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Abstract. The article is devoted to the study of global attractors of quasi-
linear non-autonomous difference equations. The results obtained are applied
to the study of a triangular economic growth model T : R2

+ → R2
+ recently

developed by Brianzoni S., Mammana C. and Michetti E.

1. Introduction

The present paper is dedicated to the study of global attractors of quasi-linear
non-autonomous difference equations

un+1 = A(σnω)un + F (un, σnω), (A ∈ C(Ω, [E]), F ∈ C(E × Ω, E))

where Ω is a metric space, E is a finite-dimensional Banach space with the norm
| · |, (Ω,Z+, σ) is a dynamical system with discrete time Z+, [E] is the space of all
linear operators acting on E equipped with operator norm, C(Ω, [E]) (respectively,
C(E×Ω, E)) is the space of all continuous functions defined on Ω (respectively, on
E × Ω) with values in [E] (respectively, E) equipped with compact-open topology
and F is a ”small” perturbation. Analogous problem it was studied by Cheban D.
et al. [9], when Ω is a compact invariant set. In this work we consider more general
case, when Ω is not invariant, but there exists a compact invariant subset J ⊆ Ω
(Levinson center) which attracts every compact subset from Ω.

The obtained results are applied while studying a special class of triangular maps
describing a discrete-time growth model of the Solow type where workers and share-
holders have different but constant saving rates and the population growth rate
dynamic is described by the logistic equation (see Brianzoni S., Mammana C. and
Michetti E. [3]).

We consider the Solow-Swan growth model in discrete time with differential saving
and VES production function as proposed by Brianzoni et al. in [4] while assuming
that the population growth rate evolves according to the logistic law as in Brian-
zoni et al. [3] and Cheban et al. [9]. Our main goal is to study the qualitative
and quantitative long run dynamics of the economic model to show that complex
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futures results, as the one reached while considering the CES (Constant Elasticity
of Substitution) technology.

This paper is organized as follows.

In Section 2 we collect some notions and facts from the theory of dynamical systems
(semi-group dynamical system, cocycle, full trajectory, non-autonomous dynamical
system, compact global attractor) which we use in our paper.

In Section 3 we give a result of the existence of compact global attractors of quasi-
linear dynamical systems.

Section 4 is dedicated to the study a special class of the triangular maps T : R2
+ →

R2
+ describing a triangular growth model with logistic population growth rate as

studied in Brianzoni S., Mammana C. and Michetti E. [3]. We apply here our
general results for studying this concrete dynamical system.

2. Some Notions and Facts from Dynamical Systems

In this Section we collect some notions and facts from the theory of dynamical
systems (both with continuous and discrete time) which we use in our paper.

2.1. Triangular maps and non-autonomous dynamical systems. Let W and
Ω be two complete metric spaces and denote by X := W×Ω their Cartesian product.
Recall [8, 17] that a continuous map F : X → X is called triangular if there are
two continuous maps f : W × Ω → W and g : Ω → Ω such that F = (f, g), i.e.,
F (x) = F (u, ω) = (f(u, ω), g(ω)) for all x =: (u, ω) ∈ X.

Consider a system of difference equations

(1)
{

un+1 = f(un, ωn)
ωn+1 = g(ωn),

for all n ∈ Z+, where Z is the set of all integer numbers and Z+ := {n ∈ Z : n ≥ 0}.
Along with system (1) we consider the family of equations

(2) un+1 = f(un, gnω) (ω ∈ Ω),

which is equivalent to system (1). Let ϕ(n, u, ω) be a solution of equation (2)
passing through the point u ∈ W for n = 0. It is easy to verify that the map
ϕ : Z+ ×W × Ω → W ((n, u, ω) 7→ ϕ(n, u, ω) ) satisfies the following conditions:

(i) ϕ(0, u, ω) = u for all u ∈ W and ω ∈ Ω;
(ii) ϕ(n + m,u, ω) = ϕ(n, ϕ(m,u, ω), σ(m,ω)) for all n,m ∈ Z+, u ∈ W and

ω ∈ Ω, where σ(n, ω) := gnω;
(iii) the map ϕ : Z+ ×W × Ω → W is continuous.

Denote by (Ω, Z+, σ) the semi-group dynamical system generated by positive powers
of the map g : Ω → Ω, i.e., σ(n, ω) := gnω for all n ∈ Z+ and ω ∈ Ω.

