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Abstract. The paper is dedicated to the study of the problem of existence of
compact global chaotic attractors of discrete control systems and to description
of its structure. We consider so called switched systems with discrete time
xn+1 = fν(n)(xn), where ν : Z+ → {1, 2, . . . , m}. If m ≥ 2 we give sufficient

conditions (the family M := {f1, f2, . . . , fm} of functions is contracting in the
extended sense) for the existence of a compact global chaotic attractor. We
study this problem in the framework of non-autonomous dynamical systems
(cocyles).

1. Introduction

The aim of this paper is the study of the problem of existence of compact global
chaotic attractors of discrete control systems (see, for example, Bobylev, Emel’yanov
and Korovin [3], Cheban [7, 8] and the references therein). Let W be a metric
space, M := {fi : i ∈ I} be a family of continuous mappings of W into itself and
(W,fi)i∈I be the family of discrete dynamical systems, where (W,f) is a discrete
dynamical system generated by positive powers of continuous map f : W → W .
On the space W we consider a discrete inclusion

ut+1 ∈ F (ut)

associated by M := {fi : i ∈ I} (denotation DI(M)), where F (u) = {f(u) : f ∈
M} for all u ∈ W.

A solution of the discrete inclusion DI(M) is called (see, for example, [3, 11]) a
sequence {{xj} | j ≥ 0} ⊂ W such that

(1) xj = fij xj−1

for some fij ∈M (trajectory of DI(M)), i.e.

xj = fij fij−1 ...fi1x0 all fik
∈M.

We can consider that it is a discrete control problem, where at each moment of the
time j we can apply a control from the set M, and DI(M) is the set of possible
trajectories of the system.
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The problem of existence of compact global attractors for a discrete inclusion arise
in a number of different areas of mathematics (see, for example, [8, 9] and the
references therein).

A sequence ω : Z+ 7→ {1, 2, . . . ,m} is called m ∈ N := {1, 2, . . .} periodic, if
ω(n + m) = ω(n) for all n ∈ Z+.

A point x0 ∈ W is said to m-periodic for DI(M) if there exists an m-periodic
sequence ω : Z+ 7→ {1, 2, . . . ,m} such that solution {x(k)}k∈Z+ of equation (1)
(ω(i) = ij for all i ∈ Z and ij ∈ {1, 2, . . . , m}) with initial data x(0) = x0 is
m-periodic, i.e., x(k + m) = x(k) for all k ∈ Z+.

It is well known the following result.

Theorem 1.1. [2, Ch.II,IV] Let M = {f1, f2, . . . , fm} be a finite family of con-
tinuous mappings from W into itself. If there exists a number q ∈ (0, 1) such that
ρ(fi(x1), fi(x2)) ≤ qρ(x1, x2) for all x1, x2 ∈ W and i ∈ {1, 2, . . . , m}, then the
following statement hold:

(i) DI(M) admits a compact global attractor I, i.e.,
(a) I is a nonempty, compact and invariant set (F (I) = I, where F (x) :=

{f1(x), f2(x), . . . , fm(x)) for all x ∈ W and F (I) :=
⋃{F (x) : x ∈

I});
(b) lim

n→∞
β(Fn(x), I) = 0 for all x ∈ W uniformly with respect to x

on every compact subset M from W , where β(A,B) := sup
a∈B

ρ(a, B)

(A,B ⊆ W ).
(ii) I coincides with the closure of the all periodic points of DI(M).

In the book [8] (Chapter VI) it was generalized this theorem for the finite family
M = {f1, f2, . . . , fm} when it is contracting in the generalized sense, i.e., there are
two positive numbers N and q ∈ (0, 1) such that

ρ(finfin−1 . . . fi1(x1), finfin−1 . . . fi1(x2)) ≤ N qnρ(x1, x2)

for all x1, x2 ∈ W and n ∈ N, where i1, i2, . . . , in ∈ {1, 2, . . . ,m}.
In this paper we consider an arbitrary family of discrete dynamical systems (W, f)
(f ∈M, M contains, generally speaking, an infinite number of mappings f) on the
complete metric space W and we give the conditions which guarantee the existence
of compact global attractor for M. If M consists of a finite number of maps, then
we prove thatM admits a compact global chaotic attractor. We study this problem
in the framework of non-autonomous dynamical systems (cocyles).

This paper is organized as follows.

In Section 2 we give some notions and facts (set-valued dynamical systems, compact
global attractors, an ensemble (coolage) of dynamical systems, cocycles) from the
theory of set-valued dynamical systems which we use in our paper.

Section 3 is dedicated to the study of compact global chaotic attractors of discrete
control systems. We give also the description of the dynamics of global attractors
for this type of control systems. The main result of Section 3 (Theorem 3.2) contains
the conditions of existence of chaotic attractor for discrete control systems.
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In Section 4 we study the problem of existence of compact global attractor for dis-
crete control system in the case when M contains an infinite number of mappings
f and they are not (in general) invertible. The main result (Theorem 4.9 and The-
orem 4.12) of Section 4 give the conditions of existence of compact global attractors
and describes its dynamics.

Section 5 contains some applications of general results obtained in Sections 3 and
4 for certain classes of control systems with continuous time.

2. Some Notions and Facts from Dynamical and Control Systems

In this Section we collect some notions and facts from the theory of set-valued
dynamical systems which we use in our paper.

2.1. Set-valued dynamical systems and their compact global attractors.
Let (X, ρ) be a complete metric space, S be a group of real (R) or integer (Z)
numbers, T (S+ ⊆ T) be a semi-group of additive group S. If A ⊆ X and x ∈
X, then we denote by ρ(x,A) the distance from the point x to the set A, i.e.
ρ(x,A) = inf{ρ(x, a) : a ∈ A}. We denote by B(A, ε) an ε-neighborhood of the
set A, i.e. B(A, ε) = {x ∈ X : ρ(x,A) < ε}, by C(X) we denote the family of all
non-empty compact subsets of X. For every point x ∈ X and number t ∈ T we
put in correspondence a closed compact subset π(t, x) ∈ C(X). So, if π(P, A) =⋃{π(t, x) : t ∈ P, x ∈ A}(P ⊆ T), then

(i) π(0, x) = x for all x ∈ X ;
(ii) π(t2, π(t1, x)) = π(t1 + t2, x) for all x ∈ X;
(iii) lim

x→x0,t→t0
β(π(t, x), π(t0, x0)) = 0 for all x0 ∈ X and t0 ∈ T, where

β(A, B) = sup{ρ(a, B) : a ∈ A} is a semi-deviation of the set A ⊆ X
from the set B ⊆ X.

