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Abstract. The aim of this paper is the study of the problem of global asymp-
totic stability of trivial solutions of non-autonomous dynamical systems (both
with continuous and discrete time). We study this problem in the framework
of general non-autonomous dynamical systems (cocycles). In particularly, we
present some new results for non-autonomous version of Markus-Yamabe con-
jecture.

1. Introduction

1.1. Markus–Yamabe conjecture (MYC) [33]. Consider the differential equa-
tion

(1) u′ = f(u)

and suppose that the Jacobian f ′(u) of f has only eigenvalues with negative real
part for all u. The Markus Yamabe conjecture is that if f(0) = 0, then 0 is a globally
asymptotically stable solution for (1).

It is easy to prove MYC for n = 1. In the two-dimensional case the affirmative
answer to MYC was obtained in the works [15, 17, 16] (see also the references
therein). In the work [9] (see also [10, 11] and the references therein) is given
a polynomial counterexample to the Markus–Yamabe conjecture. If n > 2 there
are also some additional conditions forcing the Markus–Yamabe conjecture. For
example if f ′(u) is negative definite for all u ∈ Rn the conjecture was proved in
[19, 20] (see also [26, 27, 33]). For triangular systems MYC was proved in [33].

1.2. The discrete Markus–Yamabe conjecture (DMYC) [12, 41]. Let f be
a C1 mapping from Rn into itself such that f(0) = 0 and for all u ∈ Rn, f ′(u) has
all its eigenvalues with modulus less than one. Then 0 is a globally asymptotically
stable solution of the difference equation

(2) u(n + 1) = f(u(n)).

In his book [29] J. P. LaSalle proves the DMYC for n = 1. The discrete Markus–
Yamabe conjecture is true only for planar maps (see [12] and also the references
therein) and the answer to the question is yes only in the case of planar polynomial
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maps. The authors [12] prove that the DMYC is true for triangular maps defined
on Rn and for polynomial maps defined on R2. In the works [8, 32] the DMYC is
proved for gradient maps.

1.3. Belitskii–Lyubich conjecture [1]. Let B be a Banach space, Ω ⊂ B an open
subset and f : Ω 7→ B be a compact and continuously differentiable in Ω. Suppose
D is a nonempty bounded convex open subset of X such that f(D) ⊂ D ⊂ Ω and
sup
x∈D

r(f ′(x)) < 1 (r(A) is the spectral radius of linear bounded operator A). Then

the discrete dynamical system (D, f), generated by positive powers of f : D 7→ D,
admits a unique globally asymptotically stable fixed point.

The aim of this paper is the study the problem of global asymptotic stability of
trivial solutions of non-autonomous dynamical systems (both with continuous and
discrete time). We study this problem in the framework of general non-autonomous
dynamical systems (cocycles).

The idea of applying methods of the theory of dynamical systems to the study of
non-autonomous differential equations is not new. It has been successfully applied
to the resolution of different problems in the theory of linear and non-linear non-
autonomous differential equations for more than forty years. First this approach
to non-autonomous differential equations was introduced in the works of L. G.
Deyseach and G. R. Sell [14], R. K. Miller [36], V. M. Millionshchikov [37]-[39], G.
Seifert [53], G. R. Sell [54, 55, 56], B. A. Shcherbakov [59, 60], later in the works of
I. U. Bronshtein [3, 4], R. A. Johnson [21, 22], B. M. Levitan and V. V. Zhikov [31],
Sacker R. J. [42, 43], Sacker R. J and Sell G. R. [44, 45, 46, 47, 48, 49, 50, 51, 52], G.
R.Sell, W. Shen and Y. Yi [57], B. A. Shcherbakov [61, 62], V. V. Zhikov [66, 67, 68]
and many other authors. This approach consists of naturally linking with equation

(3) x′ = f(t, x)

a pair of dynamical systems and a homomorphism of the first onto the second. In
one dynamical system is put the information about the right hand side of equation
(3) and in the other about the solutions of equation (3).

This paper is organized as follows.

In Section 2 we give some notions and facts from the theory of global attractors of
dynamical systems which we use in our paper.

Section 3 is dedicated to the study of non-autonomous dynamical systems with
convergence. We present some important tests of convergence (Theorems 3.6, 3.7
and 3.10) of non-autonomous dynamical systems with minimal base.

In section 4 we study the Markus–Yamabe problem for non-autonomous systems.
In this section we prove the necessary and sufficient conditions of global asymptotic
stability the trivial section of non-autonomous dynamical systems with continuous
or discrete time (Theorem 4.4 – the main result of paper). We apply this result
to the different classes of non-autonomous evolutions equations (finite-dimensional
systems, gradient systems, triangular systems).

We give in section 5 some new results concerning the discrete Markus–Yamabe
problem for non-autonomous systems. In particularly we present the affirmative
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answer to the DMYC for non-autonomous contractive, triangular and potential
(gradient) maps.

2. Compact Global Attractors of Dynamical Systems

Let X be a topological space, R (Z) be a group of real (integer) numbers, R+ (Z+)
be a semi-group of the nonnegative real (integer) numbers, S be one of the two sets
R or Z and T ⊆ S (S+ ⊆ T) be a sub-semigroup of additive group S.

Definition 2.1. Triplet (X,T, π), where π : T×X → X is a continuous mapping
satisfying the following conditions:

(4) π(0, x) = x;

(5) π(s, π(t, x)) = π(s + t, x);

is called a dynamical system. If T = R (R+) or Z (Z+), then the dynamical system
(X,T, π) is called a group (semi-group). In the case, when T = R+ or R the
dynamical system (X,T, π) is called a flow, but if T ⊆ Z, then (X,T, π) is called a
cascade (discrete flow).

Sometimes, briefly, we will write xt instead of π(t, x).

Below X will be a complete metric space with metric ρ.

Definition 2.2. The function π(·, x) : T → X is called a motion passing through
the point x at the moment t = 0 and the set Σx := π(T, x) is called a trajectory of
this motion.

Definition 2.3. A nonempty set M ⊆ X is called positively invariant (nega-
tively invariant, invariant) with respect to dynamical system (X,T, π) or, sim-
ple, positively invariant (negatively invariant, invariant), if π(t,M) ⊆ M (M ⊇
π(t,M), π(t, M) = M) for every t ∈ T.

Definition 2.4. A closed positively invariant set, which does not contain its own
closed positively invariant subset, is called minimal.

It easy to see that every positively invariant minimal set is invariant.

Definition 2.5. A closed positively invariant (invariant) set is called indecompos-
able, if it can not be represented in the form of union of two nonempty disjoint
positively invariant (invariant) subsets.

Definition 2.6. Let M ⊆ X. The set

ω(M) :=
⋂

t≥0

⋃

τ≥t

π(τ, M)

is called ω-limit for M .

Definition 2.7. The set W s(Λ) (Wu(Λ)), defined by equality

W s(Λ) := {x ∈ X| lim
t→+∞

ρ(xt,Λ) = 0}
is called a stable manifold of the set Λ ⊆ X.
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Definition 2.8. The set M is called:

- orbital stable, if for every ε > 0 there exists δ = δ(ε) > 0 such that
ρ(x, M) < δ implies ρ(xt,M) < ε for all t ≥ 0;

- attracting, if there exists γ > 0 such that B(M, γ) ⊂ W s(M);
- asymptotic stable, if it is orbital stable and attracting;
- global asymptotic stable, if it is asymptotic stable and W s(M) = X;
- uniform attracting, if there exists γ > 0 such that

lim
t→+∞

sup
x∈B(M,γ)

ρ(xt,M) = 0.

Definition 2.9. The system (X,T, π) is called:

− point dissipative if there exists a nonempty compact subset K ⊆ X such
that for every x ∈ X

(6) lim
t→+∞

ρ(xt, K) = 0;

− compact dissipative if the equality (6) takes place uniformly w.r.t. x on
the compacts from X;
− locally dissipative if for any point p ∈ X there exist δp > 0 such that the
equality (6) takes place uniformly w.r.t. x ∈ B(p, δp);
− bounded dissipative if the equality (6) takes place uniformly w.r.t. x on
every bounded subset from X.
− locally completely (compact) if for any point p ∈ X there exist δp > 0 and
lp > 0 such that the set πlpB(p, δp) is relatively compact, where B(x, δ) :=
{x ∈ X | ρ(x, p) < δ}.

Theorem 2.10. [7, Ch.I] For the locally completely (compact) dynamical systems
the point, compact and local dissipativity are equivalent.

Let (X,T, π) be compactly dissipative and K be a compact set attracting every
compact subset from X. Let us set

(7) J := ω(K) :=
⋂

t≥0

⋃

τ≥t

πτK.

It can be shown [7, Ch.I] that the set J defined by equality (7) doesn’t depends
on the choice of the attractor K, but is characterized only by the properties of
the dynamical system (X,T, π) itself. The set J is called a Levinson center of the
compact dissipative dynamical system (X,T, π).