Recall [7, 16] that a triple 〈W,ϕ, (Ω, Z+, σ)〉 (or briefly ϕ) is called a cocycle over
the semi-group dynamical system (Ω,Z+, σ) with fiber W .
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Let X := W × Ω and (X,Z+, π) be a semi-group dynamical system on X, where
π(n, (u, ω)) := (ϕ(n, u, ω), σ(n, ω)) for all u ∈ W and ω ∈ Ω, then (X,Z+, π) is
called [16] a skew-product dynamical system, generated by cocycle 〈W, ϕ, (Ω, Z+,
σ)〉.
Remark 2.1. Thus, the reasoning above shows that every triangular map generates
a cocycle and, obviously, vice versa, i.e., having a cocycle 〈W,ϕ, (Ω,Z+, σ)〉 we can
define a triangular map F : W × Ω → W × Ω by the equality

F (u, ω) := (f(u, ω), g(ω)),

where f(u, ω) := ϕ(1, u, ω) and g(ω) := σ(1, ω) for all u ∈ W and ω ∈ Ω. The
semi-group dynamical system defined by the positive powers of the map F : X →
X (X := W × Ω) coincides with the skew-product dynamical system, generated by
cocycle 〈W,ϕ, (Ω,Z+, σ)〉

Taking into consideration this remark we can study triangular maps in the frame-
work of cocycles with discrete time.

Let (X,Z+, π) (respectively, 〈W,ϕ, (Ω,Z+, σ)〉) be a semi-group dynamical system
(respectively, a cocycle). A map γ : Z→ X is called an entire trajectory of the semi-
group dynamical system (X,Z+, σ) passing through the point x ∈ X if γ(0) = x
and γ(n + m) = π(m, γ(n)) for all n ∈ Z and m ∈ Z+.

Let Ω be a complete metric space, (X,Z+, π) (respectively, (Ω, Z+, σ)) be a semi-
group dynamical system on X (respectively, Ω), and h : X → Ω be a homomorphism
of (X,Z+, π) onto (Ω,Z+, σ). Then the triple 〈(X,Z+, π), (Ω,Z+, σ), h〉 is called a
non-autonomous dynamical system (NDS).

Let W and Ω be complete metric spaces, (Ω,Z+, σ) be a semi-group dynamical
system on Y and 〈W,ϕ, (Ω,Z+, σ)〉 be a cocycle over (Ω,Z+, σ) with the fiber W
(or, for short, ϕ). We denote by X := W × Ω and define on X a skew product
dynamical system (X,Z+, π) (π = (ϕ, σ), i.e., π(t, (w, ω)) = (ϕ(t, w, ω), σ(t, ω)) for
all t ∈ Z+ and (w,ω) ∈ W×Ω). Then the triple 〈(X,Z+, π), ((Ω,Z+, σ), h〉 is a non-
autonomous dynamical system generated by cocycle ϕ), where h = pr2 : X 7→ Ω is
the projection on the second component.

2.2. Global attractors of dynamical systems. Let M be a family of subsets
from X.

A semi-group dynamical system (X,Z+, π) will be called M-dissipative if for every
ε > 0 and M ∈ M there exists L(ε, M) > 0 such that π(n,M) ⊆ B(K, ε) for any
n ≥ L(ε,M), where K is a certain fixed subset from X depending only on M. In
this case we will call K an attracting set for M.

For the applications the most important ones are the cases when K is bounded or
compact and M := {{x} | x ∈ X} or M := C(X), or M := {B(x, δx) | x ∈ X, δx >
0}, or M := B(X) where C(X) (respectively, B(X)) is the family of all compact
(respectively, bounded) subsets from X.

The system (X,Z+, π) is called[7]:
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− point dissipative if there exists K ⊆ X such that for every x ∈ X

(3) lim
n→+∞

ρ(π(n, x),K) = 0;

− compactly dissipative if the equality (3) takes place uniformly w.r.t. x on
the compact subsets from X.

Let (X,Z+, π) be a compactly dissipative semi-group dynamical system and K be
an attracting set for C(X). We denote by

J := Ω(K) =
⋂

n≥0

⋃

m≥n

π(m, K),

then the set J does not depend of the choice of K and is characterized by the
properties of the semi-group dynamical system (X,Z+, π). The set J is called a
Levinson center of the semi-group dynamical system (X,Z+, π).

Let (X,Z+, π) be a dynamical system and x ∈ X. Denote by

ωx := Ω({x}) =
⋂

n≥0

⋃

m≥n

π(m, x)

the ω-limit set of point x.

If (X,Z+, π) is a two sided dynamical system (i.e., the map π(1, ·) : X 7→ X is an
homeomorphism) then the set

αx =
⋂

n≤0

⋃

m≤n

π(m,x)

is said to be α-limit set of x.

Let 〈E,ϕ, (Ω,Z+, σ)〉 be a cocycle over (Ω,Z+, σ) with the fiber E (or shortly ϕ).

A cocycle ϕ is called:

- dissipative, if there exists a number r > 0 such that

lim sup
t→+∞

|ϕ(t, u, ω)| ≤ r

for all ω ∈ Ω and u ∈ E;
- uniform dissipative, if there exists a number r > 0 such that

lim sup
t→+∞

sup
ω∈Ω′ ,|u|≤R

|ϕ(t, u, ω)| ≤ r

for all compact subsets Ω
′ ⊆ Ω and R > 0.

