly in u on
every compact subset K from W , if for an arbitrary number ε > 0 and
compact subset K ⊆ W there exists a positive number L = L(K, ε) such
that on every segment [a, a + L] (a ∈ R) of the length L there exists at
least one number τ such that

max
u∈K, |t|≤1/ε

|f(t + s + τ, u)− f(t + s)| < ε

(respectively,

max
u∈K, |t|≤1/ε

|f(t + τ, u)− f(t, u)| < ε)

for all s ∈ R;
- recurrent (in t ∈ R uniformly in u on every compact subset K from

W , if the function f ∈ C(R × W,E) is almost recurrent and H(f) :=
{fτ : τ ∈ R} is compact;

- asymptotically recurrent (respectively, almost periodic) in t ∈ R uniformly
in u on every compact subset K from W , if there exits two functions
P,R ∈ C(R×W,E) such that:
(a)

(9) f(t, u) = P (t, u) + R(t, x)

for all (t, u) ∈ R× E;
(b) the function P is recurrent (respectively, almost periodic) in t ∈ R

uniformly in u on every compact subset K from W and

(10) lim
t→+∞

max
u∈K

|R(t, u)| = 0

for every compact subset K ⊆ W .

From the main result of this paper (Theorems 3.7 and 3.8) it follows that Theorem
1.7 is true if the function f is asymptotically recurrent (in particularly, asymptot-
ically almost periodic) in t ∈ R uniformly in u on every compact subset Q from
Rn.

The aim of this paper is investigation the problem of asymptotic stability of trivial
solution for asymptotically almost periodic (respectively, asymptotically recurrent)
systems. We study this problem in the framework of general non-autonomous
dynamical systems (NDS). We formulate and prove the analog of Theorem 1.7
for abstract non-autonomous dynamical systems. The obtained result we apply
to different classes of evolution equations: Ordinary Differential Equations (both
finite and infinite-dimensional cases), Difference Equations, Functional Differential
Equations, Semi-Linear Parabolic Equations .

The paper is organized as follows.

In Section 2, we collect some notions (global attractor, stability, asymptotic stabil-
ity, uniform asymptotic stability, minimal set, point/compact dissipativity, recur-
rence, shift dynamical systems, etc) and facts from the theory of dynamical systems
which will be necessary in this paper.

Section 3 is devoted to the study of asymptotic stability of NDS with asymptot-
ically recurrent base. The main result of paper (Theorem 3.7 and Theorem 3.8)
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contain some tests of asymptotic stability for asymptotically recurrent (in particu-
larly, asymptotically almost periodic) NDS.

Finally, Section 4 contains a series of applications of our general results from Sec-
tions 2-3 for Ordinary Differential Equations (Theorem 4.1 and Theorem 4.2),
Functional-Differential Equations with finite delay (Theorem 4.7) and Semi-Linear
Parabolic Equations (Theorem 4.9).

2. Asymptotic Stability of Dynamical Systems

In this section we collect some facts about stability and asymptotic stability of dy-
namical systems (both autonomous and non-autonomous) which use in this paper.

2.1. Compact Global Attractors of Dynamical Systems. Let X be a topo-
logical space, R (Z) be a group of real (integer) numbers, R+ (Z+) be a semi-group
of the nonnegative real (integer) numbers, S be one of the two sets R or Z and
T ⊆ S be one of the sub-semigroups R+ (respectively, Z+) or R (respectively, Z).

Triplet (X,T, π), where π : T × X → X is a continuous mapping satisfying the
following conditions: π(0, x) = x and π(s, π(t, x)) = π(s + t, x) (∀t, s ∈ T) is called
a dynamical system. If T = R (R+) or Z (Z+), then (X,T, π) is called a group
(semi-group) dynamical system. In the case, when T = R+ or R the dynamical
system (X,T, π) is called a flow, but if T ⊆ Z, then (X,T, π) is called a cascade
(discrete flow).

Below X will be a complete metric space with the distance ρ.

The function π(·, x) : T→ X is called a motion passing through the point x at the
moment t = 0 and the set Σx := π(T, x) is called a trajectory of this motion.

A nonempty set M ⊆ X is called positively invariant (negatively invariant, in-
variant) with respect to dynamical system (X,T, π) or, simple, positively invariant
(negatively invariant, invariant), if π(t,M) ⊆ M (M ⊆ π(t,M), π(t,M) = M) for
every t ∈ T+ := {t ∈ T : t ≥ 0}.
A closed positively invariant set (respectively, invariant set), which does not contain
own closed positively invariant (respectively, invariant) subset, is called minimal.

Let M ⊆ X. The set
ω(M) :=

⋂

t≥0

⋃

τ≥t

π(τ, M)

is called ω-limit for M .