Theorem 2.11. [7, 18, 58] If (X,T, π) is a compactly dissipative dynamical system
and J is its center of Levinson, then :

(i) J is invariant, i.e. πtJ = J for all t ∈ T;
(ii) J is orbitally stable, i.e. for any ε > 0 there exists δ(ε) > 0 such that

ρ(x, J) < δ implies β(xt, J) < ε for all t ≥ 0 ;
(iii) J is an attractor of the family of all compact subsets of X;
(iv) J is the maximal compact invariant set of (X,T, π).
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Denote by

D+(M) :=
⋂
ε>0

⋃
{πtB(M, ε)|t ≥ 0},

J+(M) :=
⋂
ε>0

⋂

t≥0

⋃
{πτB(M, ε)|τ ≥ t},

D+
x := D+({x}) and J+

x := J+({x}).
Theorem 2.12. [7, Ch.I] Let (X,T, π) be point dissipative. For (X,T, π) to be
compact dissipative it is necessary and sufficient that the set D+(ΩX) (J+ΩX)) be
compact and orbital stable. In this case J = D+(ΩX) (J = J+(ΩX)) where J is the
center of Levinson of the dynamical system (X,T, π) and ΩX := ∪{ωx | x ∈ X}.

3. Non-Autonomous Dynamical Systems with Convergence

Definition 3.1. 〈(X,T1,π),(Y,T2,σ),h〉 is said to be convergent if the following
conditions are valid:

(i) the dynamical systems (X,T1, π) and (Y,T2, σ) are compactly dissipative;
(ii) the set JX

⋂
Xy contains no more than one point for all y ∈ JY where

Xy := h−1(y) := {x|x ∈ X, h(x) = y} and JX(JY ) is the Levinson’s center
of the dynamical system (X,T1, π)((Y,T2, σ)).

Let X×̇X := {(x1, x2) : x1, x2 ∈ X, h(x1) = h(x2)}. function V : X×̇X → R+ is
said to be continuous, if xi

n → xi (i = 1, 2 and h(x1
n) = h(x2

n)) implies V (x1
n, x2

n) →
V (x1, x2).

Lemma 3.2. [6] Let X be a compact metric space and 〈(X,T1, π), (Ω,T2, σ), h〉
be a non-autonomous dynamical system. Suppose that the following conditions are
fulfilled:

(i) The dynamical systems (X,T1, π) and (Ω,T2, σ) are minimal;
(ii) lim

t→+∞
ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ X such that h(x1) = h(x2).

Then for all y ∈ Y the fiber Xy := h−1(y) = {x ∈ X | h(x) = y} consists a single
point.

Theorem 3.3. [7, Ch.II] Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dy-
namical system, M 6= ∅ be a compact positively invariant set. Suppose that the
following conditions are fulfilled:

(i) h(M) = Y ;
(ii) M

⋂
Xy contains a single point for all y ∈ Y ;

(iii) M is globally asymptotically stable, i.e. for any ε > 0 there exists δ(ε) > 0
such that ρ(x, p) < δ (x ∈ Xy, p ∈ My := M

⋂
Xy) implies ρ(xt, pt) < ε

for all t ≥ 0 and lim
t→+∞

ρ(xt, Mh(x)t) = 0 for all x ∈ X.

Then the non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is convergent.

Theorem 3.4. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical sys-
tem and Y be a compact minimal set, then the following conditions are equivalent:
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1. 〈(X,T1, π), (Y,T2, σ), h〉 is convergent;
2. every semi-trajectory Σ+

x (x ∈ X) is relatively compact and asymptotically
stable;

3. (a) every semi-trajectory Σ+
x (x ∈ X) is relatively compact;

(b) lim
t→+∞

ρ(x1t, x2t) = 0 for all (x1, x2) ∈ X×̇X;

(c) for any ε > 0 and K ∈ C(X) there exists δ(ε,K) > 0 such that
ρ(x1, x2) < δ(h(x1) = h(x2); x1, x2 ∈ K) implies ρ(x1t, x2t) < ε for
all t ≥ 0.

4. every semi-trajectory Σ+
x (x ∈ X) is relatively compact and the equality

lim
t→+∞

sup
(x1,x2)∈K×̇K

ρ(x1tx2t) = 0

holds for all K ∈ C(X).

Proof. We will prove that condition 1. implies condition 2. If we suppose that it is
not so, then there are p0 ∈ X, ε0 > 0, pn → p0 (h(pn) = h(p0)) and tn → +∞ such
that

(8) ρ(pntn, p0tn) ≥ ε0.

Since (X,T1, π) is compactly dissipative we may suppose that the sequences {pntn}
and {p0tn} are convergent. Letting p̄ = lim

n→+∞
pntn, p̄0 = lim

n→+∞
p0tn and tak-

ing into consideration (8), we will have p̄ 6= p̄0. On the other hand, h(p̄) =
lim

n→+∞
h(pn)tn = lim

n→+∞
h(p0)tn = h(p̄0) = ȳ ∈ JY and, consequently, p̄, p̄0 ∈

JX

⋂
Xȳ, but by virtue of condition 1. we have p̄ = p̄0. The obtained contradiction

proves the necessary assertion.

Now we will note that condition 2. implies condition 3.b. To prove this implication
is sufficient to show that

lim
t→+∞

ρ(x1t, x2t) = 0

for all (x1, x2) ∈ X×̇X. Assuming the contrary we obtain

(9) ρ(x0
1tn, x0

2tn) ≥ ε0.

We may assume that the sequences {x0
i tn}(i = 1, 2) and {y0tn} (y0 = h(x0

1) =
h(x0

2)) are convergent. We denote by x̄0
i := lim

n→+∞
x0

i tn and ȳ0 := lim
n→+∞

y0tn,

then x̄0
1, x̄

0
2 ∈ JX

⋂
Xȳ0 and according to the condition 1. x̄0

1 = x̄0
2, where JX is the

Levinson center of dynamical system (XT1, π). The last equality and the inequality
(9) are contradictory. This contradiction proves the necessary assertion.

We note that

(10) lim
t→+∞

ρ(xt, pt) = 0

for all p ∈ X and x ∈ Xq (q = h(p)). Let K ∈ C(X) and ε > 0, then there
exists δ(ε,K) > 0 such that ρ(x1, x2) < δ(h(x1) = h(x2); x1, x2 ∈ K) implies
ρ(x1t, x2t) < ε for any t ≥ 0. Assuming the contrary, we obtain K0 ∈ C(X), ε0 >
0, δn → 0 (δn > 0), {xi

n} ⊆ K0 (i = 1, 2) and tn → +∞ such that ρ(x1
n, x2

n) < δn

and

(11) ρ(x1
ntn, x2

ntn) ≥ ε0.
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Since K0 is a compact subset of X we may suppose that the sequences {xi
n} (i =

1, 2) are convergent and we denote by x̄ := lim
n→+∞

x1
n = lim

n→+∞
x2

n (x̄ ∈ K0). Ac-

cording to the condition 2., for ε0 > 0 and x̄ ∈ K0 there exists δ( ε0
3 , x̄) > 0 such

that ρ(x, x̄) < δ( ε0
3 , x̄) (h(x) = h(x̄)) implies ρ(xt, x̄t) < ε0

3 for all t ≥ 0. Since
xi

n → x̄ (i = 1, 2), then there exists n̄ such that ρ(xi
n, x̄) < δ( ε0

3 , x̄) (n ≥ n̄) and,
consequently,

(12) ρ(x1
nt, x2

nt) ≤ 2ε0

3
for all t ≥ 0 and n ≥ n̄. But the inequalities (12) and (11) are contradictory. Thus,
we showed that condition 2. implies condition 3.

We will prove that condition 3. implies condition 4. If we suppose the contrary, then
there exist ε0 > 0, K0 ∈ C(X), tn → +∞ and {xi

n} ⊆ K0 (i = 1, 2;h(x1
n) = h(x2

n))
such that the inequality (11) holds. We may assume without loss of generality
that the sequences {xi

n} (i = 1, 2) are convergent, because K0 is compact. Let
xi := lim

n→+∞
xi

n, 0 < ε < ε0 and δ( ε
3 ,K0) > 0 be chosen according to condition 3.c.

Since h(x1) = h(x2) and x1, x2 ∈ K0, then for ε
3 there exists L( ε

3 , x1, x2) > 0 such
that ρ(x1t, x2t) < ε

3 for all t ≥ L( ε
3 , x1, x2) and, consequently,

(13) ρ(x1
ntn, x2

ntn) ≤ ρ(x1
ntn, x1tn) + ρ(x1tn, x2tn) + ρ(x2tn, x2

ntn) < ε

for sufficiently large n. The inequalities (12) and (13) are contradictory. Hence,
the necessary assertion is proved.