Theorem 2.2. [9] If the dynamical system (Ω,Z+, σ) is compact dissipative and the
cocycle ϕ is uniform dissipative, then the skew-product dynamical system (X,Z+, π)
is compact dissipative.
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3. Global attractors of quasi-linear triangular systems

In Section 3 we present a result of the existence of compact global attractors of
quasi-linear dynamical systems.

Let Ω be a complete metric space and (Ω,Z+, σ) be a semi-group dynamical system
on Ω with discrete time.

If W is a complete metric space, then by C(Ω,W ) we denote the space of all the
continuous functions f : Ω → W endowed with the compact-open topology, i.e.,
the uniform convergence on compact subsets in Ω.

Consider a linear equation

(4) un+1 = A(σ(n, ω))un, (ω ∈ Ω)

where A ∈ C(Ω, [E]).

Let U(n, ω) be the Cauchy operator of linear equation (4).

We will say that equation (4) is uniformly exponential stable if there exist constants
0 < q < 1 and N > 0 such that

‖U(n, ω)‖ ≤ Nqn

for all ω ∈ Ω and n ∈ Z+.

Consider a difference equation

(5) un+1 = F(un, σ(n, ω)) (ω ∈ Ω).

Denote by ϕ(n, u, ω) a unique solution of equation (5) with the initial condition
ϕ(0, u, ω) = u.

Equation (5) is said to be dissipative (respectively, uniform dissipative), if there
the cocycle ϕ generated by equation (5) is so, i.e., there exists a positive number r
such that

lim sup
n→+∞

|ϕ(n, u, ω)| ≤ r (respectively, lim sup
n→+∞

sup
ω∈Ω′,|u|≤R

|ϕ(n, u, ω)| ≤ r)

for all u ∈ E and ω ∈ Ω (respectively, for all compact subset Ω′ ⊆ Ω and R > 0).

Consider a quasi-linear equation

(6) un+1 = A(σ(n, ω))un + F (un, σ(n, ω)),

where A ∈ C(Ω, [E]) and the function F ∈ C(E × Ω, E) satisfies ”the condition of
smallness” (condition (ii) in Theorem 3.1).

Denote by U(k, ω) the Cauchy matrix for the linear equation

un+1 = A(σ(n, ω))un.

Theorem 3.1. [9] Suppose that the following conditions hold:

(i) equation (4) is uniformly exponential stable, i.e., there are positive numbers
N and q < 1 such that

(7) ‖U(n, ω)‖ ≤ Nqn (n ∈ Z+);
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(ii) |F (u, ω)| ≤ C + D|u| (C ≥ 0, 0 ≤ D < (1 − q)N−1) for all u ∈ E and
ω ∈ Ω.

Then equation (6) is uniform dissipative.

Theorem 3.2. [8] Let (Ω, Z+, σ) be a compactly dissipative system and ϕ be a
cocycle generated by equation (6). Under the conditions of Theorem 3.1 the skew-
product system (X, Z+, π) (X := E × Ω and π := (ϕ, σ)), generated by cocycle ϕ
admits a compact global attractor.

Remark 3.3. All the results of Section 3 remain true, if we replace the phase space
E by positively invariant (with respect to cocycle ϕ generated by (5)) subset V ⊂ E.

4. Application: a growth model with VES technology

4.1. The model. The Solow-Swan growth model (see [18] and [19]) with VES
(Variable Elasticity of Substitution) technology has been studied by Karagiannis
et al. [13] while assuming continuous time: the authors show that the model can
exhibit unbounded endogenous growth despite the absence of exogenous technical
change and the presence of non-reproducible factors. Anyway their model is unable
to produce economic fluctuations.

More recently in [4], Brianzoni et al. studied the discrete time Solow-Swan growth
model, where the two types of agents, workers and shareholders, have different but
constant saving rates as in Bohm and Kaas [6] and where the production function
f : R+ → R+, mapping capital per worker u into output per worker f(u), is of the
VES type. Following Kargiannis et al. [13], they considered the specification of the
VES production function in intensive form given by Revamkar [14] as follows:

(8) f(u) = Akaγ [1 + bau](1−a)γ (u ≥ 0),

being A > 0, a ∈ (0, 1], b ≥ −1 and 1/u ≥ −b, while assuming that the production
function exhibits constant return to scale, i.e., γ = 1.

Anyway, in their work the authors assume that the labor force grows at a constant
rate. This last hypothesis is usually assumed in standard economic growth theory,
however, this assumption is unable to explain possible fluctuations in the growth
rate. For this reason a number of economic growth model with endogenous popu-
lation growth has been proposed (see, for instance, Brianzoni et al. [1, 2, 3]). In
particular Brianzoni et al. [3] and Cheban et al. [9] recently investigated the neo-
classical growth model with differential saving and CES production function under
the assumption that the labor force dynamics is described by the logistic equation.
Such a law satisfies the following economic properties: (1) when population is small
in proportion to the environmental carrying capacity, then it grows at a positive
constant rate and (2) when population is larger in proportion to the environmental
carrying capacity, the resources become relatively more scarce and, as result, this
must affect the population growth rate negatively.