The set W s(Λ), defined by equality

W s(Λ) := {x ∈ X| lim
t→+∞

ρ(π(t, x), Λ) = 0}
is called a stable manifold of the set Λ ⊆ X.

The set M is called:

- orbital stable, if for every ε > 0 there exists δ = δ(ε) > 0 such that
ρ(x, M) < δ implies ρ(π(t, x),M) < ε for all t ≥ 0;
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- attracting, if there exists γ > 0 such that B(M,γ) ⊂ W s(M), where
B(M, γ) := {x ∈ X : ρ(x,M) < γ};

- asymptotic stable, if it is orbital stable and attracting;
- uniform attracting, if there exists γ > 0 such that

lim
t→+∞

sup
x∈B(M,γ)

ρ(π(t, x),M) = 0.

The system (X,T, π) is called:

− compactly dissipative if there exists a nonempty compact subset K ⊆ X
such that

(11) lim
t→+∞

β(π(t,M), K) = 0

for all compact subset M ⊆ X, where β(A,B) := sup
a∈A

ρ(a,B) and ρ(a,B) :=

inf
b∈B

ρ(a, b);

− local completely continuous (compact) if for all point p ∈ X there are two
positive numbers δp and lp such that the set π(lp, B(p, δp)) is relatively
compact.

Let (X,T, π) be compactly dissipative and K be a compact set attracting every
compact subset from X. Let us set J = ω(K). It can be shown [5, Ch.I] that the
set J doesn’t depends on the choice of the attractor K, but is characterized only
by the properties of the dynamical system (X,T, π) itself. The set J is called a
Levinson center of the compactly dissipative dynamical system (X,T, π).

Lemma 2.1. [7] Let (X,T, π) be a dynamical system and x ∈ X be a point with
relatively compact semi-trajectory Σ+

x := {π(t, x) : t ≥ 0}. Then the following
statements hold:

(i) the dynamical system (X,T, π) induces on the H+(x) := Σ
+

x a dynamical
system (H+(x),T+, π), where by bar is denoted the closure of Σ+

x in the
space X;

(ii) the dynamical system (H+(x),T+, π) is compactly dissipative;
(iii) Levinson center JH+(x) of (H+(x),T+, π) coincides with ω-limit set ωx of

the point x.

2.2. G. Sell’s conjecture for non-autonomous dynamical systems. Let T1 ⊆
T2 ⊆ S be two sub-semigroups of S and (Y,T2, σ) be a dynamical system on metric
space Y . Recall that a triplet 〈W,ϕ, (Y, T2, σ)〉 (or shortly ϕ), where W is a metric
space and ϕ is a mapping from T1 ×W × Y into W , is said to be a cocycle over
(Y,T2, σ) with the fiber W , if the following conditions are fulfilled:

(i) ϕ(0, u, y) = u for all u ∈ W and y ∈ Y ;
(ii) ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all t, τ ∈ T1, u ∈ W and y ∈ Y ;
(iii) the mapping ϕ : T1 ×W × Y 7→ W is continuous.

Example 2.2. (Bebutov’s dynamical system) Let X, W be two metric space.
Denote by C(T × W,X) the space of all continuous mappings f : T × W 7→ X
equipped with the compact-open topology and σ be the mapping from T× C(T×
W,X) into C(T×W,X) defined by the equality σ(τ, f) := fτ for all τ ∈ T and f ∈



8 DAVID CHEBAN AND C. MAMMANA

C(T×W,X), where fτ is the τ -translation (shift) of f in t, i.e., fτ (t, x) = f(t+τ, x)
for all (t, x) ∈ T×W . Then [5, Ch.I] the triplet (C(T×W,X),T, σ) is a dynamical
system on C(T×W,X) which is called a shift dynamical system (dynamical system
of translations or Bebutov’s dynamical system).

A function f ∈ C(T×W,X) is said to be recurrent (respectively, almost periodic) in
t ∈ T uniformly in x ∈ W on every compact subset from W , if f ∈ C(T×W,X) is
a recurrent (respectively, almost periodic) point of the Bebutov’s dynamical system
(C(T×W,X),T, σ).

Example 2.3. Consider differential equation (5) with regular second right hand
side f ∈ C(R ×W,Rn), where W ⊆ Rn. Denote by (H+(f),R+, σ) a semi-group
shift dynamical system on H+(f) induced by Bebutov’s dynamical system (C(R×
W,Rn),R, σ), where H+(f) := {fτ : τ ∈ R+}. Let ϕ(t, u, g) a unique solution of
equation

y′ = g(t, y), (g ∈ H+(f)),
then from the general properties of the solutions of non-autonomous equations it
follows that the following statements hold:

(i) ϕ(0, u, g) = u for all u ∈ W and g ∈ H+(f);
(ii) ϕ(t + τ, u, g) = ϕ(t, ϕ(τ, u, g), gτ ) for all t, τ ∈ R+, u ∈ W and g ∈ H+(f);
(iii) the mapping ϕ : R+ ×W ×H+(f) 7→ W is continuous.