Finally, we note that 4. implies 1. Let x ∈ X be an arbitrary point. According to
condition 4. the ω-limit set ωx of point x contains a compact minimal set M ⊆ ωx.
By Lemma 3.2 the set My := M∩Xy consists a single point my. Under the condition
4. we have lim

t→+∞
ρ(xt,myt) = 0 and, consequently, ωx = M. Now we will show

that the dynamical system (X,T1, π) has at most one compact minimal set. If we
suppose that it is not true, then there are two different compact minimal subsets
M i (i = 1, 2) of X and, consequently, M1 ∩ M2 = ∅. By Lemma 3.2 under the
condition 4. M i

y consists a single point mi
y and m1

y 6= m2
y for all y ∈ Y . On the

other hand by condition 4. we have lim
t→+∞

ρ(m1
yt,m2

yt) = 0 for all y ∈ Y and,

consequently, M1 = M2. The obtained contradiction proves our statement. Thus
the dynamical system (X,T1, π) has a unique compact minimal set M ⊆ X and
lim

t→+∞
ρ(xt, mh(x)t) = 0 for all x ∈ X. Finally we will show that under the condition

4. the set M is stable, i.e for all ε > 0 there exists a positive number δ(ε) such that
ρ(x,mh(x)) < δ implies ρ(xt,mh(x)t) < ε for all t ≥ 0. In fact, if we suppose the
contrary, then there are ε0 > 0, 0 < δn → 0, {xn} and tn → +∞ such that

(14) ρ(xntn,mh(xn)tn) ≥ ε0 and ρ(xn,mh(xn)) < δn

for all n ∈ N. Note that the set K0 := {xn | n ∈ N}∪M is compact and by condition
4. we have

(15) lim
t→+∞

sup
n∈N

ρ(xnt,mh(xn)t) = 0.

The equality (15) contradicts to (14). The obtained contradiction proves the sta-
bility of the set M. Now to finish the proof of Theorem it is sufficient to apply
Theorem 3.3 ¤
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Remark 3.5. a. If the dynamical system (Y,T2, σ) is two-sided, i.e. T2 = S, then
Theorem 3.4 was proved in [7, Ch.II].

b. Note that in the proof of Theorem 3.4 we use the minimality of (Y,T2, σ) only
to show the implication 4.=⇒ 1.

Theorem 3.6. Let 〈(X, S+, π), (Y, S, σ), h〉 be a non-autonomous dynamical system
and the following conditions hold:

(i) Y is a compact minimal set;
(ii) every point x ∈ X is stable in the sense of Lagrange, i.e. the set H+(x) :=

{σ(t, x) | t ∈ S+ and t ≥ 0} is compact;
(iii) there exists a continuous function V : X×̇X → R+, satisfying the following

conditions:
a. V is positively defined;
b. V (x1t, x2t) < V (x1, x2) for all t > 0 and (x1, x2) ∈ X×̇X\∆X , where

∆X := {(x, x) | x ∈ X}.

Then the following statements take place:

(i) there exists a unique compact minimal set M ⊆ X;
(ii) ωx = M for all point x ∈ X;
(iii) the set My := {x ∈ M | h(x) = y} consists a single point, i.e. My = {my};
(iv) lim

t→+∞
ρ(π(t, x), π(t,my)) = 0 for all x ∈ Xy and y ∈ Y.

Proof. Let (X×̇X, S+, π×̇π) := (X, S+, π)×̇(X, S+, π) be a direct product of (X,
S+, π) and (X, S+, π), i.e. π×̇π(t, (x1, x2)) := (π(t, x1), π(t, x2)) for all (x1, x2) ∈
X×̇X and t ∈ S+. By condition (ii) the point (x̄1, x̄2) ∈ X×̇X is L+ stable in
(X×̇X, S+, π×̇π), and consequently from Condition b. of the theorem follows the
existence of a finite limit

(16) V0 = lim
t→+∞

V (x̄1t, x̄2t).

Let (p, q) ∈ ω(x̄1,x̄2), then from (16) it follows that V (p, q) = V0. By the invariance
of ω(x̄1,x̄2) we have V (pt, qt) = V (p, q) for all t ∈ S+, and, according to condition
(iii) of Theorem, p = q, i.e.,

(17) ω(x̄1,x̄2) ⊆ ∆X := {(x, x) | x ∈ X}.

We will show now that for all (x1, x2) ∈ X×̇X (h(x1) = h(x2)) the equality

lim
t→+∞

ρ(x1t, x2t) = 0

holds. If we suppose that it is not true, then there exist y0 ∈ Y, x̄1, x̄2 ∈ Xy0 , ε0 > 0
and tn → +∞ such that

(18) ρ(x̄1tn, x̄2tn) ≥ ε0.

We may suppose that the sequences {x̄itn} (i = 1, 2) are convergent. Let us put p̄ =
lim

n→+∞
x̄1tn and q̄ = lim

n→+∞
x̄2tn, then (p̄, q̄) ∈ ω(x̄1,x̄2) and from (18) it follows that

p̄ 6= q̄. The last equality contradicts the inclusion (17). The obtained contradiction
proves the required statement.
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Let x ∈ X and X1 := H+(x). Consider the non-autonomous dynamical system
〈(X1, S+, π), (Y, S, σ), h〉 induced by 〈(X, S+, π), (Y, S, σ), h〉. We will show that
〈(X1, S+, π), (Y, S, σ), h〉 possesses the property of convergence. To this end by
Theorem 3.4 it is sufficient to show that every semi-trajectory Σ+

x (x ∈ X) is as-
ymptotically stable. If we suppose that the last statement is not true, then there
exist xn, x0 ∈ X1, ε0 > 0, xn → x0 (h(xn) = h(x0)) and tn > 0 such that

(19) ρ(π(tn, xn), π(tn, x0)) ≥ ε0.

On the other hand we have

(20) V (π(tn, xn), π(tn, x0)) < V (xn, x0) → 0

as n → +∞. We can suppose that the sequences {π(tn, xn)} and {π(tn, x0)}
are convergent. Let x̄ := lim

n→+∞
π(tn, xn) and x̄0 := lim

n→+∞
π(tn, x0), then by the

inequality (20) we have V (x̄, x̄0) = 0. Since the function V is positively defined,
then we obtain x̄ = x̄0. But the last equality contradicts to inequality (19). The
obtained contradiction proves our statement. Thus the non-autonomous dynamical
system 〈(X1,S+, π), (Y, S, σ), h〉 is convergent. Let M be the Levinson center of
dynamical system (X1,S+, π), then h(M) = Y and My := M ∩Xy consists a single
point {my} for all y ∈ Y. This means, in particularly, that h : M 7→ Y is a dynamical
homeomorphism. Thus M is a compact minimal set and lim

t→+∞
ρ(π(t, x), π(t,my)) =

0 for all x ∈ X1y and y ∈ Y.

Let now y ∈ Y and x1, x2 ∈ Xy, then the sets Mi := ωxi (i = 1, 2) are two
minimal sets and h : Mi 7→ Y (i=1,2) is a dynamical homeomorphism. Let as
show that M1 = M2. If we suppose the contrary, then there exists a point y0 ∈ Y
and x0

i ∈ Mi ∩ Xy0 (i=1,2) such that x0
1 6= x0

2. Consider the function ψ(t) :=
V (π(t, x0

1), π(t, x0
1)) (t ∈ S+). Note that ψ(t) < p(0) for all t > 0 and there exists

a strict increasing sequence {tn} → +∞ such that: σ(tn, y0) → y0, . . . < ψ(tn) <
. . . < ψ(t1) < ψ(0) and ψ(0) = lim

n→+∞
ψ(tn) < ψ(0). The last contradiction show

that our assumption is not true, i.e. M1 = M2. ¤

Theorem 3.7. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical sys-
tem and the following conditions hold:

(i) Y is a compact minimal set;
(ii) every point x ∈ X is stable in the sense of Lagrange;
(iii) there exists a continuous function V : X×̇X → R+, satisfying the following

conditions:
a. V is positively defined;
b. V (x1t, x2t) ≤ V (x1, x2) for all t ≥ 0 and (x1, x2) ∈ X×̇X;
c. for any (x1, x2) ∈ X×̇X\∆X there is a t0 > 0 such that V (x1t0, x2t0) <

V (x1, x2).

Then the following statements take place:

(i) there exists a unique compact minimal set M ⊆ X;
(ii) ωx = M for all point x ∈ X;
(iii) the set My := {x ∈ M | h(x) = y} consists a single point, i.e. My = {my};
(iv) lim

t→+∞
ρ(π(t, x), π(t,my)) = 0 for all x ∈ Xy and y ∈ Y.
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Proof. Let V : X×̇X 7→ R+ be the continuous function with properties a., b. and
c. We put

(21) V(x1, x2) :=
∫ +∞

0

V (x1t, x2t)e−tdt (if T1 = R+)

and

(22) V(x1, x2) := Σ+∞
t=0V (x1t, x2t)e−t (if T1 = Z+).

From the definition of the function V follow its continuity and positive definiteness.
The function V satisfies condition b. of Theorem 3.6. In fact, if we suppose the
contrary, then there exit (x̄1, x̄2) ∈ X×̇X and t0 > 0 such that V (x̄1t0, x̄2t0) =
V (x̄1, x̄2) and x̄1 6= x̄2. Then from (21) and from the last equality, it follows that

(23) V(x̄1(t0 + t), x̄2(t0 + t)) = V(x̄1t, x̄2t)

for all t ≥ 0. By virtue of (23), the function ϕ(t) = V(x̄1t, x̄2t) is t0 periodic. It
is obvious that ϕ is continuous and non-increasing. Therefore, ϕ is stationary and,
hence,

(24) V (x̄1t, x̄2t) = V (x̄1, x̄2)

for all t ≥ 0. On the other hand according to condition c. of Theorem we have
V (x̄1t0, x̄2t0) < V (x̄1, x̄2). The last inequality contradicts to the equality (24).
The obtained contradiction shows that our assumption is not true. Now to finish
the proof of Theorem it is sufficient to refer Theorem 3.6. ¤

Corollary 3.8. Let (X, S+, π) be an autonomous dynamical system and the fol-
lowing conditions hold:

(i) every point x ∈ X is stable in the sense of Lagrange;
(ii) there exists a continuous function V : X×X → R+, satisfying the following

conditions:
a. V is positively defined;
b. V (x1t, x2t) ≤ V (x1, x2) for all t ≥ 0 and (x1, x2) ∈ X ×X;
c. for any (x1, x2) ∈ X×X\∆X there is a t0 > 0 such that V (x1t0, x2t0)

< V (x1, x2).