In this case it is said [17] that there is defined a set-valued semi-group dynamical
system.

Let T ⊂ T′ ⊂ S. A continuous mapping γx : T′ → X is called a motion of the
set-valued dynamical system (X,T, π) issuing from the point x ∈ X at the initial
moment t = 0 and defined on T′, if

a. γx(0) = x;
b. γx(t2) ∈ π(t2 − t1, γx(t1)) for all t1, t2 ∈ T′ (t2 > t1).

The set of all motions of (X,T, π), passing through the point x at the initial moment
t = 0 is denoted by Fx(π) and F(π) :=

⋃{Fx(π) | x ∈ X} (or simply F).

The trajectory γ ∈ F(π) defined on S is called a full (entire) trajectory of the
dynamical system (X,T, π).

Denote by Φ(π) the set of all full trajectories of the dynamical system (X,T, π) and
Φx(π) := Fx(π)

⋂
Φ(π).
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A system (X,T, π) is called [6],[8] compactly dissipative, if there exists a nonempty
compact K ⊆ X such that

lim
t→+∞

β(πtM,K) = 0;

for all M ∈ C(X).

Let (X,T, π) be compactly dissipative and K be a compact set attracting every
compact subset of X. Let us set

(2) J := ω(K) :=
⋂

t≥0

⋃

τ≥t

πτK.

It can be shown [6],[8] that the set J defined by equality (2) does not depend on
the choice of the attractor K, but it is characterized only by the properties of
the dynamical system (X,T, π) itself. The set J is called Levinson center of the
compact dissipative dynamical system (X,T, π).

2.2. Discrete inclusions, ensemble of dynamical systems (collages) and
cocycles. Let W be a topological space. Denote by C(W,W ) the space of all con-
tinuous operators f : W → W equipped with the compact-open topology. Consider
a set of operatorsM⊆ C(W,W ) and, respectively, an ensemble (collage) of discrete
dynamical systems (W, f)f∈M ((W,f) is a discrete dynamical system generated by
positive powers of map f).

A discrete inclusion DI(M) is called (see, for example, [3, 11]) a set of all sequences
{xj} ⊂ W (j ∈ Z+) such that

(3) xj = fij xj−1

for some fij ∈M (trajectory of DI(M)), i.e.

xj = fij fij−1 ...fi1x0 all fik
∈M.

A bilateral sequence {xj} ⊂ W (j ∈ Z) is called a full trajectory of DI(M) (entire
trajectory or trajectory on Z), if xn+j = fij xn+j−1 for all n ∈ Z.

Let us consider the set-valued function F : W → C(W ) defined by the equality
F(x) := {f(x) |f ∈ M}. Then the discrete inclusion DI(M) is equivalent to the
difference inclusion

(4) xj ∈ F(xj−1).

Denote by Fx0 the set of all trajectories of discrete inclusion (4) (or DI(M)) issuing
from the point x0 ∈ W and F :=

⋃{Fx0 | x0 ∈ W}.
Below we will give a new approach concerning the study of discrete inclusions
DI(M) (or difference inclusion (4)). Denote by C(Z+,W ) the space of all contin-
uous mappings f : Z+ → W equipped with the compact-open topology. Denote by
(C(Z+, X),Z+, σ) a dynamical system of translations (shifts dynamical system or
dynamical system of Bebutov [15, 16]) on C(Z+,W ), i.e. σ(k, f) := fk and fk is a
k ∈ Z+ shift of f (i.e. fk(n) := f(n + k) for all n ∈ Z+).
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We may now rewrite equation (3) in the following way:

(5) xj+1 = ω(j)xj , (ω ∈ Ω := C(Z+,M))

where ω ∈ Ω is the operator-function defined by the equality ω(j) := fij+1 for all
j ∈ Z+. We denote by ϕ(n, x0, ω) the solution of equation (5) issuing from the
point x0 ∈ E at the initial moment n = 0. Note that Fx0 = {ϕ(·, x0, ω) | ω ∈ Ω}
and F = {ϕ(·, x0, ω) | x0 ∈ W,ω ∈ Ω}, i.e., DI(M) (or inclusion (4)) is equivalent
to the family of non-autonomous equations (5) (ω ∈ Ω).

From the general properties of difference equations it follows that the mapping
ϕ : Z+ ×W × Ω → W satisfies the following conditions:

(i) ϕ(0, x0, ω) = x0 for all (x0, ω) ∈ W × Ω;
(ii) ϕ(n + τ, x0, ω) = ϕ(n, ϕ(τ, x0, ω), σ(τ, ω)) for all n, τ ∈ Z+ and (x0, ω) ∈

W × Ω;
(iii) the mapping ϕ is continuous;
(iv) for any n, τ ∈ Z+ and ω1, ω2 ∈ Ω there exists ω3 ∈ Ω such that

(6) U(n, ω2)U(τ, ω1) = U(n + τ, ω3),

where ω ∈ Ω, U(n, ω) := ϕ(n, ·, ω) =
∏n

k=0 ω(k), ω(k) := fik
(k =

0, 1, . . . , n) and fi0 := IdW .

Let T1 ⊆ T2 be two sub-semigroups of group S, X, Y be two metric (or topo-
logical) spaces and (X,T1, π) (respectively (Y,T2, σ)) be a semigroup dynamical
system on X (respectively on Y ). A triplet 〈(X,T1, π), (Y,T2, σ), h〉 is called a
non-autonomous dynamical system, where h : X → Y is a homomorphism from
(X,T1, π) onto (Y,T2, σ), i.e., h(π(t, x)) = σ(t, h(x)) for all x ∈ X and t ∈ T1.

Let W,Ω be two topological spaces and (Ω,T2, σ) be a semi-group dynamical system
on Ω.