From above it follows that the triplet 〈W,ϕ, (H+(f),R+, σ)〉 is a cocycle over
(H+(f), R+, σ) with the fiber W ⊆ Rn. Thus, every non-autonomous equation (5)
with regular f naturally generates a cocycle which plays a very important role in
the qualitative study of equation (5).

Suppose that W ⊆ E, where E is a Banach space with the norm | · |, 0 ∈ W (0
is the null element of E) and the cocycle 〈W,ϕ, (Y, T2, σ)〉 admits a trivial (null)
motion/solution, i.e., ϕ(t, 0, y) = 0 for all t ∈ T1 and y ∈ Y .

The trivial motion/solution of cocycle ϕ is said to be:

(i) uniformly stable, if for all positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |u| < δ implies |ϕ(t, u, y)| < ε for all t ≥ 0 and y ∈ Y ;

(ii) uniformly attracting, if there exists a positive number a such that

(12) lim
t→+∞

|ϕ(t, u, y)| = 0

uniformly with respect to |u| ≤ a and y ∈ Y ;
(iii) uniformly asymptotically stable, if it is uniformly stable and uniformly

attracting.

Theorem 2.4. [7] Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS. Suppose that the fol-
lowing conditions are fulfilled:

(i) Y is compact;
(ii) the dynamical system (X,T1, π) is locally compact;
(iii) the trivial section Θ of (X, h, Y ) is positively invariant;
(iv) the trivial section Θ̃ of NDS 〈(X̃,T1, π), (JY ,T2, σ), h〉 is uniformly at-

tracting.
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Then the trivial section Θ of non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ),
h〉 is uniformly stable.

Corollary 2.5. [7] Under the conditions of Theorem 2.4 the trivial section Θ of
NDS 〈(X,T1, π), (Y,T2, σ), h〉 is uniformly asymptotically stable.

Remark 2.6. Note that Corollary 2.5 gives a positive answer to G.Sell’s conjecture
for local-compact NDS [7].

3. Asymptotic Stability of NDS with Asymptotically Recurrent Base

Section 3 is devoted to the study of asymptotic stability of NDS with asymptot-
ically recurrent base. The main result of paper (Theorem 3.7 and Theorem 3.8)
contain some tests of asymptotic stability for asymptotically recurrent (in particu-
larly, asymptotically almost periodic) NDS.

Remark 3.1. If the bundle (X, h, Y ) is locally trivial, then for all y ∈ Y , x ∈ Xy

and yn → y there exists a sequences xn ∈ Xyn
such that xn → x.

Let M ⊆ Y . Denote by ΘM := h−1(M)
⋂

Θ, where Θ is the null section of the
vectorial bundle (X, h, Y ).

Definition 3.2. The set ΘM is said to be:

(i) uniform stable, if for all ε > 0 there exists a number δ = δ(ε,M) > 0 such
that |x| < δ (x ∈ h−1(M)) implies |π(t, x)| < ε for all t ≥ 0;

(ii) uniform attracting, if there exists a positive number a such that

(13) lim
t→∞

sup
|x|≤a, x∈h−1(M)

|π(t, x)| = 0;

(iii) uniform asymptotic stable, if it is uniform stable and uniform attracting.

Lemma 3.3. Suppose that the set ΘM (M ⊆ Y ) is uniformly stable (respectively,
uniformly attracting or uniformly asymptotically stable), then the set ΘM is also
uniformly stable (respectively, uniformly attracting or uniformly asymptotically sta-
ble), where by bar is denoted the closure of M in Y .

Proof. Let ΘM be uniformly stable, ε > 0 and δ = δ(ε,M) > 0 a positive number
figuring in the definition of uniform stability of ΘM . Denote by ν(ε) := δ(ε/2,M)

2 .
Let now x ∈ h−1(M) with |x| < ν(ε), y := h(x) ∈ M and yn ∈ M such that
yn → y. By Remark 3.1 there exist sequences yn → y (yn ∈ M) and xn ∈ Xyn such
that xn → x. According to choose of the number ν(ε) there exists n0 ∈ N such
that |xn| ≤ ν(ε) < δ(ε/2,M)

2 and, consequently,

(14) |π(t, xn)| < ε/2

for all t ≥ 0. Passing into limit in (14) as n goes to ∞ we obtain |π(t, x)| ≤ ε/2 <
ε for all t ≥ 0.