Then the following statements take place:

(i) there exists a unique fixed point p ∈ X, i.e. π(t, p) = p for all t ∈ S+;
(ii) lim

t→+∞
ρ(π(t, x), p) = 0 for all x ∈ X.

Proof. This statement directly follows from Theorem 3.6. In fact, let Y = {q}
be a singe point and (Y, S, σ) be an autonomous dynamical system defined by
equality σ(t, q) = q for all t ∈ S. Consider the non-autonomous dynamical system
〈(X, S+, π), (Y, S, σ), h〉, where h(x) = q for all x ∈ X. Now to finish the proof of
Corollary it is sufficient to apply Theorem 3.6. ¤

Remark 3.9. 1. For discrete dynamical systems (S+ = Z+) Corollary 3.8 was
established by A. Lasota [30].

2. For dynamical systems on compact metric space Corollary 3.8 improves the well
known theorem of Nemytskii-Edelstein (see, for example, [41] and also [2]).
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Theorem 3.10. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical sys-
tem and the following conditions hold:

(i) Y is a compact minimal set;
(ii) the dynamical system (X,T1, π) is locally compact;
(iii) every point x ∈ X is stable in the sense of Lagrange;
(iv) there exists a continuous function V : X×̇X → R+, satisfying the following

conditions:
a. V is positively defined;
b. V (x1t, x2t) ≤ V (x1, x2) for all t ≥ 0 and (x1, x2) ∈ X×̇X \∆X ;
c. for any (x1, x2) ∈ X×̇X\∆X there is a t0 > 0 such that V (x1t0, x2t0) <

V (x1, x2).

Then the following statements take place:

(i) the non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is conver-
gent;

(ii) there exists a unique compact minimal set M ⊆ X such that JX = M ,
where JX is the Levisnon center of dynamical system (X, S+, π);

(iii) lim
t→+∞

ρ(π(t, x), π(t,my)) = 0 for all x ∈ Xy and y ∈ Y, where {my} = My.

Proof. By Theorem 3.7 the non-autonomous dynamical system 〈(X, S+, π), (Y,
S, σ), h〉 is point dissipative and ΩX = M is a compact minimal set which is
dynamical homeomorphic to Y . Since the dynamical system (X, S+, π) is locally
compact, then according to Theorem 2.10 it is compactly dissipative. Let JX be
its Levinson center, then M ⊆ JX . To finish the proof of Theorem it is sufficient
to show that JX = M or equivalently, that the non-autonomous dynamical system
〈(X, S+, π), (Y, S, σ), h〉 is convergent. To this end, according to Theorem 3.4 it is
sufficient to show that for any ε > 0 and K ∈ C(X) there exists δ(ε,K) > 0 such
that ρ(x1, x2) < δ(h(x1) = h(x2); x1, x2 ∈ K) implies ρ(x1t, x2t) < ε for all t ≥ 0.
If we suppose that it is not true, then there are ε0 > 0, K0 ∈ C(X), x1

n, x2
n ∈ K0

(h(x1
n) = h(x2

n)) and tn > 0 such that

(25) ρ(x1
n, x1

n) <
1
n

and ρ(π(tn, x1
n), π(tn, x2

n)) ≥ ε0.

Since the set K0 is compact, then we can suppose that the sequences {xi
n} (i = 1, 2)

are convergent. Let xi := lim
n→∞

xi
n, by inequality (25) we have x1 = x2. On the

other hand

(26) V (π(tn, x1
n), π(tn, x2

n)) < V (x1
n, x2

n) → 0

as n → +∞. We can suppose that the sequences {π(tn, xi
n)} (i = 1, 2) are conver-

gent. Let x̄i := lim
n→+∞

π(tn, xi
n), then by the inequality (26) we have V (x̄1, x̄2) = 0.

Since the function V is positively defined, then we obtain x̄1 = x̄2. But the last
equality contradicts to inequality (25). The obtained contradiction proves our state-
ment. ¤

Corollary 3.11. Let (X, S+, π) be an autonomous dynamical system and the fol-
lowing conditions hold:
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(i) the dynamical system (X, S+, π) is locally compact;
(ii) every point x ∈ X is stable in the sense of Lagrange;
(iii) there exists a continuous function V : X×̇X → R+, satisfying the following

conditions:
a. V is positively defined;
b. V (x1t, x2t) < V (x1, x2) for all t > 0 and (x1, x2) ∈ X ×X \∆X .

Then the following statements take place:

(i) there exists a unique fixed point p ∈ X, i.e. π(t, p) = p for all t ∈ S+;
(ii) lim

t→+∞
ρ(π(t, x), p) = 0 for all x ∈ X;

(iii) the fixed point p ∈ X is uniformly contracting, i.e. there exists a positive
number γ such that lim

t→+∞
sup

ρ(x,p)≤γ

ρ(π(t, x), p) = 0.

Proof. This statement follows from Theorem 3.7 and can be proved using the same
reasoning as well as in the proof of Corollary 3.8. ¤

Recall [7] that the dynamical systems (X,T, π) satisfies the condition of Ladyzhen-
skaya, if for all bounded subset M ∈ B(X) there exists a compact subset K ∈ C(X)
such that the equality

(27) lim
t→+∞

β(π(t,M),K) = 0.

Theorem 3.12. [7, ChI] Suppose that the dynamical system (X,T, π) satisfies the
condition of Ladyzhenskaya, then the following conditions are equivalent:

(i) the dynamical system (X,T, π) is pontwice dissipative i.e. there exists a
nonempty compact subset K1 ∈ C(X) which attracts every point from X;

(ii) the dynamical system (X,T, π) is boundedly dissipative i.e. there exists a
nonempty compact subset K2 ∈ C(X) which attracts every point bounded
subset from X.

Theorem 3.13. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical sys-
tem and the following conditions hold:

(i) Y is a compact minimal set;
(ii) the dynamical system (X,T1, π) satisfies the condition of Ladyzhenskaya;
(iii) every point x ∈ X is stable in the sense of Lagrange;
(iv) there exists a continuous function V : X×̇X → R+, satisfying the following

conditions:
a. V is positively defined;
b. V (x1t, x2t) ≤ V (x1, x2) for all t > 0 and (x1, x2) ∈ X×̇X\∆X , where

∆X := {(x, x) | x ∈ X};
c. for any (x1, x2) ∈ X×̇X\∆X there is a t0 > 0 such that V (x1t0, x2t0) <

V (x1, x2).

Then the following statements take place:

(i) the non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is conver-
gent;
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(ii) there exists a unique compact minimal set M ⊆ X such that JX = M ,
where JX is the Levisnon center of dynamical system (X,T1, π);

(iii)

(28) lim
t→+∞

sup
x∈B

ρ(π(t, x), π(t,mh(x))) = 0

for every bounded subset B of X.

Proof. Since the dynamical system (X,T1, π) satisfies the condition of Ladyzhen-
skaya, then every point x ∈ X is stable in the sense of Lagrange. By Theorem 3.7
the non-autonomous dynamical system 〈(X, T1, π), (Y, T2, σ), h〉 is point dissipa-
tive and ΩX = M is a compact minimal set which is dynamical homeomorphic to Y .
Since the dynamical system (X,T1, π) possesses the properties of Ladyzhenskaya,
then according to Theorem 3.12 it is compactly dissipative. Let JX be its Levinson
center, then M ⊆ JX . Now we will show that JX = M or equivalently, that the non-
autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is convergent. To this end,
according to Theorem 3.4 it is sufficient to show that for any ε > 0 and K ∈ C(X)
there exists δ(ε,K) > 0 such that ρ(x1, x2) < δ(h(x1) = h(x2); x1, x2 ∈ K) implies
ρ(x1t, x2t) < ε for all t ≥ 0. If we suppose that it is not true, then there are ε0 > 0,
K0 ∈ C(X), x1

n, x2
n ∈ K0 (h(x1

n) = h(x2
n)) and tn > 0 such that

(29) ρ(x1
n, x1

n) <
1
n

and ρ(π(tn, x1
n), π(tn, x2

n)) ≥ ε0.

On the other hand we have

(30) V (π(tn, x1
n), π(tn, x2

n)) ≤ V (x1
n, x2

n) → 0

as n → +∞. We can suppose that the sequences {π(tn, xi
n)} (i = 1, 2) are conver-

gent. Let x̄i := lim
n→+∞

π(tn, xi
n), then by the inequality (30) we have V (x̄1, x̄2) = 0.