Recall [15] that a triplet 〈W,ϕ, (Ω,T2, σ)〉 (or briefly ϕ) is called a cocycle over
(Ω,T2, σ) with the fiber W , if ϕ is a mapping from T1 ×W × Ω to W satisfying
the following conditions:

1. ϕ(0, x, ω) = x for all (x, ω) ∈ W × Ω;
2. ϕ(t+τ, x, ω) = ϕ(t, ϕ(τ, x, ω), σ(τ, ω)) for all t, τ ∈ T1 and (x, ω) ∈ W ×Ω;
3. the mapping ϕ is continuous.

Let X := W × Ω, and define the mapping π : X × T1 → X by the equality:
π((u, ω), t) := (ϕ(t, u, ω), σ(t, ω)) (i.e., π = (ϕ, σ)). Then it is easy to check that
(X,T1, π) is a dynamical system on X, which is called a skew-product dynami-
cal system [1], [15]; but h = pr2 : X → Ω is a homomorphism of (X,T1, π) onto
(Ω,T2, σ) and hence 〈(X,T1, π), (Ω,T2, σ), h〉 is a non-autonomous dynamical sys-
tem.

Thus, if we have a cocycle 〈W,ϕ, (Ω,T2, σ)〉 over the dynamical system (Ω,T2, σ)
with the fiber W , then there can be constructed a non-autonomous dynamical sys-
tem 〈(X,T1, π), (Ω,T2, σ), h〉 (X := W ×Ω), which we will call a non-autonomous
dynamical system generated (associated) by cocycle 〈W,ϕ, (Ω,T2, σ)〉 over (Ω, T2,
σ).
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From the presented above it follows that every DI(M) (respectively, inclusion (4))
in a natural way generates a cocycle 〈W,ϕ, (Ω,Z+, σ)〉, where Ω = C(Z+,M),
(Ω,Z+, σ) is a dynamical system of shifts on Ω and ϕ(n, x, ω) is the solution of
equation (5) issuing from the point x ∈ W at the initial moment n = 0. Thus, we
can study inclusion (4) (respectively, DI(M)) in the framework of the theory of
cocycles with discrete time.

Below we need the following result.

Theorem 2.1. [9] Let M be a compact subset of C(W,W ) and 〈W,φ, (Ω,Z+, σ)〉
be a cocycle generated by DI(M). Then

(i) Ω = Per(σ), where Per(σ) is the set of all periodic points of (Ω,Z+, σ)
(i.e. ω ∈ Per(σ), if there exists τ ∈ N such that σ(τ, ω) = ω);

(ii) the set Ω is compact;
(iii) Ω is invariant, i.e., σtΩ = Ω for all t ∈ Z+;
(iv) ϕ satisfies the condition (6).

3. Chaotic attractors of discrete control systems

In Section 3 we give the conditions of existence of chaotic attractor for discrete
control systems.

Denote by A the set of all mapping ψ : Z+ × R+ 7→ R+ possessing the following
properties:

(G1) ψ is continuous;
(G2) there exists a positive number t0 such that:

(a) ψ(t0, r) < r for all r > 0;
(b) the mapping ψ(t0, ·) : R+ 7→ R+ is monotone increasing.

(G3) ψ(t + τ, r) ≤ ψ(t, ψ(τ, r)) for all t, τ ∈ Z+ and r ∈ R+.

Remark 3.1. 1. Note that the functions ψ(t, r) = N qtr (N > 0 and q ∈ (0, 1))
and ψ(t, r) = r

1+rt belong to A, where (t, r) ∈ Z+ × R+.

2. Let f : R+ be a continuous function satisfying the conditions:

(i) f(r) < r for all r > 0;
(ii) f is monotone increasing.

Then the mapping ψ : Z+ × R+ 7→ R+ defined by equality

ψ(t, r) = x(t)

for all (t, r) ∈ Z+ × R+, where x(t) is a unique solution of difference equation
xt+1 = f(xt) with initial data x0 = r, belongs to A.

Let ψ ∈ A. A set M of operators from C(W,W ) is said to be ψ-contracting, if

ρ(fitfit−1 . . . fi1(x1), fitfit−1 . . . fi1(x2)) ≤ ψ(t, ρ(x1, x2))

for all x1, x2 ∈ W and t ∈ N, where fi1 , fi2 , . . . , fit ∈ C(W ) and i1, i2, . . . , it ∈ N.

The set S ⊂ W is
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(i) nowhere dense, provided the interior of the closure of S is empty set,
int(cl(S)) = ∅;

(ii) totally disconnected, provided the connected components are single points;
(iii) perfect, provided it is closed and every point p ∈ S is the limit of points

qn ∈ S with qn 6= p.

The set S ⊂ W is called a Cantor set, provided it is totally disconnected, perfect
and compact.

The subset M of (X,T, π) is called (see, for example, [14]) chaotic, if the following
conditions hold:

(i) the set M is transitive, i.e. there exists a point x0 ∈ X such that M =
H(x0) := {π(t, x0) : t ∈ T};

(ii) M = Per(π), where Per(π) is the set of all periodic points of (X,T, π).

Recall that a point x ∈ X of the dynamical system (X,T, π) is called Poisson’s
stable, if x belongs to its ω-limit set ωx :=

⋂
t≥0

⋃
τ≥t π(τ, x).

Theorem 3.2. Suppose that the following conditions are fulfilled:

a. M is a finite subset of C(W,W ), i.e., M := {f1, f2, . . . , fm} and m ≥ 2;
b. M is ψ-contracting for some ψ ∈ A.

Then the following statement hold:

(i) the cocycle 〈W,ϕ, (Ω,Z+, σ)〉 (Ω := C(Z+,M)) generated by DI(M) is
compactly dissipative;

(ii) the skew-product dynamical system (X,Z+, π) generated by DI(M) is com-
pactly dissipative;

(iii) I = Per(ϕ), where Per(ϕ) := {u ∈ W : ∃τ ∈ N and ω ∈ Ω such that
σ(τ, ω) = ω and ϕ(τ, u, ω) = u};

(iv) if every map f ∈M is invertible, then
1. Levinson’s center J of the skew-product dynamical system (X,Z+, π)

is a chaotic Cantor set;
2. there exists a residual subset J0 ⊆ J (large in the sense of Baire cat-

egory), consisting from Poisson’s stable points, such that the positive
semi-trajectory of every point x0 ∈ J0 is dense on J ;

3. I = pr1(J) (pr1 : X → Ω, where I is the Levinson’s center of cocycle
ϕ and X := W × Ω), i.e., I is a continuous image of the Cantor set
J .