In the present work we consider the Solow-Swan growth model in discrete time with
differential saving and VES production function as proposed by Brianzoni et al. in
[4] while assuming that the population growth rate evolves according to the logistic
law as in Brianzoni et al. [3] and Cheban et al. [9]. Our main goal is to study the



GLOBAL ATTRACTORS OF. . . 7

qualitative and quantitative long run dynamics of the economic model to show that
complex futures results, as the one reached while considering the CES (Constant
Elasticity of Substitution) technology.

Let us consider the following equation describing the evolution of the capital per
capita u in the standard neoclassical Solow-Swan growth model with differential
saving (see [4]):

(9) F (u, ω) =
1

1 + ω
[(1− δ)u + sww(u) + sruf ′(u)],

where δ ∈ (0, 1) is the depreciation rate of capital, sw ∈ (0, 1) and sr ∈ (0, 1) are
the constant saving rates for workers and shareholders respectively. The wage rate
equals the marginal product of labor which is w(u) := f(u) − uf ′(u), furthermore
shareholders receive the marginal product of capital f ′(u) which implies that the
total capital income per worker is uf ′(u).

Observe that ω ≥ 0 represents the labor force growth rate: in our formulation we
let it vary with time. More precisely we add a further assumption, that is the
population growth rate evolves according to the law

ω′ =
rhω

h + (r − 1)ω
.

Consider the case b ≥ 0. By substituting the VES production function given by
(8) (with γ = 1) in (9) we obtain the following map describing the evolution of the
capital accumulation:

(10) H(u, ω) =
1

1 + ω
{(1− δ)u + Aua(1 + abu)−a[sw(1− a) + sr(a + abu)]}

The resulting system, T = (ω′, u′), describing capital per worker (u) and population
growth rate (ω) dynamics, is given by:

(11) T :=





u′ = 1
1+ω [(1− δ)u + Aua(1 + abu)−a[sw(1− a) + sr(a + abu)]]

ω′ = rhω
h+(r−1)ω .

We get a discrete-time dynamical system described by the iteration of a map of the
plane of triangular type. In fact the second component of the previous system does
not depend on u, therefore the map is characterized by the triangular structure:

(12) T :=





u′ = g(u, ω)

ω′ = f(ω)
.

As a consequence, the dynamics of the map T are influenced by the dynamics of
the one–dimensional map f , that is the well-known Beverton-Holt map.
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4.2. Dynamics of the Beverton-Holt map f(ω) = rhω
h+(r−1)ω . In this Subsection

we study the dynamics of the one-dimensional monotone dissipative dynamical
systems (R+,Z+, π), generated by a strict monotone increasing map f : R+ 7→ R+.

Consider a continuous mapping f : R+ 7→ R+.

Theorem 4.1. Suppose that the following conditions are fulfilled:

(i) f(0) = 0;
(ii) f is strict monotone increasing;
(iii) the function f is bounded on R+;
(iv) there exists a number α > 0 such that f(α) > α.

Then the following statement hold:

(i) there exists a number x0 > α such that f(x0) = x0;
(ii) the dynamical system (R+, f) is point dissipative and ωx ⊆ [0, b] for all

x ∈ R+, where b = lim
x→∞

f(x);

(iii) the dynamical system (R+, f) admits a compact global attractor J ⊂ R+;
(iv) J = [0, x0], where x0 is some fixed point of f ;
(v) ωx = {x0}or all x > x0;
(vi) for any x ∈ (0, x0) there exists two fixed points p and q of the map f such

that lim
n→∞

fn(x) = p and lim
n→∞

f−n(x) = q;

(vii) if the mapping f , in addition, is strict convex (i.e., the set Gf := {(x, y) :
x ∈ R+ and 0 ≤ y ≤ f(x)} is strict convex in R2), then
(a) x0 is a unique positive fixed point of the mapping f ;
(b) lim

n→∞
f−n(x) = 0 for all x ∈ [0, x0);

(c) lim
n→∞

fn(x) = x0 for all x > 0;

(d) the fixed point x0 is Lyapunov stable, i.e., for all ε > 0 there exists a
number δ = δ(ε) > 0 such that |x − x0| < δ implies |fn(x) − x0| < ε
or all n ≥ 0;

(e) the point 0 is Lyapunov stable in the negative direction, i.e., for all
ε > 0 there exists a number δ = δ(ε) > 0 such that 0 ≤ x < δ implies
0 ≤ f−n(x) < ε or all n ≥ 0.