Let now ΘM be uniformly attracting, a > 0 be a positive number figuring in (13),
and ε be an arbitrary positive number. According to equality (13) there exists a
positive number L = L(ε/2, M) such that

(15) |π(t, x)| < ε/2
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for all t ≥ L, |x| ≤ a with x ∈ h−1(M). Let now x ∈ h−1(M) with |x| ≤ a/2,
yn → y (yn ∈ M) and xn → x (xn ∈ Xyn

), then there exists a number n0 ∈ N such
that |xn| ≤ a for all n ≥ n0. From (15) we obtain

(16) |π(t, xn)| ≤ ε/2

for all t ≥ L and n ≥ n0. Passing into limit in (16) as n tends to ∞ we obtain
|π(t, x)| < ε for all t ≥ L and x ∈ h−1(M) with |x| ≤ b := a/2. This means that

lim
t→∞

sup
|x|≤b, x∈h−1(M)

|π(t, x)| = 0,

i.e., the set ΘM is uniformly attracting.

Since the set ΘM is uniformly stable and uniformly attracting, then it is uniformly
asymptotically stable. The lemma is completely proved. ¤

Definition 3.4. Let y0 ∈ Y , the null element θy0 ∈ Xy0 is said to be uniformly
stable (respectively, uniformly attracting or uniformly asymptotically stable), if
the set ΘΣ+

y0
is so, where Σ+

y0
:= {σ(t, y0) : t ≥ 0} is the positive semi-trajectory of

the point y0.

Corollary 3.5. Let y0 ∈ Y and θy0 be uniformly stable (respectively, uniformly
attracting or uniformly asymptotically stable), then the set ΘH+(y0) is also uniformly
stable (respectively, uniformly attracting or uniformly asymptotically stable).

Proof. This statement follows directly from Lemma 3.3 if we apply it to the set
M = Σ+

y0
. ¤

Let y ∈ Y be an asymptotically recurrent point, i.e., there exists a recurrent point
q ∈ Y such that

(17) lim
t→+∞

ρ(σ(t, y), σ(t, q)) = 0.

Denote by Py := {q ∈ Y : q is a recurrent point such that (17) holds}.
Remark 3.6. 1. If the point y ∈ Y is asymptotically recurrent, then its ω-limit
set ωy is a compact and minimal set of dynamical system (Y,T, σ).

2. There exist points y ∈ Y (see, for example, [6, Ch.I,p.13] Example 1.42) with
the properties that Σ+

y is relatively compact and ωy is compact and minimal, but y
is not asymptotically recurrent.

Theorem 3.7. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS. Suppose that the following
conditions are fulfilled:

(i) the dynamical system (X,T1, π) is locally compact;
(ii) the space Y is compact;
(iii) Levinson center JY of the dynamical system (Y,T2, σ) is minimal;
(iv) the null section Θ of the bundle (X, h, Y ) is positively invariant;
(v) there exists a point q ∈ JY such that θq ∈ Θ is uniformly attracting.

Then the trivial section Θ of 〈(X,T1, π), (Y,T2, σ), h〉 is uniformly asymptotically
stable.
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Proof. According to Corollary 2.5 the set ΘH+(q)is uniformly attracting. Since q

is recurrent and the set JY is minimal we obtain JY = H+(q). Thus the trivial
section Θ̃ of the NDS 〈(X̃,T1, π), (JY ,T2, σ), h〉 is uniformly attracting. Now to
finish the proof of Theorem 3.7 it is sufficient to apply Theorem 2.4 and Corollary
2.5. ¤

Theorem 3.8. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS. Suppose that the following
conditions are fulfilled:

(i) the dynamical system (X,T1, π) is locally compact;
(ii) there exists an asymptotically recurrent point y ∈ Y such that Y = H+(y);
(iii) the null section Θ of the bundle (X, h, Y )) is positively invariant;
(iv) there exists a recurrent point q ∈ Py such that θq ∈ Θ is uniformly attract-

ing.

Then the trivial section Θ of 〈(X,T1, π), (Y,T2, σ), h〉 is uniformly asymptotically
stable.

Proof. Since the point y ∈ Y is asymptotically recurrent, q ∈ Py and Y = H+(y),
then Y is compact, the dynamical system (Y,T2, σ) is compactly dissipative and
its Levinson center JY coincides with ωy = H+(q) and, consequently, it is minimal.
Now to finish the proof of Theorem 3.8 it is sufficient to apply Theorem 3.7. ¤

Recall that a subset M ⊆ X is called transitive, if there exists a point p ∈ X such
that M = H(q) := {π(t, p) : t ∈ R}, where by bar is denoted a closure in the space
X.