Proof. Let Y = Ω := C(Z+, Q) and (Y,Z+, σ) be a semi-group dynamical system
of shifts on Y . Then Y is compact. By Theorem 2.1, Per(σ) = Ω and Ω is compact
and invariant.

Let 〈W,ϕ, (Ω,Z+, σ)〉 be a cocycle generated by DI(M) (i.e. ϕ(n, u, ω) := U(n,
ω)u, where U(n, ω) =

∏n
k=0 ω(k) (ω ∈ Ω)), (X,Z+, π) be a skew-product system

associated by the cocycle ϕ (i.e., X := W × Ω and π := (ϕ, σ)) and 〈(X,Z+, π),
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(Y,Z+, σ), h〉 (h := pr2 : X → Y ) be a non-autonomous dynamical system gener-
ated by cocycle ϕ. Under the conditions of Theorem 2.1 we have

ρ(ϕ(n, u1, ω), ϕ(n, u2, ω)) ≤ ψ(n, ρ(u1, u2))

for all n ∈ Z+, u1, u2 ∈ W and ω ∈ Ω. Now to finish the proof of the the-
orem it is sufficient to apply Theorem 6.1.3 [8, Ch.VI] and Theorem 2.1 to the
non-autonomous dynamical system 〈(X,Z+, π), (Ω,Z+, σ), h〉 and denote by Iω :=
pr1(Jω), where J is Levinson center of the dynamical system (X,Z+, π), Jω :=
J

⋂
h−1(ω) and h := pr2. ¤

Let M⊂ C(W ), 〈W,ϕ, (Ω,Z+, π)〉 (respectively (X,Z+, π) ) be a cocycle (a skew-
product dynamical system) generated by DI(M) and let I (J) be Levinson center
of the cocycle ϕ (respectively, skew-product dynamical system (X,Z+, π)).

The set I is said to be a chaotic attractor of DI(M), if

(i) the set J is chaotic, i.e. J is transitive and J = Per(σ), where J is
the Levinson center of the skew-product dynamical system (X,Z+, π)
generated by DI(M);

(ii) I = pr1(J).

Remark 3.3. 1. Theorem 3.2 it was proved in [9] for the special case, when
ψ(t, r) = N qt ((t, r) ∈ Z+ × R+, N > 0 and q ∈ (0, 1)).

2. The problem of the existence of compact global attractors for DI(M) with finite
M (collage or iterated function system (IFS)) was studied before in works [2, 3, 4]
(see also the bibliography therein). In [2, 3, 4] the statement close to Theorem 3.2
was proved. Namely:

(i) in [2] it was announced the first and proved the second statement of The-
orem 3.2, if ψ(t, r) = qtr (t ∈ Z+ and q ∈ (0, 1));

(ii) in [3, 4] they considered the case when W is a compact metric space and
every map f ∈ M = {f1, f2, . . . , fm} (i = 1, . . . ,m) is contracting (not
obligatory invertible). For this type of DI(M) it was proved the existence
of a compact global attractor A such that for all u ∈ A and almost all ω ∈ Ω
(with respect to certain measure on Ω) the trajectory ϕ(n, u, ω) = U(n, ω)u
(U(n, ω) :=

∏n
k=0 fik

, (ik ∈ {1, . . . ,m}) and fi0 := IdW ) was dense in A.

4. Compact Global Chaotic Attractors of Discrete Control
Systems: General Case

In Section 3 it was given (Theorem 3.2) a description the structure of the attractor
J (respectively, I) of DI(M). The problem of description of the structure of the
attractor I of DI(M) in general case (when the maps f ∈M are not invertible) is
more complicated. We study this problem in this section.

Theorem 4.1. Let (W,ρ) be a complete metric space and f : W 7→ W be a ψ-
contraction, i.e., ρ(f t(x1), f t) ≤ ψ(t, ρ(x1, x2)) for all t ∈ Z+ and x1, x2 ∈ W ,
where f t := f t−1 ◦ f for all t ∈ N. Then the following statements hold:

(i) there exists a unique fix point p ∈ W of f , i.e., f(p) = p;
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(ii) the point p is uniformly attracting, i.e.,

(7) lim
t→+∞

ρ(f t(x), p) = 0

for all x ∈ W and (7) takes place uniformly with respect to x on every
bounded subset from W .

Proof. This statement is a particular case of Theorem 6.1.3 from [8] (Chapter VI,
page 177). ¤

Let (W,ρ) be a complete metric space and M be a compact subset from C(W ).
Denote by F the set-valued mapping defined by the equality

F(u) := {f(u) : f ∈M, u ∈ W} .

Let ψ ∈ A. A set-valued mapping F : X → C(X) is called ψ-contracting, if

α(F t(x1), F t(x2)) ≤ ψ(t, ρ(x1, x2))

for all x1, x2 ∈ X and t ∈ Z+, where α : C(X) × C(X) 7→ R+ is the Hausdorff
distance and F t := F t−1 ◦ F for all t ∈ N.

Theorem 4.2. Let F : X → C(X) be a set-valued ψ-contracting mapping. Then
the discrete dynamical system (X, F ), generated by positive powers of F , is com-
pactly dissipative.

Proof. Let ψ ∈ A and F : X → C(X) be ψ-contracting. By the set-valued mapping
F : X → C(X) we define a single-valued mapping F̃ : C(X) → C(X) by the
formula F̃ (A) := F (A), where F (A) :=

⋃{F (x) | x ∈ A} for all A ∈ C(X). Then

α(F̃ t(A), F̃ t(B)) ≤ ψ(t, α(A,B))

for all A,B ∈ C(X), i.e., F̃ : (C(X), α) → (C(X), α) is a single-valued ψ-contracting
mapping from the complete metric space (C(X), α) into itself. By Theorem 4.1 the
mapping F̃ has a single stationary point K (i.e., F̃ (K) = K) such that

(8) lim
t→+∞

α(F̃ t(A),K) = 0

for all A ∈ C(X). Note that K = F (K), i.e., K ⊆ X is a compact invariant set of
dynamical system (X, F ) and by (8) we get

(9) lim
t→+∞

sup
x∈A

α(F̃ t(x),K) = 0

for all A ∈ C(X). Therefore, (X, F ) is compactly dissipative and from (9) and the
invariance of K it follows that the set K is Levinson center of (X, F ). ¤

Lemma 4.3. [8, Ch.II] Let M be some family of bounded subsets from X. A
set-valued dynamical system (X,T, π) is M dissipative, if and only if there exists
t0 > 0 such that would be M dissipative the cascade (X, P ), where P (x) := π(t0, x)
(x ∈ X).
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Theorem 4.4. Let (X,T, π) be a set-valued dynamical system and let exist ψ ∈ A
such that

(10) α(π(t, x1), π(t, x2)) ≤ ψ(t, ρ(x1, x2))

for all x1, x2 ∈ X and t ∈ T. Then (X,T, π) is compactly dissipative.