Proof. Consider the function g(x) := f(x)−x and note that g(α) > 0 and g(β) < 0
for all sufficiently large β (β > b) and, consequently, there exists x0 ∈ (α, β) such
that g(x0) = 0 or f(x0) = x0.

Let x ∈ R+ be an arbitrary point. Since the semi-trajectory Σ+
x := {x, f(x),

. . . , fn(x), . . .} ⊆ {x}⋃
[0, b] is relatively compact, then the set ωx is nonempty,

compact and invariant. Let q ∈ ωx, then there exists a sequence {nk} ⊂ Z+ such
that q = lim

k→+∞
fnk(x) and nk → ∞ as k → ∞ and, consequently, q ∈ [0, b]. Thus

the dynamical system (R+, f) is point dissipative.

Since the phase space R+ of the dynamical system (R+, f) is local compact, then
by Theorem 1.10 [7, ChI] it is compactly dissipative and by Theorem 1.6 [7, ChI]
(R+, f) admits a compact global attractor J (J is its maximal compact invariant
set).
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According to Theorem 1.32 [7, ChI] the global attractor J (Levinson center) of
(R+, f) is connected because the phase space R+ is so. On the other hand 0 is a
fixed point and, consequently, 0 ∈ J . Note that α ∈ J . In fact, since f(α) > α,
then

α < f(α) < f2(α) < . . . < fn(α) < . . . .

Thus the sequence {fn(α)} is bounded and strict monotone decreasing and, conse-
quently, it is convergent. Let p := lim

n→∞
fn(α), then p ≥ α and f(p) = p. From the

last equality it follows that p ∈ J and,consequently, α ∈ [0, p] ⊆ J . Thus 0, α ∈ J
and, consequently, there exists a number x0 ≥ α > 0 such that J = [0, x0]. To finish
this statement it is sufficient to show that f(x0) = x0. Note that the boundary
∂J = {0, x0} of the invariant set J is also invariant. In particular this means that
f(x0) = x0 or f(x0) = 0. Since the mapping f is strictly monotone decreasing and
x0 > 0, then the equality f(x0) = 0 is not possible and, consequently, f(x0) = x0.

Let x > x0. Since The set J = [0, x0] is invariant, then fn(x) > x0 for all n ∈ Z+

and, consequently, ωx ⊂ [x0, +∞). On the other hand ωx ⊆ J = [0, x0] and,
consequently, ωx ⊆ [x0, +∞)

⋂
[0, x0] = {x0}.

Let x ∈ (0, x0) be an arbitrary number. Since the function f is strict monotone
increasing and bounded on R+, then there exists a limit b := lim

x→∞
f(x) and the

reverse function f−1 : [0, b) 7→ R+ is also strict monotone increasing. Consider
the sequence {fn(x)}. We will show that the sequence {fn(x)} is monotone. In
fact, if f(x) > x (respectively f(x) < x), then fn+1(x) > fn(x) (respectively,
fn+1(x) < fn(x)) for all n ∈ N. Since J is invariant, then fn(x) ∈ J for all n ∈ N.
Thus the sequence {fn(x)} is bounded and monotone and, consequently, there
exists lim

n→∞
fn(x) = p. It easy to check that f(p) = p. Taking into account that

the mapping f is an homeomorphism on the set J and it is invariant. Reasoning as
above it easy to show that the sequence {f−n(x)} is monotone and bounded and,
consequently, there exists lim

n→∞
f−n(x) = q and f(q) = q.

Suppose now that the function f is also strict convex. We will show that in this case
x0 is a unique positive fixed point of f . Suppose that it is not so, then there exists
a fixed point x̄ ∈ (0, x0). Note that the points (0, 0), (x̄, x̄) and (x0, x0) belong to
Gf and ∆+ := {(x, x) : x ∈ R+}. Thus (x̄, x̄) ∈ Gf

⋂
∆+ and x̄ = λx0, where λ is

some number from (0, 1). The last inclusion contradicts to strict convexity of the
set Gf . The obtained contradiction proves our statement.

To finish the proof of Theorem it is sufficient to show that the point x0 (respectively,
point 0) is Lyapunov stable in the positive (respectively, negative) direction. Note
that the set A := {x0} (respectively, B := {0}) is local maximal compact invariant
set of the map f . Now Lyapunov stability in the positive direction (respectively,
in the negative direction) of the point x0 (respectively, 0) it follows from Theorem
8.2 [7, ChVIII]. ¤

Remark 4.2. Note that the item (iv) of Theorem 4.1 remain true without the
assumption that the mapping f is bounded. It is sufficient to suppose that the
dynamical system (f,R+) is compactly dissipative and f is strictly monotone in-
creasing.