Since the function V is positively defined, then we obtain x̄1 = x̄2. But the last
equality contradicts to inequality (29). The obtained contradiction proves our state-
ment.

To finish the proof it is sufficient to prove the equality (28). Suppose that it is not
true, then the exists a bounded subset B0 of X, ε0 > 0, {xn} ⊆ B0 and tn → +∞
such that

(31) ρ(xntn,mh(xn)tn) ≥ ε0

for all n ∈ N. Without loss of generality we can suppose that the sequence {xntn} is
convergent. Let x̄ := lim

n→+∞
xntn and ȳ := h(x̄) = lim

n→+∞
h(xn)tn. Since mh(xn)tn =

mh(xn)tn
→ mȳ as n → +∞, then we have x̄ ∈ JX

⋂
Xȳ = {mȳ}, i.e. x̄ = mȳ.

But the last equality contradicts to the inequality (31). The obtained contradiction
completes the proof of Theorem. ¤

4. Non-Autonomous Version of Markus-Yamabe Conjecture

4.1. Global Asymptotic Stability. Let (X,h, Y ) be a vector bundle, 〈(X,T1, π),
(Y,T2, σ), h〉 be non-autonomous dynamical system, θy ∈ Xy := h−1(y) be a null
element (|θy| = 0) and Θ := {θy | y ∈ Y } be a null section of the vector bundle
(X, h, Y ). Below we will suppose that T2 = S and the null section Θ is invariant,
i.e. Θ ⊆ X is an invariant set of the dynamical system (X,T1, π).
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Definition 4.1. the null section Θ is called uniformly stable if for every ε > 0
there exists δ(ε) > 0 such that y ∈ Y, x ∈ Xy and |x| < δ implies |xt| < ε for all
t ≥ 0.

Definition 4.2. If Θ is uniformly stable and lim
t→+∞

|xt| = 0 for all x ∈ X, then the

null section is called globally uniformly asymptotically stable.

Denote by A := {a | a : R+ → R+, a is continuous, strict increasing and a(0) = 0 }.
Theorem 4.3. [7, Ch.II] Let Y be compact and (X, h, Y ) be a finite-dimensional
vectorial bundle fiber. For the null section Θ to be globally uniformly asymptotically
stable it is necessary and sufficient that there would exist a continuous function
V : X → R+ satisfying the following conditions:

1. V (x) ≥ a(|x|) for all x ∈ X, V (θy) = 0 for all y ∈ Y and Ima = ImV,
where a ∈ A.

2. V (xt) ≤ V (x) for all x ∈ X and t ≥ 0.
3. the level lines of V do not contain non-null ω-limit points of the dynamical

system (X,T1, π).

Theorem 4.4. Let Y be compact and (X, h, Y ) be a finite-dimensional vectorial
bundle fiber. For the null section Θ to be globally uniformly asymptotically stable it
is necessary and sufficient that there would exist a continuous function V : X → R+

satisfying the following conditions:

1. V (x) ≥ a(|x|) for all x ∈ X, V (θy) = 0 for all y ∈ Y and Ima = ImV,
where a ∈ A.

2. V (xt) < V (x) for all x ∈ X \Θ and t > 0.

Proof. Sufficiency. Let the conditions of the theorem be satisfied. Show that the
null section Θ is uniformly stable. Suppose that it is not true. Then there exist
ε0 > 0, |xn| < δ, δn ↓ 0 and tn ≥ 0 such that

(32) |xntn| ≥ ε0.

On the other hand, 0 ≤ a(|xntn|) ≤ V (xntn) ≤ V (xn) → 0 as n → +∞ and,
consequently, |xntn| → 0. The last contradicts to the equality (32).

Now let us show that

(33) lim
t→+∞

|xt| = 0

for all x ∈ X. In fact, if we suppose the contrary then there exists x0 ∈ X (|x0| 6= 0)
such that lim sup

t→+∞
|x0t| > 0, i.e. there exist ε0 > 0 and tn → +∞ for which

(34) |x0tn| ≥ ε0.

Note that Σ+
x0

is relatively compact. In fact, a(|x0t|) ≤ V (x0t) ≤ V (x0) and,
consequently, |x0t| ≤ a−1(V (x0)) for all t ≥ 0. So, the sequence {x0tn} can be
considered convergent. Assume x̃ := lim

n→+∞
x0tn, then x̃ ∈ ωx0 . We will show that

there exists c ≥ 0 for which V (x) = c for all x ∈ ωx0 . In fact. Consider the function
ϕ(t) := V (x0t) (for all t ∈ T1). Under the conditions of Theorem the function ϕ is
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bounded (ϕ(t) ≤ ϕ(0) for all t ≥ 0) and strictly decreasing (ϕ(t1) < ϕ(t2) for all
t1 < t2) and, consequently, there exists

(35) lim
t→+∞

V (x0t) := c ≥ 0.

Since the function V is continuous, then from the equality (35) it follows that
V (x) = c for all x ∈ ωx0 .

Now we will show that c = 0, where c is the constant from the equality (35). If we
suppose that c > 0, then ωx0∩Θ = ∅ because if x̄ ∈ ωx0∩Θ, then c = V (x̄) = 0. We
have V (xt) = c for all x ∈ ωx0 and t ∈ T1. On the other hand c = V (xt) < V (x) = c
for all t > 0 and x ∈ ωx0 . The obtained contradiction proves our statement. Thus
by equality (35) we obtain the equality (33) and, consequently, the global uniform
asymptotic stability of the null section is proved.

Necessity. Let the null section Θ be globally uniformly asymptotically stable. By
Theorem 4.3 there exists the continuous function V : X 7→ R+ satisfying the con-
ditions 1.-3. of Theorem 4.3. Let us put

(36) V (x) :=
∫ +∞

0

V(xt)e−tdt (ifT1 = R+)

and

(37) V (x) := Σ+∞
t=0V(xt)e−t (ifT1 = Z+).

From the definition of the function V follows its continuity and positive definiteness
(V (x) ≥ a(|x|) for all x ∈ X). The function V satisfies to condition 2. of Theorem.
In fact, if we suppose the contrary, then there exists x0 ∈ X \ Θ and t0 > 0 such
that V (x0t0) = V (x0). Then from (36) and the last equality, it follows that

(38) V (x0(t0 + t)) = V (x0t)

for all t ≥ 0. By virtu of (38), the function ϕ(t) := V(x0t) (for all t ≥ 0) is t0
periodic. It is obvious that ϕ is continuous and non-increasing. Therefore, ϕ is
stationary and, hence, V(x0t) = V(x0) > 0 for all t ≥ 0. Reasoning as above we
can prove that ωx0 is a nonempty compact invariant set and V(x) = V(x0) > 0
for all x ∈ ωx0 . The last equality contradicts to condition 3. of Theorem 4.3. The
obtained contradiction completes the proof of the theorem. ¤

Corollary 4.5. Let Y be compact and (X, h, Y ) be a finite-dimensional vectorial
bundle fiber. For the null section Θ to be globally uniformly asymptotically stable it
is necessary and sufficient that there would exist a continuous function V : X → R+

satisfying the following conditions:

1. V (x) ≥ a(|x|) for all x ∈ X, V (θy) = 0 for all y ∈ Y and Ima = ImV,
where a ∈ A;

2. V (xt) ≤ V (x) for all x ∈ X and t ≥ 0;
3. V (xt) < V (x) if xs /∈ Θ for all s ∈ [0, t].

Proof. This statement can by proved with slight modification of the proof of The-
orem 4.4. ¤
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Remark 4.6. Note that Theorems 4.3, 4.4 and Corollary 4.5 remain true and for
the infinite-dimensional vectorial fibers (X, h, Y ) if we suppose that the dynamical
system (X,T1, π) is asymptotically compact.

4.2. Finite-dimensional systems. Denote by En a n-dimensional Euclidean space
with the scalar product 〈, 〉 and the norm | · | generated by the scalar product. Let
[En] be a space of all the linear mappings A : En 7→ En equipped with the operator
norm.

The function F ∈ C(Y ×En, En) is called regular if for any (y, u) ∈ Y ×En there
exists a unique solution ϕ(t, u, y) of the equation

(39) u′ = F (σ(t, y), u)

with initial condition ϕ(0, u, y) = u defined on R+, i.e. (39) generates a cocycle ϕ
on En.

Theorem 4.7. Let Y be a compact metric space, F ∈ C(Y × En, En), W ∈
C(Y, [En]) and the following conditions hold:

(i) the operator-function W is positively defined, i.e. 〈W(y)u, u〉 ∈ R for
all y ∈ Y, u ∈ En, and there exists a positive constant a such that
〈W(y)u, u〉 ≥ a|u|2 for all y ∈ Y and u ∈ En;

(ii) the function t → W(σty) is differentiable for every y ∈ Y and Ẇ(y) ∈
C(Y, [En]), where Ẇ(y) := d

dtW(σ(t, y))|t=0;
(iii) 〈Ẇ(y)(u−v)+(W(y)+W∗(y))(F (y, u)−F (y, v)), u−v〉 < 0 for all y ∈ Y

and u, v ∈ En (u 6= v), where W∗(y) is an adjoint operator;
(iv) F (y, 0) = 0 for all y ∈ Y ;
(v) the function F ∈ C(Y × En, En) is regular.