Proof. Let (X,T, π) be a set-valued dynamical system, ψ ∈ A and the condition
(10) be fulfilled. Let us choose t0 > 0 (t0 ∈ T) so that ψ(t0, r) < r for all r > 0
and ψ(t0, ·) be monotone increasing, and consider the cascade (X,P ) generated
by positive powers of the set-valued mapping P (x) := π(t0, x) (x ∈ X). Denote
by ψ̃ : Z+ × R+ 7→ R+ the mapping defined by equality ψ̃(t, r) := ψ(t0t, r) for
all (t, r) ∈ Z+ × R+. It easy to check that ψ̃ ∈ A and that the mapping P is
a ψ̃-contraction and by Theorem 4.2 the dynamical system (X, P ) is compactly
dissipative. From Lemma 4.3 the compact dissipativity of the dynamical system
(X,Z+, π) follows. The theorem is proved. ¤

Theorem 4.5. Suppose the following conditions are fulfilled:

(i) M := {fi : i ∈ I} is a compact subset from C(W,W );
(ii) the set M of operators is ψ-contracting for some ψ ∈ A.

Then the following statements hold:

(i) α(F t(A),F t(B)) ≤ ψ(t, α(A,B)) for all A,B ∈ C(W ) and t ∈ Z+;
(ii) the set-valued cascade (W,F) is compactly dissipative;
(iii) lim

t→+∞
α(F t(M), I) = 0 for all M ∈ C(W ), where I is the Levinson center

of set-valued dynamical system (W,F).

Proof. It is easy to check that

Fn = {fin ◦ fin−1 ◦ . . . ◦ fi1 : ik ∈ I (k = 1, 2, . . . , n)} = {U(n, ω) : ω ∈ Ω},
where Ω := C(Z+,M), U(n, ω) :=

∏n
k=0 fik

= fin ◦fin−1 ◦ . . .◦fi1 ◦fio , ω(k) := fik

(k = 1, 2, . . . , n) and fi0 := IdW .

Let ψ ∈ A from the definition of ψ-contraction of the family M. We will prove that

(11) α(F t(A), F t(B)) ≤ ψ(t, α(A,B))

for all A,B ∈ C(W ). Indeed, let v ∈ F t(B). Since F t(B) = U(t, Ω)(B), then there
exist x2 ∈ B and ω ∈ Ω such that v = U(t, ω)x2. We choose a point x1 ∈ A such
that ρ(x1, x2) ≤ α(A,B). Then we have

ρ(U(t, ω)x1, v) = ρ(U(t, ω)x1, U(t, ω)x2) ≤ ψ(t, ρ(x2, x1)) ≤ ψ(t, α(A,B)).

Thus, for an arbitrary point v ∈ F t(B) there is a point u := U(t, ω)x1 ∈ F t(A)
such that

ρ(u, v) ≤ ψ(t, α(A,B))
and, hence,

(12) β(F t(A), F t(B)) ≤ ψ(t, α(A, B)).

Similarly we have the inequality

(13) β(F t(B), F t(A)) ≤ ψ(t, α(A, B)).
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Inequality (11) follows from inequalities (12) and (13). Now to finish the proof of
theorem it is enough to cite Theorem 4.4. ¤

Lemma 4.6. Let M be a compact subset of C(W ), M be ψ-contracting and
〈W,φ, (Ω,Z+, σ)〉 be a cocycle generated by DI(M). For each ω ∈ Ω, n ∈ N, and
x ∈ W, define

φ(ω, n, x) := ω(1) ◦ ω(2) ◦ . . . ◦ ω(n)x.

Let K denote a nonempty compact subset from W. Then there exists a real number
C ≥ 0 such that

ρ(φ(ω,m, x1), φ(ω, n, x2)) ≤ ψ(m ∧ n,C)

for all ω ∈ Ω, all m,n ∈ Z+, and all x1, x2 ∈ K, where m ∧ n := min (n,m).

Proof. Let ω, m, n, x1, and x2 be as stated in the lemma. By Theorem 4.5 the set-
valued cascade (W,F) is compactly dissipative, where F(x) := {f(x) : f ∈ M}.
Then the set K̃ := ∪∞n=0Fn(K) is compact and positively invariant. Without any
loss of generality we can suppose that m < n. Then observe that

φ(ω, n, x2) = φ(ω, m, φ(σ(m, ω), n−m,x2)),

where σ(m,ω) = {ω(m + i)}i∈Z+ ∈ Ω. Let x3 := φ(σ(m,ω), n − m, x2). Then x3

belongs to K̃. Hence we can write

ρ(φ(ω,m, x1), φ(ω, n, x2)) = ρ(φ(ω,m, x1), φ(ω, m, x3)) ≤
ψ(m, ρ(x1, x3)) ≤ ψ(m,C),

where C := max {ρ(x1, x3) : x1, x3 ∈ K̃}. C is finite because K̃ is a compact subset.
¤

Theorem 4.7. Let (W,ρ) be a complete metric space. Let M be a compact subset
of C(W,W ), M be ψ-contracting and 〈W,φ, (Ω,Z+, σ)〉 be a cocycle generated by
DI(M). For each ω ∈ Ω, n ∈ N, and x ∈ W define

φ(ω, n, x) := ω(1) ◦ ω(2) ◦ . . . ◦ ω(n)x.

Then
φ(ω) := lim

n→+∞
φ(ω, n, x)

exists, belong to I (I is Levinson center of set-valued cascade (W,F)), and it is
independent of x ∈ W. If K is a compact subset of W then the convergence is
uniform over (ω, x) ∈ Ω ×K. The function φ : Ω → I thus provided is continuous
and onto.