10 D. CHEBAN, C. MAMMANA, AND E. MICHETTI

Lemma 4.3. Let f(x) := hrx
h+(r−1)x for all x ∈ R+, h > 0 and r > 1, then the

following statements hold:

(i) f ′(x) = rh2

(h+(r−1)x)2 for all x > 0;

(ii) f ′′(x) = −2r(r−1)h2

(h+(r−1)x)3 for all x > 0;
(iii) f(α) > α, where α := h/2.

Proof. This statement is evident. ¤

Corollary 4.4. Let f(x) := hrx
h+(r−1)x for all x ∈ R+, h > 0 and r > 1, then the

following statements hold:

(i) the mapping f is strict monotone increasing and convex;
(ii) f admits two fixed points x = 0 and x = h;
(iii) the fixed point 0 is asymptotically stable in the negative direction and

Wu(0) := {x ∈ R+ : lim
n→∞

f−n(x) = 0} = [0, h);

(iv) the fixed point h is asymptotically Lyapunov stable in the positive direction
and W s(0) := {x ∈ R+ : lim

n→∞
fn(x) = h} = (0, +∞);

(v) the dynamical system (R+, f) is compact dissipative and its Levinson center
(compact global attractor) J = [0, h].

Proof. This statement it follows from Theorem 4.1 and Lemma 4.3. ¤

One say that the mapping f : R+ 7→ R+ admits an holomorphic extension, if there
exists δ > 0 and a holomorphic function f̃ : Bδ 7→ C such that f̃

∣∣
R+

= f , where
Bδ :=

⋃
r≥0

{(x, y) : (x− r)2 + y2 < δ2}.

Theorem 4.5. Under the conditions of Theorem 4.1, if the function f admits an
holomorphic extension, then f has a finite number of fixed points.

Proof. Consider the holomorphic function F (z) := f̃(z)− z defined on Bδ. Denote
by Fix(f) := {x ∈ R+ : f(x) = x} and note that Fix(f) ⊂ J = [0, x0]. On the
other hand every point z ∈ Fix(f) is a null of the holomorphic function F . Since
holomorphic function admits at most a finite number of nulls on every compact
subset, then the set Fix(f) contains at most a finite number of points. ¤

Thus, the dynamical system (R+, f), generated by Beverton-Holt map f admits
a compact global attractor J for all r > 1. In addition J possesses the following
property: if h > 0 and r > 1, then J = [0, h] and in this case the fixed point ω = 0
is a repeller (i.e., ω = 0 is an asymptotically stable in the negative direction fixed
point), but ω = h is an attractor with domain of attraction (0, +∞).

4.3. Existence of an attractor for b ∈ (0, +∞).

Lemma 4.6. The function H(u, ω) can be presented in the following form

(13) H(u, ω) =
1

1 + ω
{(1− δ + srab

A

(ab)a
)u}+ R(u, ω),
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where R(u, ω) is bounded, i.e., there exists a positive constant C such that |R(u, ω)| ≤
C for all ω ∈ [0, +∞) and u ∈ [0,+∞).

Proof. This statement can be proved with slight modification of the proof of Lemma
6.1 from [10]. ¤

Theorem 4.7. Let b > 0 and δ > srab A
(ab)a , then the dynamical system (R2

+, T ),
generated by map (11), admits a compact global attractor J ⊂ R2

+ which possesses
the following properties:

(i) the set J is connected;
(ii) for every ω ∈ [0, h] the set Jω := {(x, ω) : (x, ω) ∈ J} is connected;
(iii) for all ω ∈ (0, h) there exists a positive number bω such that Iω = [0, bω],

where Iω := pr1(Jω);
(iv) for all x := (u, ω) ∈ R2

+ we have:
(a) ωx ⊆ Jh if ω 6= 0 (i.e., if p ∈ ωx, then pr2(p) = h);
(b) αx ⊆ J0 if x ∈ J and ω 6= h (this means that pr2(q) = 0 for all

q ∈ αx).

Proof. Let b > 0, then by Lemma 4.6 the function T1 can be written in the form

(14) T1(u, ω) =
1

1 + ω
{(1− δ + srab

A

(ab)a
u}+ R(u, ω),

where R(u, ω) is bounded, i.e., there exists a positive constant M such that |R(u, ω)| ≤
M for all (u, ω) ∈ R2

+.

Since 0 ≤ 1
1+ω ≤ 1 for all ω ∈ R+, then from (14) we obtain

(15) 0 ≤ T1(u, ω) ≤ αu + M

for all (u, ω) ∈ R2
+, where α := 1− δ + srab A

(ab)a < 1.

Since the map T is triangular, to prove the existence of compact global attractor J
it is sufficient to apply Theorem 3.2 (see also Remark 3.3).