Then the trivial solution of equation (39)is global asymptotically stable.

Proof. Let 〈En, ϕ, (Y,R, σ)〉 be the cocycle generated by equation (39).

Denote by V : En × Y 7→ R+ the function defined by the equality V(u, y) :=
〈W (y)u, u〉 for all (u, y) ∈ X := En × Y. If |ϕ(s, u, y)| > 0 for all s ∈ [0, t] ⊂ R+,
then

d

dt
V(σ(t, y), ϕ(t, u, y)) = 〈Ẇ (σ(t, y))ϕ(t, u, y), ϕ(t, u, y)〉+

〈(W (σ(t, y)) + W∗(σ(t, y)))F (σ(t, y), ϕ(t, u, y)), ϕ(t, u, y)〉 < 0.

Now to finish the proof it is sufficient to apply Corollary 4.5. ¤

Example 4.8. As an example that illustrates this theorem we can consider the
following equation

u′ = g(σ(t, ω), u),

where g ∈ C(En ×Ω, En) and 〈Ag(u, ω), u〉 < 0 for all u ∈ En (u 6= 0) and ω ∈ Ω,
where A ∈ [En] is a self-adjoint positive definite matrix and g(0, ω) = 0 for all
ω ∈ Ω.

Theorem 4.9. Let Y be a compact metric space, F ∈ C(Y × En, En), W ∈ [En]
and the following conditions hold:
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(i) the operator W is positively defined, i.e. 〈Wu, u〉 ∈ R for all u ∈ En, and
there exists a positive constant a such that 〈Wu, u〉 ≥ a|u|2 for all u ∈ En;

(ii) 〈(W +W∗)F (y, u), u〉 < 0 for all y ∈ Y and u ∈ En (u 6= 0), where W∗ is
an adjoint operator;

(iii) F (y, 0) = 0 for all y ∈ Y ;
(iv) the function F ∈ C(Y × En, En) is regular.

Then the trivial solution of equation (39) is global asymptotically stable.

Proof. Denote by V : En×Y 7→ R+ the function defined by the equality V(u, y) :=
〈Wu, u〉 for all (u, y) ∈ X := En × Y. If |ϕ(s, u, y)| > 0 for all s ∈ [0, t] ⊂ R+, then

d

dt
V(ϕ(t, u, y), σ(t, y)) = 〈(W + W∗)F (σ(t, y), ϕ(t, u, y)), ϕ(t, u, y)〉 < 0.

Now to finish the proof it is sufficient to apply Corollary 4.5. ¤

4.3. Gradient Systems. Let F ∈ C(Y × En, En) be continuously differentiable
in u ∈ En and denote by F ′u(y, u) its derivative (Jacobian matrix) with respect to
u.

Definition 4.10. The continuously differentiable function V ∈ C(Y ×En,P) (P =
C or R) is called a potential for F ∈ C(Y × En, En) if F (y, u) = V ′

u(y, u) for all
(y, u) ∈ Y × En.

Remark 4.11. If the function F ∈ C(Y × En, En) is potential (i.e. F (y, u) =
V ′

u(y, u)) and its potential V ∈ C(Y ×En,P) is twice differentiable, then F ′u(y, u) =
V ′′

u2(y, u) = ( ∂2V
∂ui∂uj

)n
i,j=1.

Definition 4.12. The equation (39) is called gradient if its right hand side F ∈
C(Y × En) is a potential function, i.e. there exists a continuously differentiable
function V ∈ C(Y × En,P) such that

F (y, u) = V ′
u(y, u)

for all (y, u) ∈ Y × En.

Theorem 4.13. Let Y be a compact metric space, F ∈ C(Y ×En, En), W ∈ [En]
and the following conditions hold:

(i) the function F ∈ C(Y × En, En) is continuously differentiable in u ∈ En;
(ii) the operator W is positively defined, i.e. 〈Wu, u〉 ∈ R for all u ∈ En, and

there exists a positive constant a such that 〈Wu, u〉 ≥ a|u|2 for all u ∈ En;
(iii) 〈(W +W∗)F ′u(y, u)u, u〉 < 0 for all y ∈ Y and u ∈ En (u 6= 0), where W∗

is an adjoint operator;
(iv) F (y, 0) = 0 for all y ∈ Y ;
(v) the function F ∈ C(Y × En, En) is regular.

Then the trivial solution of equation (39) is global asymptotically stable.

Proof. Denote by V : En × Y 7→ R+ the function defined by equality V(u, y) :=
〈W (u, u〉 for all (u, y) ∈ X := En×Y. If |ϕ(s, u, y)| > 0 for all s ∈ [0, t] ⊂ R+, then

d
dtV(ϕ(t, u, y), σ(t, y)) = 〈(W + W∗)F (σ(t, y), ϕ(t, u, y)), ϕ(t, u, y)〉 =

〈(W + W∗)Fu(σ(t, y), ϕ(t, u, y))ϕ(t, u, y)), ϕ(t, u, y)〉 < 0,(40)
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where θ(t, u, y) ∈ [0, 1] for all (t, u, y) ∈ R+ × En × Y.

Now to finish the proof it is sufficient to apply Theorem 4.9. ¤

Corollary 4.14. Let Y be a compact metric space, Rn be a real n-dimensional
Euclidean space, F ∈ C(Y × Rn,Rn), W ∈ [Rn] and the following conditions hold:

(i) the function F ∈ C(Y × Rn,Rn) is continuously differentiable in x ∈ Rn;
(ii) the operator W is positively defined, i.e. 〈Wu, u〉 ∈ R for all u ∈ Rn, and

there exists a positive constant a such that 〈Wu, u〉 ≥ a|u|2 for all u ∈ Rn;
(iii) 〈(WF ′u(y, u) + F ′∗u (y, u)W )u, u〉 < 0 for all y ∈ Y and u ∈ Rn (u 6= 0),

where F ′∗u (y, u) is an adjoint operator;
(iv) F (y, 0) = 0 for all y ∈ Y ;
(v) the function F ∈ C(Y × Rn,Rn) is regular.

Then the trivial solution of equation (39) is global asymptotically stable.

Proof. This statement follows from Theorem 4.13. In fact, if Rn is a real finite-
dimensional Euclidean space, then we have

〈((W + W ∗)F ′u(y, u)u, u〉 = 〈(WF ′u(y, u) + F ′∗u (y, u)W )u, u〉 < 0

for all (y, u) ∈ Y × Rn (u 6= 0). Now it is sufficient to apply Theorem 4.13. ¤

Corollary 4.15. Let Y be a compact metric space, F ∈ C(Y ×Rn,Rn), W ∈ [Rn]
and the following conditions hold:

(i) the function F ∈ C(Y × Rn,Rn) is continuously differentiable in x ∈ Rn;
(ii) the operator F ′u(y, u)+F ′∗u (y, u) has only negative eigenvalues for all (y, u) ∈

Y × Rn;
(iii) F (y, 0) = 0 for all y ∈ Y ;
(iv) the function F ∈ C(Y × Rn,Rn) is regular.

Then the trivial solution of equation (39) is global asymptotically stable.

Proof. This statement follows from Corollary 4.15. In fact, since Rn is a real finite-
dimensional space and the operator F ′u(y, u) + F ′∗u (y, u) is auto-adjoint, then we
have

2〈F ′u(y, u)u, u〉 = 〈(F ′u(y, u) + F ′∗u (y, u))u, u〉 < 0
for all (y, u) ∈ Y × Rn (u 6= 0). Now it is sufficient to apply Corollary 4.14 with
W = IdRn . ¤

Corollary 4.16. Let Y be a compact metric space, F ∈ C(Y ×Rn,Rn), W ∈ [Rn]
and the following conditions hold:

(i) the function F ∈ C(Y × Rn,Rn) is continuously differentiable in x ∈ Rn;
(ii) the equation (39) is gradient, i.e. there exists a continuously differentiable

function V ∈ C(Y × Rn,R) such that F (y, u) = V ′
u(y, u) for all (y, u) ∈

Y × Rn;
(iii) the function V ∈ C(Y × E,R) is twice continuously differentiable;
(iv) the Jacobian F ′u(y, u) = V ′′

uu(y, u) of F has only negative eigenvalues for
all (y, u) ∈ Y × Rn;



MARKUS-YAMABE CONJECTURE . . . 19

(v) F (y, 0) = 0 for all y ∈ Y ;
(vi) the function F ∈ C(Y × Rn,Rn) is regular.

Then the trivial solution of equation (39) is global asymptotically stable.

Proof. This statement follows from Corollary 4.15. In fact, since Rn is a real finite-
dimensional space and the operator F ′u(y, u) = V ′′

uu(y, u) is auto-adjoint, then we
have

〈F ′u(y, u)u, u〉 = 〈V ′′
uu(y, u)u, u〉 < 0

for all (y, u) ∈ Y × Rn (u 6= 0). Now it is sufficient to apply Corollary 4.14. ¤

Remark 4.17. For autonomous system this statement was proved in [12].