Proof. Let x ∈ W. Let K ∈ C(W ) be such that x ∈ K. Construct K̃ as in Lemma
4.6. Define F : C(W ) → C(W ) by equality F(B) := {F(x) : x ∈ B}. Under the
conditions of Theorem 4.7 by Theorem 4.5 we have

α(F t(B),F t(A)) ≤ ψ(t, α(A,B))

for all A, B ∈ C(W ) and n ∈ Z+. Thus the mapping F : C(W ) → C(W ) is a
ψ-contraction on the metric space (C(W ), α); and we have

I = lim
n→+∞

F t(K),



12 DAVID CHEBAN

where F t := F t−1 ◦ F (t ≥ 2). In particular {F t(K)} is a Cauchy sequence in
(C(W ), α). Notice that φ(ω, n, x) ∈ Fn(K). It follows from Theorem 4.5, that if
lim

n→+∞
φ(ω, t, x) exists, then it belongs to I.

That the later limit does exist follows from the fact that, for fixed ω ∈ Ω and
x ∈ W , {φ(ω, n, x)}n∈Z+ is a Cauchy sequence: by Lemma 4.6

ρ(φ(ω, m, x), φ(ω, n, x)) ≤ ψ(m ∧ n,C)

for all x ∈ K and ω ∈ Ω. Notice that the right hand site here tends to zero as
m and n tend to infinity. The uniformity (with respect to x ∈ K and ω ∈ Ω)
of the convergence follows from the fact that the constant C is independent of
(ω, x) ∈ Ω×K. Since the map φ(·, n, ·) : Ω×W → W (n ∈ Z+) is continuous then
φ : Ω → W is continuous too.

Finally, we prove that φ is onto. Let a ∈ I. Then, since by Theorem 4.5 I =
lim

n→+∞
Fn({x}) it follows that there exists a sequence {ωn} ⊆ Ω such that

lim
n→∞

φ(ωn, n, x) = a.

Since Ω is compact, it follows that {ωn} possesses a convergent subsequence with
limit ω ∈ Ω. Without loss of generality assume lim

n→∞
ωn = ω. Then the number

of successive initial agreements between the components of ωn and ω increases
without limit. That is, if ln :=number of elements in {j ∈ Z+ : ωn(k) = ω(k) for
1 ≤ k ≤ j}, then ln → +∞ as n → +∞. It follows that

ρ(φ(ω, n, x), φ(ωn, n, x)) ≤ ψ(ln, C).

By taking the limit on both sides as n → +∞ we find ρ(φ(ω), a) = 0 which implies
φ(ω) = a. Hence φ : Ω → W is onto. ¤

Let M be a compact subset of C(W,W ) and 〈W,φ, (Ω,Z+, σ)〉 be a cocycle gener-
ated by DI(M). A point a ∈ W is called m-periodic (m ∈ N) point of DI(M) if
there exists an m-periodic point ω ∈ Ω such that ϕ(m, a, ω) = a.

Lemma 4.8. The following statement hold:

(i) φ(ω, n, φ(σ(n, ω))) = φ(ω) for all n ∈ Z+ and ω ∈ Ω;
(ii) Let ω ∈ Ω be an m-periodic point of dynamical system (Ω,Z+, σ), i.e.,

ω(k + m) = ω(k) for all k ∈ Z+. Then ϕ(m, a, ω̃) = a, where a := φ(ω)
and ω̃ is an m-periodic point of dynamical system (Ω,Z+, σ) defined by
condition ω̃k := ωm−k for all k = 0, 1, . . . ,m− 1.

Proof. Notice that

φ(ω, n, φ(σ(n, ω))) =
n∏

k=0

ω(k)( lim
s→+∞

s∏

k=0

ω(k + n)x) = lim
s→+∞

s+n∏

k=0

ω(k)x = φ(ω),

for all n ∈ Z+ and ω ∈ Ω, where ω(0) := IdW .

To prove the second statement we note that φ(σ(m,ω)) = φ(ω) and ϕ(m, a, ω̃) = a,
if the point ω is m-periodic (i.e., σ(m,ω) = ω). ¤
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Theorem 4.9. Let M be a compact subset of C(W,W ), M be ψ-contracting and
〈W,φ, (Ω,Z+, σ)〉 be a cocycle generated by DI(M). Then the attractor I of DI(M)
is the closure of its periodic points.

Proof. The space Ω is the closure of the set of periodic points. Lift this statement to
I using the map φ : Ω → I. From Lemma 4.8 it follows that if ω ∈ Ω is m-periodic
point of the dynamical system (Ω,Z+, σ) then the point φ(ω) will be m-periodic
point of DI(M). Now it is sufficient to note that if S ⊂ Ω is such that its closure
equals Ω, then the closure of φ(S) equals I. ¤

A point x ∈ X of dynamical system (X,T, π) is said to be almost recurrent (re-
spectively, almost periodic), if for arbitrary ε > 0 there exits a positive number
l = l(ε) such that on every segment [a, a + l] ⊆ T there exits at least one number
τ ∈ [a, a + l] such that ρ(π(τ, x), x) < ε (respectively, ρ(π(t + τ, x), π(t, x)) < ε for
all t ∈ T).

A point x ∈ X is called recurrent if it is almost recurrent and its trajectory is
relatively compact.

Theorem 4.10. [8, Ch.VI] Let ω ∈ Ω be a stationary (τ -periodic, recurrent, Pois-
son stable) point and lim

t→+∞
ρ(π(t, x1), π(t, x2)) = 0 for all x ∈ Xω. Then there

exists a unique stationary (τ -periodic, recurrent, Poisson stable) point xω ∈ Xω

such that
lim

t→+∞
ρ(π(t, x), π(t, xω)) = 0

for all x ∈ Xω.