According to Theorem 1.32 from [7, ChI] the set J is connected. To prove the
connectedness of the set Jω we note that the map f : R+ 7→ R+ (f(ω) := Hrω

H+(r−1)ω

for all ω ∈ R+) is reversible, then by Theorem 2.25 [7, ChII] the set Iω and,
consequently, the set Jω is also connected because Jω = Iω × {ω}. Thus for all
ω ∈ [0, ω] there are two numbers aω, bω ∈ R+ such that Iω = [aω, bω]. It easy to
see that aω = 0 for all ω ∈ [0, h] because (0, ω) ∈ J for all ω ∈ [0,H]. Now to finish
the proof of Theorem it is sufficient to note that bω > 0 for all ω ∈ (0, H). If we
suppose that it is not so then there exists an ω̄ ∈ (0,H) such that bω̄ = 0. From the
last equality it follows that ω̄ is a fixed point of f (i.e., f(ω̄) = ω̄). The obtained
contradiction proves our statement.

Let x = (u, ω) ∈ R2
+ with the condition ω 6= 0. Note that π(t, x) = (ϕ(t, u, ω), f tω).

Since ω 6= 0, then f tω → H as t → +∞. Let p ∈ ωx, then there exists a sequence
tk → +∞ (tk ∈ Z+) such that π(tk, x) = (ϕ(tk, u, ω), f tkω) → p as k → ∞, i.e.,
pr2(p) = lim

k→∞
f tkω = H. If x ∈ J and q ∈ αx, then reasoning as above and



12 D. CHEBAN, C. MAMMANA, AND E. MICHETTI

taking into consideration that lim
t→∞

f−tω = 0 (for all ω ∈ (0,H)) we prove that

pr2(q) = 0. ¤

4.4. Structure of the attractor. In this subsection we suppose that b > 0. Let
H(u) = (1− δ)u + f(u)[sw(1− a) + sr(a + abu)] and H(u, ω) = 1

1+ω H(u).

Lemma 4.8. The following statements hold:

(i) let f(u) := Aua(1 + abu)−a, then

(16) f ′(u) =
af(u)

u(1 + abu)
;

(ii) if H(u) = (1− δ)u + f(u)[sw(1− a) + sr(a + abu)], then

(17) H ′(u) = 1− δ +
( a

u(1 + abu)
[sw(1− a) + sr(a + abu)] + srab

)
f(u).

Proof. This statement is evident. ¤

Lemma 4.9. The following statements hold:

(i) H ′(u) ≥ 1− δ > 0 for all u ∈ (0, +∞);
(ii)

(18) lim
u→∞

H ′(u) = 1− δ and lim
u→+0

H ′(u) = +∞;

(iii) there exists u0 > 0 such that H(u) ≥ (h + 2)u for all u ∈ [0, u0].

Proof. The first and second statements are evident. To prove the third statement
we note that from (18) it follows that for given h > 0 there exists a positive number
u0 such that H ′(u) ≥ h + 2 for all u ∈ (0, u0]. Let now ξ ∈ (0, u0), then we have

(19) H(u)−H(ξ) = H ′(θ)(u− ξ) ≥ (h + 2)(u− ξ)

for all u ∈ (0, u0), where θ ∈ (ξ, u). Passing into limit in (19) as ξ → 0 and taking
into account the continuity of H(u) at the point u = 0 and the equality H(0) = 0
we obtain H(u) ≥ (h + 2)u for all u ∈ (0, u0). Lemma is proved. ¤

Lemma 4.10. Let (R2
+, T )be a dynamical system generated by map (11) (i.e.,

T t(u, ω) = (ϕ(t, u, ω), f t(ω))) and ϕ(t, u, ω) ∈ [0, u0] for all t ∈ Z+, then ϕ(t, u, ω) ≥
u for all t ∈ Z+, u ∈ (0, u0] and ω ∈ [0, h + 1].

Proof. Note that H(u, ω) = 1
1+ω H(u) and ϕ(t, u, ω) is a unique solution of equation

(20) ut+1 = H(ut, f
t(ω))

with initial data ϕ(0, u, ω) = u. Let u ∈ [0, u0], then by Lemma 4.9 we have
ϕ(1, u, ω) = H(u, ω) ≥ u for all u ∈ [0, u0] because 1

1+ω ∈ [ 1
h+2 , 1] for all ω ∈ [0, h+

1]. Note that f t[0, h+1] ⊆ [0, h+1] for all t ∈ Z+. If we suppose that ϕ(t, u, ω) ≥ u
for all t = 1, 2, . . . , n, then we obtain ϕ(t + 1, u, ω) = ϕ(1, ϕ(t, u, ω), f t(ω)) ≥
ϕ(t, u, ω) ≥ u. Lemma is proved. ¤

Lemma 4.11. [4] The following statements hold:
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(i) if ω+δ
A > (ab)−aabsr, then H(ω, u) has two fixed points: u1 = 0 and

u2 = k∗ > 0;
(ii) the fixed point u1 (respectively, u2) is locally unstable (respectively, stable).