A point x ∈ X is said to be:

- Poisson stable (in the positive direction), if x ∈ ωx;
- asymptotically Poisson stable, if there exists a Poisson stable point p ∈ X

such that

(18) lim
t→+∞

ρ(π(t, x), π(t, p)) = 0.

Lemma 3.9. If the point x ∈ X is asymptotically Poisson stable, then its ω-limit
set ωx is transitive.

Proof. Let x be an asymptotically Poisson stable point and ωx be its ω-limit set.
Then there exists a Poisson stable point p ∈ X such that (18) holds. From (18) it
follows the equality ωx = ωp. On the other hand from the Poisson stability of x we
obtain ωp = H(p) and, consequently, ωx = H(p). Lemma is proved. ¤

Remark 3.10. All results of Section 3 remain true, if we replace the minimality
of JY by its transitivity.

Remark 3.11. All results of Sections 2–3 remain true if

1. we replace the positive invariance of the trivial section Θ by the following
condition: there exists a compact positively invariant set M ⊆ X such that
My := {x ∈ M : h(x) = y} consists a single point for all y ∈ Y ;
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2. the compact metric space Y we replace by an arbitrary compact regular
topological space.

4. Some applications

Section 4 contains a series of applications of our general results from Sections 2-3
for Ordinary Differential Equations, Functional-Differential Equations with finite
delay and Semi-Linear Parabolic Equations.

4.1. Ordinary differential equations. Denote by C(S ×W,E) the space of all
continuous mappings f : S ×W 7→ E equipped with the compact open topology.
On the space C(S×W,E) it is defined a shift dynamical system [5, ChI] (dynamical
system of translations or Bebutov’s dynamical system) (C(S×W,E), S, σ), where σ
is a mapping from S×C(S×W,E) onto C(S×W,E) defined as follow σ(τ, f) := fτ

for all (τ, f) ∈ S × C(S × W,E), where fτ is the τ -translation of f in t, i.e.,
fτ (t, x) := f(t + τ, x) for all (t, x) ∈ S×W . Consider a differential equation

(19) u′ = f(t, u),

where f ∈ C(R×W,E).

If the function f is regular, then equation (19) naturally defines a cocycle 〈W, ϕ,
(H+(f), R+, σ)〉, where (H+(f),R+, σ) is a (semi-group) dynamical system on
H+(f) induced by Bebutov’s dynamical system.

Applying the general results from Sections 2-3 we will obtain a series of results for
equation (19). Below we formulate some of them.

Denote by Ωf := {g ∈ H+(f) : there exists a sequenceτn → +∞ such that g =
lim

n→∞
fτn} the ω-limit set of f .

Theorem 4.1. Assume that the following conditions are fulfilled:

(i) the function f is regular;
(ii) the set H+(f) is compact;
(iii) the ω-limit set Ωf of function f is a compact minimal set of Bebutov’s

dynamical system (C(R×W,E),R, σ);
(iv) f(t, 0) = 0 for all t ∈ R+;
(v) there exists a neighborhood U of the origin 0 and a positive number l such

that the set ϕ(l, U,H+(f)) is relatively compact;
(vi) there exists a function P ∈ Ωf such that the trivial solution of equation

(20) x′ = P (t, x)

is uniformly attraction, i.e., there exists a positive number a such that

(21) lim
t→+∞

sup
|v|≤a,τ≥0

|ϕ(t, v, Pτ )| = 0.

Then the null solution of equation (19) is uniformly asymptotically stable.

Proof. Consider the dynamical system (H+(f),R+, σ). Since the space H+(f)
is compact, then (H+(f),R+, σ) is compactly dissipative and by Lemma 2.1 its
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Levinson center (maximal compact invariant set) JH+(f) coincides with ω-limit
set Ωf of f . Let Y := H+(f) and (Y,R+, σ) be the shift dynamical system on
Y . Denote by X := W × Y and (X,R+, π) the skew-product dynamical system
generates by (Y,R+, σ) and cocycle ϕ, i.e., π(t, (v, g)) := (ϕ(t, v, g), σ(t, g)) for
all t ∈ R+ and (v, g) ∈ X. Now consider a non-autonomous dynamical system
〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated by equation (19). It easy to verify
that this NDS posses the following properties:

(i) by Lemma 2.1 the dynamical system (Y,R+, σ) is compactly dissipative
and its Levinson center JY coincides with Ωf ;

(ii) the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;
(iii) Θ is a positively invariant subset of (X,R+, π);
(iv) according to (21) the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ), h〉 is

uniformly attracting (see Lemma 3.3) because |π(t, x)| = |ϕ(t, v, g)| for all
t ∈ R+ and x := (v, g) ∈ X.