4.4. Triangular Systems.

Theorem 4.18. Let W,Y be two finite-dimensional Banach spaces, 〈W,ϕ, (Y,T2, σ)
be a cocycle on W and the following conditions be held:

(i) 0 is a unique fixed point of dynamical system (Y,T2, σ) which is globally
asymptotically stable;

(ii) ϕ(t, 0, y) = 0 for all t ∈ T1 and y ∈ Y ;
(iii) there exist a continuous function V : Y ×W → R+ satisfying the following

conditions:
1. V (y, u) ≥ a(|u|) for all (y, u) ∈ Y ×W, V (y, 0) = 0 for all y ∈ Y and

Im a = ImV, where a ∈ A;
2. V (σ(t, y), ϕ(t, u, y)) ≤ V (y, u) for all (y, u) ∈ Y ×W and t ≥ 0;
3. V (σ(t, y), ϕ(t, u, y)) < V (y, u) if |ϕ(s, u, y)| > 0 for all s ∈ [0, t].

Then the trivial motion of skew-product dynamical system (X,T1, π) (X := Y ×
W, π = (ϕ, σ)) is globally asymptotically stable.

Proof. Let x0 = (y0, u0) ∈ X be an arbitrary point. From the Conditions a. and b.
it follows that ϕ(·, u0, y0), i.e. supt≥0 |ϕ(·, u0, y0)| < +∞. Thus the motion π(t, x0)
is relatively compact on T+ and, consequently, ωx0 is a nonempty, compact invari-
ant set of dynamical system (X,T1, π). Consider the non-autonomous dynamical
system 〈(X̃,T1, π), (Ỹ ,T2, σ), h〉, where Ỹ = H+(y0) := {y0t | t ≥ 0}, X̃ := Ỹ ×W

and h := pr2 : X̃ 7→ Ỹ . By Theorem 4.4 the trivial motion of dynamical system
(X̃,T1, π) is globally asymptotically stable and, in particularly, ωx0 = {0}. Thus
the dynamical system (X,T1, π) is point-wise dissipative and ΩX = {0}. Since X is
a finite-dimensional space, then by Theorem 2.10 the dynamical system (X,T1, π)
is also compactly dissipative. Let J be the Levinson center of dynamical system
(X,T1, π), then by Theorem 2.12 J = J+(ΩX). To finish the proof of Theorem
it is sufficient to show that J = {0}. Let p ∈ J, then there are xn → 0 and
tn → +∞ such that p = lim

t→+∞
xntn. Since a(|xntn|) ≤ V (π(tn, xn)) ≤ V (xn) → 0

as n → +∞, then xntn → 0 and, consequently, p = 0. ¤
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Let En be a n-dimensional Euclidean space, En = Em1 × Em2 × . . . × Emk (n =
m1 + m2 + . . . + mk). Consider the system

(41)





u′1 = f1(σ(t, y), u1)
u′2 = f2(σ(t, y), u1, u2)
. . .
u′m = fm(σ(t, y), u1, u2, . . . , um),

where fi ∈ C(Y ×Em1×Em2× . . .×Emi ; Em1×Em2× . . .×Emi) (i = 1, 2, . . . , k).

Theorem 4.19. Let Y be a compact metric space, fi ∈ C(Y ×Em1 ×Em2 × . . .×
Emi ; Emi) (i = 1, 2, . . . , k) and the following conditions hold:

(i) the function fi is continuously differentiable in ui ∈ Emi ;
(ii) for all i = 1, 2, . . . , k there exists a continuously differentiable function

Vi ∈ C(Y×,R) such that fi(y, u) = V ′
i ui

(y, u) for all (y, u) ∈ Y × Em1 ×
Em2 × . . .× Emi ;

(iii) for all i = 1, 2, . . . , k the function Vi ∈ C(Y ×Em1 ×Em2 × . . .×Emi ,R)
is twice continuously differentiable in ui;

(iv) the Jacobian F ′u(y, u) ((y, u) ∈ Y × En) of right hand side F := (f1, f2,
. . . , fm) of system (41) has only negative eigenvalues for all (y, u) ∈ Y ×E;

(v) F (y, 0) = 0 for all y ∈ Y ;
(vi) the function F ∈ C(Y × E, E) is regular.

Then the trivial solution of equation (39) is global asymptotically stable.

Proof. Let F = (f1, f2, . . . , fk), then

det(F ′u(y, u)− λI) = det( ∂f1
∂u1

(y, u1)− λI)×
det( ∂f2

∂u2
(y, u1, u2)− λI)× . . .× det( ∂fk

∂uk
(y, u1, u2, . . . , uk)− λI)(42)

and, consequently, σ(F ′u) = ∪k
i=1σ( ∂fi

∂ui
), where σ(A) is the spectrum of operator A.

We will prove this statement by induction with respect to k. If k = 1, then this
statement coincides with Corollary 4.16. Assume that it is true for all 1 < i ≤ k−1
and we will prove it for i = k. Denote by M := Em1 × Em2 × . . . × Emk−1 and
(M,R+, π) the dynamical system, generated by equation x′ = F̃ (x) (x ∈ M), where
F̃ = (f1, f2, . . . , fk−1). Finally, let 〈Emk , ϕ, (M,R+, σ)〉 be a cocycle, generated by
equation

u′k = fmk
(σ(t, y), uk) (uk ∈ Emk , y ∈ M).

Let V : Y × Emk 7→ R+ be the function defined by equality V (y, uk) := 1
2 〈uk, uk〉.

Reasoning as in the proof of Corollary 4.16 we can show that the function V pos-
sesses the properties 1.–3. from Theorem 4.18. Now to finish the proof it is sufficient
to apply Theorem 4.18. ¤

Remark 4.20. For autonomous systems, when m1 = m2 = . . . = mk = 1 this
statement was established in [33] (see also [12]).

5. The discrete Markus-Yamabe problem for non-autonomous systems

5.1. Triangular maps and non-autonomous dynamical systems. Let W and
Y be two complete metric spaces and denote by X := W ×Y its cartesian product.
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Recall (see, for example, [23, 24]) that a continuous map F : X 7→ X is called
triangular if there are two continuous maps f : W × Y 7→ W and g : Y 7→ Y such
that F = (f, g), i.e. F (x) = F (y, u) = (f(y, u), g(y)) for all x =: (y, u) ∈ X.

Consider a system of difference equations

(43)
{

un+1 = f(yn, un)
yn+1 = g(yn),

for all n ∈ Z+, where Z+ is the set of all non-negative integer numbers.

Along with system (43) we consider the family of equations

(44) un+1 = f(gny, un) (y ∈ Y ),

which is equivalent to system (43). Let ϕ(n, u, y) be a solution of equation (44)
passing through the point u ∈ W for n = 0. It is easy to verify that the map
ϕ : Z+ ×W × Y 7→ W ((n, u, y) 7→ ϕ(n, u, y) ) satisfies the following conditions:

(i) ϕ(0, u, y) = u for all u ∈ W ;
(ii) ϕ(n + m, u, y) = ϕ(n, ϕ(m,u, y), σ(m, y)) for all n,m ∈ Z+, u ∈ W and

y ∈ Y, where σ(n, y) := gny;
(iii) the map ϕ : Z+ ×W × Y 7→ W is continuous.

Denote by (Y,Z+, σ) the semi-group dynamical system generated by positive powers
of the map g : Y 7→ Y, i.e. σ(n, y) := gny for all n ∈ Z+ and y ∈ Y.

Definition 5.1. Recall [7] that a triplet 〈W,ϕ, (Y,Z+, σ)〉 (or briefly ϕ) is called a
cocycle (or non-autonomous dynamical system) over the dynamical system (Y,Z+, σ)
with fiber W .

Thus, the reasoning above shows that every triangular map generates a cocycle
and, obviously, vice versa. Taking into consideration this remark we can study
triangular maps in the framework of non-autonomous dynamical systems (cocycles)
with discrete time.

5.2. Contractive dynamical systems. The mapping F : X 7→ X is called as-
ymptotically compact, if the discrete dynamical system (X,Z+, π) generated by the
positive powers of F (i.e. π(n, x) := Fn(x) for all (n, x) ∈ Z+ ×X) is so.

Theorem 5.2. Suppose that the following conditions hold:

(i) (Y, g) is a compact minimal dynamical system;
(ii) W is a Banach space;
(iii) the function f ∈ C(Y ×W,W ) is continuously differentiable in u ∈ W ;
(iv) ||f ′u(y, u)|| < 1 for all (y, u) ∈ Y ×W ;
(v) f(y, 0) = 0 for all y ∈ Y ;
(vi) the mapping F : Y ×W 7→ Y ×W , where F (y, u) = (g(y), f(y, u)) for all

(y, u) ∈ Y ×W , is asymptotically compact.

Then the trivial solution of equation (44) is global asymptotically stable.