A point x ∈ X is called almost periodic if for arbitrary ε > 0 there exists a positive
number l(ε) such that [a, a + l] ∩ T (ε, x) 6= ∅ for all a ∈ T1, where [a, a + l] := {t ∈
T1 : a ≤ t ≤ a+ l} and T (ε, x) := {τ ∈ T1 : ρ(π(t+ τ, x), π(t, x)) < ε for all t ∈ T1

}.
Theorem 4.11. [8, Ch.VI] Let ω ∈ Ω be a stationary (τ -periodic, almost periodic,
recurrent, Poisson stable) point and lim

t→+∞
ρ(π(t, x1), π(t, x2)) = 0 for all x ∈ X

such that h(x1) = h(x2). Then there exists a unique stationary (τ -periodic, almost
periodic, recurrent, Poisson stable) point xω ∈ Xω such that

lim
t→+∞

ρ(π(t, x), π(t, xω)) = 0

for all x ∈ Xω.

Theorem 4.12. Suppose that the following conditions hold:

(i) M is a compact subset of C(W,W ) and 〈W,ϕ, (Ω,Z+, σ)〉 is the cocycle
generated by DI(M);

(ii) M is ψ-contracting, where ψ ∈ A;
(iii) ω ∈ Ω is a stationary (τ -periodic, almost periodic, recurrent, Poisson sta-

ble) point of (Ω,Z+, σ).

Then the equation
xn+1 = ω(n)xn
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admits a unique stationary (τ -periodic, almost periodic, recurrent, Poisson stable)
solution ϕ(n, xω, ω) such that

|ϕ(t, x, ω)− ϕ(t, xω, ω)| ≤ ψ(t, |x− xω|)
for all t ∈ Z+ and x ∈ W.

Proof. Let Ω := C(Z+, Q) and (Ω,Z+, σ) be a semi-group dynamical system of
shifts on Ω. Then Ω is compact. By Theorem 2.1, Per(σ) = Ω and Ω is compact
and invariant.

Let 〈W,ϕ, (Ω,Z+, σ)〉 be a cocycle generated by DI(M) (i.e., ϕ(n, u, ω) := U(n,
ω)u, where U(n, ω) =

∏n
k=0 ω(k) (ω ∈ Ω)), (X,Z+, π) be a skew-product system

associated by the cocycle ϕ (i.e., X := W × Ω and π := (ϕ, σ)) and 〈(X,Z+, π),
(Y,Z+, σ), h〉 (h := pr2 : X → Y ) be a non-autonomous dynamical system gener-
ated by the cocycle ϕ. By Theorem 3.2 the dynamical system (X,Z+, π) is com-
pactly dissipative. Denote by J its Levinson center and (J,Z+, π) the dynamical
system on J induced by (X,Z+, π). Under the conditions of Theorem we have

ρ(π(t, x1, ω), π(t, x2, ω)) ≤ ψ(t, ρ(x1, x2))

for all t ∈ Z+, x1, x2 ∈ X (h(x1) = h(x2)). Now to finish the proof of the theorem it
is sufficient to apply Theorems 4.10 and 4.11 to non-autonomous dynamical system
〈(J,Z+, π), (Ω,Z+, σ), h〉. ¤

5. Some applications

Consider a control dynamical system governed by the differential equation

(14) x′ = f(x;u) (x ∈ E , u ∈ U ⊂ B),

where E and B are some Banach spaces.

Let S(R+,P) denote the set of the piecewise constant functions u(t) defined on R+

that assume values of the set P := {c1, c2, . . . , cm} ⊆ B and are continuous on
R+ \Z+. The functions u(t) in the class S(R+,P) are open-loop controls of system
(14). Consider the set of control systems (14) with the open-loop control of the
class S(R+,P). These systems constitute a continual set. Particularly important
among all systems of this set are m systems

x′ = f(x; ci) (x ∈ E , i = 1, 2, . . . ,m).

Below we will consider some examples of this type.

5.1. Monotone ODEs.

Lemma 5.1. [10] Let f : R+ 7→ R+ be a function satisfying the following condi-
tions:

(H1) θ(0) = 0;
(H2) θ(t) > 0 for all t > 0;
(H3) θ is locally Lipschitz;
(H4) f satisfy the condition of Osgud, i.e.,

∫ ε

0
dt

θ(s) = +∞ for all ε > 0.
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Then the equation

(15) u′ = −θ(u)

admits a unique solution ψ(t, r) with initial condition ψ(0, r) = r and the mapping
ω : R2

+ 7→ R+ possesses the following properties:

(i) the mapping ψ : R2
+ 7→ R+ is continuous;

(ii) ψ(t, r) < r for all r > 0 and t > 0;
(iii) for all t ∈ R+ the mapping ψ(t, ·) : R+ 7→ R+ is increasing;
(iv) ψ(0, t) = 0 for all t ∈ R+;
(v) lim

t→+∞
sup

0≤r≤r0

ψ(t, r) = 0 for all r0 > 0.

Remark 5.2. 1. Lemma 5.1 gives us an algorithm of construction of function
with properties (G1)-(G3). For example, the function ω(t, r) := ln et+r

et+r+1−er (t, r ∈
R+) possesses the mentioned above properties, because it is a unique solution of
differential equation (15) (θ(u) = eu − 1 for all u ∈ R+) with initial condition
θ(0, r) = r.

2. The function ψ(t, r) := r
(1+(α−1)trα−1)1/(α−1) is the solution of equation (15)

(θ(u) = uα for all u ∈ R+ and α > 1) with initial condition ψ(0, r) = r.

3. If the function θ : R+ 7→ R+ satisfies the conditions (H1)-(H4), then the function
g : R+ 7→ R+, defined by equality: g(t) := aθ(bt) for all t ∈ R+ (a and b are some
positive numbers), possesses the same property.

Let H be a Hilbert space with the scalar product 〈·, ·〉 and f ∈ C(H, H) be a
function satisfying

(16) Re〈f(u1)− f(u2), u1 − u2〉 ≤ −θ(t, |u1 − u2|)
for all u1, u2 ∈ H, where θ : R+ × R+ 7→ R+ is some function with properties
(H1)-(H4).

Theorem 5.3. [10] If the function f verifies the condition (16), then

(i) the equation

(17) u′ = f(u)

generates a semigroup dynamical system (H,R+, π), where π(t, u) is a
unique solution of equation (17) defined on R+ with the initial condition
π(0, u) = u;

(ii) the following inequality holds

|π(t, u1)− π(t, u2)|2 ≤ ψ(t, |u1 − u2|2)
for all u1, u2 ∈ H and t ∈ R+, where ψ(t, r) is a unique solution of equation
(15) with initial data ψ(0, r) = r for all r ∈ R+, | · | is the norm generated
by the scalar product 〈·, ·〉 in the space H.