Now to finish the proof it is sufficient to apply Corollary 2.5. ¤

Theorem 4.2. Assume that the following conditions are fulfilled:

(i) the function f is regular;
(ii) f is asymptotically recurrent in t uniformly in x on every compact subset

from W ;
(iii) f(t, 0) = 0 for all t ∈ R+;
(iv) there exists a neighborhood U of the origin 0 and a positive number l such

that the set ϕ(l, U,H+(f)) is relatively compact;
(v) the trivial solution of equation (20) is uniformly attracting, i.e., there exists

a positive number a such that

lim
t→+∞

sup
|v|≤a,τ≥0

|ϕ(t, v, Pτ )| = 0.

Then the null solution of equation (19) is uniformly asymptotically stable.

Proof. This statement it follows directly from Lemma 3.3 and Corollary 3.5 using
the same arguments as in the proof of Theorem 4.1. ¤

Remark 4.3. 1. Note that the compactness and minimality of the set Ωf in The-
orem 4.1 are essential. In fact, in the work [3] there is an example of equation
of type (19), where all conditions of Theorem 4.1 are fulfilled with the exception of
minimality of Ωf and for which equation the trivial solution is not uniformly stable.

2. In the case, when the function f is asymptotically stationary (i.e., the function
P figuring in (22) does not depend on t ∈ R) and E is finite-dimensional Theorem
4.2 coincides with one result of G. Sell (see [11, Ch.VIII, p.135] Theorem 10) and
L. Markus [10].

3. Note that assumption of the minimality of Ωf is not necessary in this Subsection
(see Remark 3.10 and Lemma 3.9). All the results from Subsection 4.1 remain true,
if we replace the minimality of Ωf by its transitivity (this means that there exists a
function P ∈ Ωf such that Ωf = H(P ) := {Pτ : τ ∈ R}).
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4.2. Difference equations. Consider a difference equation

(22) u(t + 1) = f(t, u(t)),

where f ∈ C(Z×W,E).

Along with equation (22) we consider the family of equations

(23) v(t + 1) = g(t, v(t)),

where g ∈ H+(f) := {fτ : τ ∈ Z+} and by bar is denoted the closure in the
space C(Z × W,E). Let ϕ(t, v, g) be a unique solution of equation (23) with ini-
tial data ϕ(0, v, g) = v. Denote by (H+(f),Z+, σ) the shift dynamical system on
H+(f), then the triplet 〈W,ϕ, (H+(f),Z+, σ)〉 is a cocycle (with discrete time) over
(H+(f),Z+, σ) with the fibre W .

Applying the results from Sections 2-3 we will obtain the following result for dif-
ference equation (22).

Theorem 4.4. Assume that the following conditions are fulfilled:

(i) the function f ∈ C(Z×W,E) is asymptotically recurrent in t uniformly in
x on every compact subset from W ;

(ii) f(t, 0) = 0 for all t ∈ Z+;
(iii) there exists a neighborhood U of the origin 0 and a positive number l such

that the set ϕ(l, U,H+(f)) is relatively compact;
(iv) the trivial solution of equation

x(t + 1) = P (t, x)

is uniformly attracting, i.e., there exists a positive number a such that

lim
t→+∞

sup
|v|≤a,τ≥0

|ϕ(t, v, Pτ )| = 0.

Then the null solution of equation (22) is uniformly asymptotically stable.

4.3. Functional differential-equations (FDEs) with finite delay. We will
apply now the abstract theory developed in the previous Sections to the analysis
of a class of functional differential equations.

Let us first recall some notions and notations from [8]. Let r > 0, C([a, b],Rn)
be the Banach space of all continuous functions ϕ : [a, b] → Rn equipped with the
sup–norm. If [a, b] = [−r, 0], then we set C := C([−r, 0],Rn). Let σ ∈ R, A ≥ 0 and
u ∈ C([σ− r, σ +A],Rn). We will define ut ∈ C for all t ∈ [σ, σ +A] by the equality
ut(θ) := u(t + θ), −r ≤ θ ≤ 0. Consider a functional differential equation

(24) u̇ = f(t, ut),

where f : R× C → Rn is continuous.

Denote by C(R × C,Rn) the space of all continuous mappings f : R × C 7→ Rn

equipped with the compact open topology. On the space C(R × C,Rn) is defined
(see, for example, [5, ChI]) a shift dynamical system (C(R × C,Rn),R, σ), where
σ(τ, f) := fτ for all f ∈ C(R× C,Rn) and τ ∈ R and fτ is τ -translation of f , i.e.,
fτ (t, φ) := f(t + τ, φ) for all (t, φ) ∈ R× C.
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Let us set H+(f) := {fs : s ∈ R+}, where by bar we denote the closure in C(R ×
C,Rn).