Let (X,T, π) be a dynamical system. The subset A ⊆ X is said to be chain
transitive (see [11, 12]) if for any a, b ∈ A, and any ε > 0 and L > 0, there are finite
sequences x1, x2, . . . , xm ∈ A with a = x1, b = xm, and t1, t2, . . . , tm ≥ L such that
ρ(π(ti, xi), xi+1) < ε (1 ≤ i ≤ m − 1). The sequence {x1, x2, . . . , xm} is called an
ε–chain in A connecting a and b.

Recall that the invariant set M ⊂ X of dynamical system (X,Z+, π) is said to be
dynamically decomposable if there are two nonempty invariant subsets Mi ⊂ M
(i = 1, 2) such that M1

⋂
M2 = ∅ and M = M1

⋃
M2. In other case the set M is

said to be dynamically undecomposable.

Remark 4.12. 1. If the positive semi-trajectory Σ+
x :=

⋃
t≥0 π(t, x) is relatively

compact, then its ω-limit set ωx is chain transitive [5, 11, 15] (respectively, dynam-
ically undecomposable [5]).

2. If the dynamical system (X,Z+, π) is two-sided and the negative semi-trajectory
Σ−x :=

⋃
t≤0 π(t, x) is relatively compact, then its α-limit set αx is chain transitive

[5, 11, 15] (respectively, dynamically undecomposable [5]).

Theorem 4.13. Let δ > srab A
(ab)a , then the following statements hold:

(i) the dynamical system (f0,Z+) (respectively, (f1,Z+)) is compactly dis-
sipative, where f0(u) := H(0, u) (respectively, f1(u) := H(h, u)) for all
u ∈ R+;

(ii) J0 = [0, k∗0 ] (respectively, J1 = [0, k∗1 ]), where J0 (respectively, J1) is the
Levinson center of the dynamical system (f0,Z+) (respectively, (f1,Z+))
and k∗0 (respectively, k∗1) is its positive fixed point;

(iii) for all x = (ω, u) ∈ R2
+ with ω 6= 0, h and u > 0 we have ωx = {(h, k∗1)};

(iv) for all x = (ω, u) ∈ J with ω ∈ [0, h) we have αx = {(0, 0)} or αx =
{(0, k∗0)}.

Proof. The first statement follows from Theorem 4.7 because the set {(0, u) : u ∈
R+} (respectively, {(h, u) : u ∈ R+}) is an invariant subset of the dynamical
system (R2

+, T ).

Let J0 (respectively, J1) be the Levinson center of (f0,R+) (respectively, (f1,R+)).
Note the function f0 (respectively, f1) is strict monotone increasing because

∂uH(ω, u) > 0

for all (ω, u) ∈ R2
+. Now the second statement of Theorem it follows from Lemma

4.11, Theorem 4.1 (item (iv)) and Remark 4.2.

Let x = (u, ω) ∈ R2
+ with u > 0 and ω 6= 0 and (R2

+, π) be a dynamical system
generated by triangular map T (see (12)), i.e., π(t, x) = (ϕ(t, u, ω), f tω) for all
t ∈ Z+ and (u, ω) ∈ R2

+, where ϕ(t, u, ω) is a unique solution of equation

u(t + 1) = H(f tω, u(t))
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passing through the point u at the initial moment t = 0. Since the function f
is strictly monotone and ∂uH(u, ω) > 0, then the semi-group dynamical system
(R2

+, π) in fact is two sided, i.e., every motion can be extended uniquely on Z.
Taking into account that the dynamical system (R2

+, π) is compactly dissipative,
then the positively semi-trajectory Σ+

x is relatively compact, ωx is a nonempty,
compact, invariant and dynamically undecomposable set. Since the set ωx is chain
transitive, then ωx = {(k∗1 , h)} or ωx = {(0, h)}. We will establish that the last
equality is not possible. Suppose that ωx = {(0, h)}, then there exists a moment
t0 ∈ Z+ such that

(21) f tω ∈ [0, h + 1] and ϕ(t, u, ω) ∈ (0, u0)

for all t ≥ t0. Taking into account (21) without loss of generality we can suppose
that t0 = 0 (if it is necessary we can take in the quality of x = (u, ω) the point
x0 := π(t0, x), because ωx = ωx0). Since ωx = {(h, 0)}, then we have

(22) lim
t→+∞

ϕ(t, u, ω) = 0.

On the other hand by Lemma 4.10 we have

(23) ϕ(t, u, ω) ≥ u

for all t ∈ Z+. The conditions (22) and (23) are contradictory. The obtained
contradiction proves our statement.

Let now x = (u, ω) ∈ J with ω ∈ [0, h), then by Theorem 4.7 we have αx ⊆ J0.
Note that the set αx is chain transitive. On the other hand αx is dynamically
undecomposable and, consequently, αx = {(0, 0)} or αx = {(0, k∗0)}. Theorem is
completely proved. ¤
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