Consider a finite set of differential equations

(18) u′ = fi(u) (i = 1, 2, . . . , m)



16 DAVID CHEBAN

with the right-hand sites fi ∈ C(H, H) satisfying the condition (16) with the func-
tion θ. Let (H,R+, πi) (i = 1, 2, . . . ,m) be the dynamical system, generated by
(18) and (H, Pi) (i = 1, 2, . . . , m) be the cascade (discrete dynamical system),
where Pi(u) := πi(1, u) for all u ∈ H and i = 1, 2, . . . ,m.

A point x0 ∈ H is said to be m-periodic (m ∈ N) for control system (14), if there
exist an m-periodic control ω ∈ S(R+,P) (ω(t + m) = ω(t) for all t ∈ R+) such
that the unique solution x(t) of equation

(19) x′ = f(x, ω(t))

with initial data x(0) = x0 is m-periodic, i.e., x(t + m) = x(t) for all t ∈ R+.

Theorem 5.4. Suppose that M := {Pi : i = 1, 2, . . . , m}. Under the conditions
listed above the following statement hold:

(i) the cocycle 〈W,ϕ, (Ω,Z+, σ)〉 (Ω := C(Z+,M)) generated by DI(M) is
compactly dissipative;

(ii) the Levinson center I of DI(M) is the closure of the periodic points of
control system (14);

(iii) the skew-product dynamical system (X,Z+, π) generated by DI(M) is com-
pactly dissipative;

(iv) if every map Pi ∈M is invertible, then
(a) Levinson’s center J of the skew-product dynamical system (X,Z+, π)

is a chaotic Cantor set;
(b) there exists a residual subset J0 ⊆ J (large in the sense of Baire cat-

egory), consisting from Poisson’s stable points, such that the positive
semi-trajectory of every point x0 ∈ J0 is dense on J ;

(c) if I is the Levinson center for DI(M), then I = pr1(J) (pr1 : X → Ω
and X := W ×Ω), i.e., I is a continuous image of the Cantor set J .

Proof. This statement directly it follows from Theorems 3.2 and 4.9. ¤

5.2. Monotone evolution equations. Let H be a real Hilbert space with the
inner product 〈, 〉, | · | :=

√
〈, 〉 and E be a reflexive Banach space contained in H

algebraically and topologically. Furthermore, let E be dense in H, and here H
can be identified with a subspace of the dual E′ of E and 〈, 〉 can be extended by
continuity to E′ × E.

Let D(A) ⊆ H be the domain of definition of operator A : H → H.

Remind [5, 6, 12] that an operator A is called:

- monotone, if for every u1, u2 ∈ D(A) : 〈Au1 −Au2, u1 − u2〉 ≥ 0;
- semi-continuous, if the function ϕ : R→ R defined by the equality ϕ(λ) :=
〈A(u + λv,w)〉 is continuous.

Note that the family of monotone operators can be partially ordered by including
graphics.

A monotone operator is called maximal, if it is maximal among the monotone
operators.
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Let us consider an evolutionary equation

(20)
dx

dt
+ Ax = h

u(0) = u,

where h ∈ H and A is a maximal monotone operator with the domain of definition
D(A),

|Au|E′ ≤ C|u|p−1
E + K,u ∈ E, p > 1,

coercive,
〈Au, u〉 ≥ a|u|pE , u ∈ E, a > 0,

uniformly monotone,

(21) 〈Au1 −Au2, u1 − u2〉 ≥ α|u1 − u2|β (∀u1, u2 ∈ E, where β ≥ 2),

and semi-continuous (see [13]).

A nonlinear ”elliptic” operator

Au = −
n∑

i=1

∂

∂xi
φ(

∂u

∂xi
) in D ⊂ Rn

u = 0 on ∂D,

where D is a bounded domain in Rn, φ(·) is an increasing function satisfying,
φ(0) = 0,

c|ξ − η|p ≤
n∑

i=1

(ξi − ηi)(φ(ξi)− φ(ηi) ≤ C|ξ − η|p ( for all ξ, η ∈ Rn),

and provides an example with

H = L2(D), E = W 1,p
0 (D), E′ = W−1,p′(D), p′ =

p

p− 1
.

The following result is established in [13] (Ch.II and Ch.IV). If x ∈ H and p′ = p
p−1 ,

then there exists a unique solution ϕ(t, u) ∈ C(R+,H) of (20).

Theorem 5.5. Suppose that the operator A satisfies the conditions above. Then
equation(20) generates on the space H a semi-group dynamical system (H,R+, π)
satisfying the following condition:

|π(t, u1)− π(t, u2)|2 ≤ ψ(t, |u1 − u2|2)
for all t ∈ R+ and u1, u2 ∈ H, where ψ(t, r) is a unique solution of equation
y′ = −2αyβ/2 with initial data ψ(0, r) = r.

Proof. This statement directly it follows from Theorem 7.10 [10]. ¤

Consider a finite set of differential equations

(22)
dx

dt
+ Aix = hi, (i = 1, 2, . . . ,m)

with the right-hand sites hi ∈ H and monotone operators Ai satisfying condition
(21) with constant αi > 0. Let (H,R+, πi) (i = 1, 2, . . . , m) be the dynamical
system, generated by (22) and (H,Pi) (i = 1, 2, . . . ,m) be the cascade (discrete
dynamical system), where Pi(u) := π(1, u) for all u ∈ H.
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Theorem 5.6. Suppose that M := {Pi : i = 1, 2, . . . , m}. Under the conditions
listed above the following statement hold:

(i) the cocycle 〈W,ϕ, (Ω,Z+, σ)〉 (Ω := C(Z+,M)) generated by DI(M) is
compactly dissipative;

(ii) the skew-product dynamical system (X,Z+, π) generated by DI(M) is com-
pactly dissipative;

(iii) the Levinson’s center I of cocycle ϕ possesses the following property: I =
Per(ϕ), where Per(ϕ) := {u ∈ W : ∃τ ∈ N and ω ∈ Ω such that σ(τ, ω) =
ω and ϕ(τ, u, ω) = u}.

Proof. This statement it follows from Theorems 3.2 and 4.9. ¤
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