Along with the equation (24) let us consider the family of equations

(25) v̇ = g(t, vt),

where g ∈ H+(f).

Below, in this subsection, we suppose that equation (24) is regular.

Remark 4.5. 1. Denote by ϕ̃(t, u, f) the solution of equation (24) defined on R+

(respectively, on R) with the initial condition ϕ(0, u, f) = u ∈ C, i.e., ϕ(s, u, f)
= u(s) for all s ∈ [−r, 0]. By ϕ(t, u, f) we will denote below the trajectory of
equation (24), corresponding to the solution ϕ̃(t, u, f), i.e., the mapping from R+

(respectively, R) into C, defined by ϕ(t, u, f)(s) := ϕ̃(t + s, u, f) for all t ∈ R+

(respectively, t ∈ R) and s ∈ [−r, 0].

2. Due to item 1. of this remark, below we will use the notions of “solution” and
“trajectory” for equation (24) as synonym concepts.

It is well known [4, 11] that the mapping ϕ : R+ × C ×H+(f) 7→ Rn possesses the
following properties:

(i) ϕ(0, v, g) = u for all v ∈ C and g ∈ H+(f);
(ii) ϕ(t + τ, v, g) = ϕ(t, ϕ(τ, v, g), σ(τ, g)) for all t, τ ∈ R+, v ∈ C and g ∈

H+(f);
(iii) the mapping ϕ is continuous.

Thus, a triplet 〈C, ϕ, (H+(f),R+, σ)〉 is a cocycle which is associated to equation
(24). Applying the results from Sections 2-3 we will obtain certain results for
functional differential equation (24).

A function f ∈ C(R×W, C) is said to be completely continuous, if the set f(R+×A)
is bounded for all bounded subset A ⊆ C.
Lemma 4.6. [7] Suppose that the following conditions hold:

(i) the function f ∈ C(R×W, C) is regular and completely continuous;
(ii) the set H+(f) is compact.

Then the cocycle ϕ associated by (24) is completely continuous, i.e., for all bounded
subset A ⊆ W there exists a positive number l = l(A) such that the set ϕ(l, A,H+(f))
is relatively compact in C.
Theorem 4.7. Assume that the following conditions are fulfilled:

a. the function f ∈ C(R× C, C) is regular and completely continuous;
b. f is asymptotically recurrent in t uniformly in x on every compact subset

from C;
c. f(t, 0) = 0 for all t ∈ R+;
d. the trivial solution of equation

x′ = P (t, xt)

is uniformly attraction.
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Then the null solution of equation (24) is uniformly asymptotically stable.

Proof. Consider the dynamical system (H+(f),R+, σ). Since the space H+(f) is
compact, then (H+(f),R+, σ) is compactly dissipative and by Lemma 2.1 its Levin-
son center JH+(f) coincides with ω-limit set Ωf of f . Let Y := H+(f) and (Y,R+, σ)
be the shift dynamical system on Y . Denote by X := C × Y and (X,R+, π) the
skew-product dynamical system generates by (Y,R+, σ) and cocycle ϕ. Now con-
sider a NDS 〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated by equation (24). It
easy to verify this NDS possesses the following properties:

(i) the dynamical system (Y,R+, σ) is compactly dissipative and its Levinson
center JY coincides with Ωf ;

(ii) the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;
(iii) Θ is a positively invariant subset of (X,R+, π);
(iv) according to item e. the null section Θ̃ of NDS 〈(X̃, R+, π), (JY ,R+, σ),

h〉 is uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for all t ∈ R+ and
x := (v, g) ∈ X;

(v) according to Lemma 4.6 the dynamical system (X,R+, π) is completely
continuous.

Now to finish the proof it is sufficient to apply Lemma 3.3 and Corollary 3.5. ¤

4.4. Semi-linear parabolic equations. Let E be a Banach space, and let A :
D(A) → E be a linear closed operator with the dense domain D(A) ⊆ E.

An operator A is called [9] sectorial if for some ϕ ∈ (0, π/2), some M ≥ 1, and
some real a, the sector

Sa,ϕ := {λ : ϕ ≤ | arg(λ− a)| ≤ π, λ 6= a}
lies in the resolvent set ρ(A) and ‖(Iλ−A)−1‖ ≤ M |λ− a|−1 for all λ ∈ Sa,ϕ.

If A is a sectorial operator, then there exists an a1 ≥ 0 such that Re σ(A+a1I) > 0
(σ(A) := C \ ρ(A)). Let A1 = A + a1I. For 0 < α < 1, one defines the operator [9]

A−α
1 :=

sin πα

π

+∞∫

0

λ−α(λI + A1)−1dλ,

which is linear, bounded, and one-to-one. Set Eα := D(Aα
1 ), and let us equip the

space Eα with the graph norm |x|α := |Aα
1 x| (x ∈ E), E0 := E, and E1 := D(A).