Proof. Let u1, u2 ∈ W, then by formula of finite difference we have

(45) f(y, u2)− f(y, u1) = f ′u(y, u1 + θ(u2 − u1))(u2 − u1),
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where θ = θ(y, u1, u2) ∈ [0, 1]. Since ||f ′u(y, u)|| < 1 for all (y, u) ∈ Y × W and
taking into account the equality (45) we obtain

|f(y, u2)− f(y, u1)| = |f ′u(u1 + θ(u2 − u1))(u2 − u1)| ≤
||fu(y, u1 + θ(u2 − u1))|||u2 − u1| < |u2 − u1|(46)

for all u1, u2 ∈ W (u1 6= u2). Now we will show that the discrete dynamical system
(X,Z+, π), generated by positive powers of F : X 7→ X is boundedly dissipative (in
particular, compactly dissipative). In fact, let r be an arbitrary positive number,
then the set M = B[0, r] := {x ∈ X | |x| ≤ r} is positively invariant, because
|Fn(y, u)| < |u| ≤ r for all n ∈ Z+, where |(y, u)| := |u|. Since the map F is
asymptotically compact, then there exists a nonempty compact subset Kr ⊂ X
such that

(47) lim
n→+∞

β(Fn(M), Kr) = 0.

Thus the dynamical system (X,Z+, π) satisfies the condition of Ladyzhenskaya.
By Theorem 3.12 the dynamical system (X,Z+, π) is boundedly dissipative. In
particularly it is compactly dissipative and by Theorem 3.7 its Levinson center J
is a compact minimal set. On the other hand the set Θ := {(y, 0) | y ∈ Y } is
a compact invariant set because Y is so and, consequently, Θ ⊆ J . Since J is
minimal, then we have J = Θ. Consider the non-autonomous dynamical system
〈(X,Z+, π), (Y,Z+, σ), h〉, where σ(n, y) := gn(y) (for all (y ∈ Y and n ∈ Z+) and
h := pr2 : X 7→ Y . We define the function V : X×̇X 7→ R+ by the equality
V ((y, u1), (y, u2)) := |u1 − u2| for all (y, u1), (y, u2) ∈ X. From the inequality (46)
we obtain V (π(n, x1), π(n, x1)) < V (x1, x2) for all (x1, x2) ∈ X×̇X \ ∆X and
n ∈ N. Since the dynamical system (X,Z+, π) is asymptotically compact, to finish
the proof it is sufficient to apply Theorem 3.13. ¤

Definition 5.3. The mapping F : X 7→ X is called locally compact, if the discrete
dynamical system (X,Z+, π), generated by the positive powers of F , is so.

Theorem 5.4. Suppose that the following conditions hold:

(i) (Y, g) is a compact minimal dynamical system;
(ii) W is a Banach space;
(iii) the function f ∈ C(Y ×W,W ) is continuously differentiable in u ∈ W ;
(iv) ||f ′u(y, u)|| < 1 for all (y, u) ∈ Y ×W ;
(v) f(y, 0) = 0 for all y ∈ Y ;
(vi) the mapping F := (g, f) : Y ×W 7→ Y ×W is locally compact.

Then the trivial solution of equation (44) is globally asymptotically stable.

Proof. Let 〈W,ϕ, (Y,Z+, σ)〉 be the cocycle, generated by mapping F := (f, g) and
σ(n, y) := gny for all y ∈ Y and n ∈ Z+. Denote by (X,Z+, π) the skew-product
dynamical system, where X := Y ×W and π(n, x) := Fnx for all x = (y, u) ∈ X and
n ∈ Z+. Consider the non-autonomous dynamical system 〈(X,Z+, π), (Y,Z+, σ), h〉,
where h := pr2 : X 7→ Y and the function V : X×̇X 7→ R+ defined by equality
V ((y, u1), (y, u2)) := |u1 − u2| for all y ∈ Y and u1, u2 ∈ W . From the inequality
(46) it follows that

(48) V (π(n, x1), π(n, x2)) < V (x1, x2)
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for all n > 0 and (x1, x2) ∈ X×̇X \ ∆X . Since f(y, 0) = 0 for all y ∈ Y, then
π(n, (y, 0)) = (y, 0) for all y ∈ Y and n ∈ Z+ and taking into account the inequal-
ity (48) we obtain that every positive semi-trajectory of (X,Z+, π) is relatively
compact. Now to finish the proof it is sufficient to apply Theorem 3.10. ¤

5.3. Potential mappings.

Theorem 5.5. Let f ∈ C(Y ×W,W ) be a potential mapping, i.e. there exists a
continuously differentiable in u ∈ W mapping V ∈ C(Y ×W,R) such that f(y, u) =
V ′

u(y, u) for all (y, u) ∈ Y ×W. Suppose that the following conditions hold:

(i) (Y, g) is a compact minimal dynamical system;
(ii) W is a finite-dimensional Banach space;
(iii) the function V ∈ C(Y×W,R) is twice continuously differentiable in u ∈ W ;
(iv) r(f ′u(y, u)) < 1 for all (y, u) ∈ Y ×W, where r(A) denote the spectral radius

of the operator A;
(v) f(y, 0) = 0 for all y ∈ Y.

Then the trivial solution of equation (44) is globally asymptotically stable.

Proof. Note that f ′u(y, u) = V ′′
uu(y, u) for all (y, u) ∈ Y × W. Since the operator

V ′′
uu(y, u) is symmetric, then ||f ′u(y, u)|| = r(f ′u(y, u)) < 1 for all (y, u) ∈ Y × W.

Now it is sufficient to refer Theorem 5.2. ¤

Example 5.6. Let Φ : Rn 7→ R be a continuously differentiable function and
f : Rn 7→ Rn be a continuous function defined by equality f(u) := Φ′(u) for all
u ∈ Rn. It easy to note that r(f ′(u)) = ||f ′(u)|| for all u ∈ Rn, where r(f ′(u)) is
the spectral radius of the operator f ′(u), because f ′′(u) is an auto-adjoint operator.
Thus, if f(0) = 0 and r(f ′(u)) < 1 for all u ∈ Rn, then the mapping f = Φ′ has a
unique fixed point 0 and it is globally asymptotically stable. In particularly, if f is
a continuously differentiable mapping from R into itself, f(0) = 0 and |f ′(u)| < 1
for all u ∈ R, then 0 is a unique globally asymptotically stable point of f .

Remark 5.7. This result (Example 5.6) was established in the works [8, 12].

Let En be a n-dimensional Banach space, En = Em1 × Em2 × . . . × Emk (n =
m1 + m2 + . . . + mk). Consider the system

(49)





u1(n + 1) = f1(σ(n, y), u1(n))
u2(n + 1) = f2(σ(n, y), u1(n), u2(n))
. . .
um(n + 1) = fm(σ(n, y), u1(n), u2(n), . . . , um(n)),

where fi ∈ C(Y × Em1 × Em2 × . . .× Emi ; Emi) (i = 1, 2, . . . , k).

Theorem 5.8. Let Y be a compact metric space, fi ∈ C(Y × Em1 × Em2 × . . .×
Emi ; Emi) (i = 1, 2, . . . , k) and the following conditions hold:

(i) the function fi is continuously differentiable in ui ∈ Emi ;
(ii) for all i = 1, 2, . . . , k there exists a continuously differentiable function

Vi ∈ C(Y×,R) such that fi(y, u) = ∂Vi

∂ui
(y, u) for all (y, u) ∈ Y × Em1 ×

Em2 × . . .× Emi ;
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(iii) for all i = 1, 2, . . . , k the function Vi ∈ C(Y ×Em1 ×Em2 × . . .×Emi ,R)
is twice continuously differentiable in ui;

(iv) the Jacobian F ′u(y, u) ((y, u) ∈ Y × En) of right hand side F := (f1, f2,
. . . , fm) of system (49) has all its eigenvalues with modulus less than one
for all (y, u) ∈ Y × E;

(v) F (y, 0) = 0 for all y ∈ Y .

Then the trivial solution of equation (49) is global asymptotically stable.

Proof. Let F = (f1, f2, . . . , fk), then

det(F ′u(y, u)− λI) = det( ∂f1
∂u1

(y, u1)− λI)×
det( ∂f2

∂u2
(y, u1, u2)− λI)× . . .× det( ∂fk

∂uk
(y, u1, u2, . . . , uk)− λI)(50)

and, consequently, σ(F ′u) = ∪k
i=1σ( ∂fi

∂ui
), where σ(A) is the spectrum of operator A.

We will prove this statement by induction with respect to k. If k = 1, then this
statement coincides with Theorem 5.5. Assume that it is true for all 1 < i ≤ k − 1
and we will prove it for i = k. Denote by M := Em1 × Em2 × . . . × Emk−1

and (M,Z+, π) the dynamical system, generated by equation u(n + 1) = F̃ (u(n))
(x ∈ M), where F̃ = (f1, f2, . . . , fk−1). Finally, let 〈Emk , ϕ, (M,Z+, σ)〉 be a
cocycle, generated by equation

uk(n + 1) = fmk
(σ(n, y), uk(n)) (u ∈ Emk , y ∈ M).

Let V : Y × Emk 7→ R+ be the function defined by equality V (y, uk) := |uk|.
Reasoning as in the proof of Theorem 5.5 we can check that the function V possesses
the properties 1.–3. from Theorem 4.18. Now to finish the proof it is sufficient to
apply Theorem 4.18. ¤

Remark 5.9. For autonomous discrete systems, when m1 = m2 = . . . = mk = 1
this statement was established in [12].
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E-mail address, D. Cheban: cheban@usm.md; davidcheban@yahoo.com