Then Eα is a Banach space with the norm | · |α and is densely and continuously
embedded in E.

Consider differential equation

(26) x′ + Ax = f(t, x),

where f ∈ C(R × Eα, E) and C(R × Eα, E) is the space of all the continuous
functions equipped with compact open topology.

Along with equation (26), consider family of equations

(27) y′ + Ay = g(t, y),
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where g ∈ H+(f) := {fτ : τ ∈ R+}.
Recall that a function f is said to be regular, if for every (v, g) ∈ Eα×H+(f) equa-
tion (27) admits a unique solution [9, Ch.III] ϕ(t, v, g) with initial data ϕ(0, v, g) = v
and the mapping ϕ : R+ × Eα ×H+(F ) 7→ Eα is continuous.

Regularity conditions for f are given in Theorems 3.3.3, 3.3.4, 3.3.6, and 3.4.1 in
[9, Ch.III].

Assuming that f is regular, a non-autonomous dynamical system can be associated
in a natural way with equation (26). Namely, we set Y := H+(f) and by (Y,R+, σ)
denote the dynamical system of translations on Y . Further, let X := Eα × Y ,
and let (X,R+, π) be the dynamical system on X defined by the relation πτ (v, g) =
〈ϕ(τ, v, g), gτ 〉. Finally, by setting h = pr2 : X → Y , we obtain the non-autonomous
system 〈(X,R+, π), (Y,R+, σ), h〉 determined by equation (26).

Recall that a function f ∈ C(R×Eα, E) is said to be locally Hölder continuous in t
and locally Lipschitz in x, if for every (t0, x0) ∈ R×Eα there exists a neighborhood
V ((t0, x0) ∈ V ) and positive numbers L and θ such that

|f(t1, x1)− f(t2, x2)| ≤ L(|t1 − t2|θ + |x1 − x2|α)

for all (ti, xi) ∈ V (i = 1, 2).

Lemma 4.8. Suppose that the following conditions are fulfilled:

(i) A is a sectorial operator;
(ii) the resolvent of operator A is compact;
(iii) 0 ≤ α < 1 and f ∈ C(R× Eα, E);
(iv) the function f is locally Hölder continuous in t and locally Lipschitz in x;
(v) the set f(R+ ×B) is bounded in E for all bounded subset B from Eα.

Under the conditions listed above, if the function f is regular and the set H+(f) is
compact, then the cocycle ϕ associated by equation (26) is completely continuous.

Proof. This statement can be proved with the slight modification of the proof of
Theorem 3.3.6 [9, Ch.III]. ¤

Applying results from Sections 3-4 we obtain the following result for evolution
equation (26).

Theorem 4.9. Assume that the following conditions hold:

a. the function f ∈ C(R × Eα, E) is asymptotically recurrent in t uniformly
in x on every compact subset from Eα;

b. f(t, 0) = 0 for all t ∈ R+;
c. the set f(R+ ×B) is bounded in E for all bounded subset B from Eα;
d. the trivial solution of equation

x′ = Ax + P (t, x)

is uniformly attracting.

Then the null solution of equation (26) is uniformly asymptotically stable.
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Proof. Consider the dynamical system (H+(f),R+, σ). Since the space H+(f) is
compact, then according to Lemma 2.1 (H+(f),R+, σ) is compactly dissipative
and its Levinson center JH+(f) coincides with ω-limit set Ωf of f . Let Y := H+(f)
and (Y,R+, σ) be the shift dynamical system on Y . Denote by X := Eα × Y
and (X,R+, π) the skew-product dynamical system generates by (Y,R+, σ) and
cocycle ϕ. Consider a non-autonomous dynamical system 〈(X,R+, π), (Y,R+, π), h〉
(h := pr2) associated by equation (26). It easy to verify that this NDS possesses
the following properties:

(i) the dynamical system (Y,R+, σ) is compact dissipative and by Lemma 2.1
its Levinson center JY coincides with Ωf ;

(ii) the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;
(iii) Θ is a positively invariant subset of (X,R+, π);
(iv) according to item b. the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ),

h〉 is uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for all t ∈ R+ and
x := (v, g) ∈ X;

(v) by Lemma 4.8 the cocycle ϕ and, consequently, the skew-product dynam-
ical system (X,R+, π) too, is completely continuous.

Now to finish the proof it is sufficient to apply Lemma 3.3 and Theorem 3.8. ¤

Remark 4.10. Theorem 4.9 for asymptotically autonomous equations it was es-
tablished in [9] (Chapter IV, Theorem 4.3.7).
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