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Abstract. The aim of this paper is study the problem of global asymptotic
stability of solutions for C-analytical dynamical systems (both with contin-
uous and discrete time). In particularly, we present some new results for
C-analytical version of Belitskii–Lyubich conjecture. Some applications this
results for periodic C-analytical differential/difference equations and the equa-
tions with impulse are given.

1. Introduction

1.1. Markus–Yamabe conjecture (MYC) [29]. Consider the differential equa-
tion

(1) u′ = f(u)

and suppose that the Jacobian f ′(u) of f has only eigenvalues with negative real
part for all u. The Markus Yamabe conjecture is that if f(0) = 0, then 0 is a globally
asymptotically stable solution for (1).

It is easy to prove MYC for n = 1. In the two-dimensional case the affirmative
answer to MYC was obtained in the works [14, 16, 15] (see also the references
therein). In the work [7] (see also [8, 9] and the references therein) is given a
polynomial counterexample to the Markus–Yamabe conjecture. If n > 2 there
are also some additional conditions forcing the Markus–Yamabe conjecture. For
example if f ′(u) is negative definite for all u ∈ Rn the conjecture was proved in
[21, 22] (see also [24, 25, 29]). For triangular systems MYC was proved in [29].

1.2. The discrete Markus–Yamabe conjecture (DMYC) [10, 33]. Let f be
a C1 mapping from Rn into itself such that f(0) = 0 and for all u ∈ Rn, f ′(u) has
all its eigenvalues with modulus less than one. Then 0 is a globally asymptotically
stable solution of the difference equation

u(n + 1) = f(u(n)).

In his book [27] J. P. LaSalle proves the DMYC for n = 1. The discrete Markus–
Yamabe conjecture is true only for planar maps (see [10] and also the references
therein) and the answer to the question is yes only in the case of planar polynomial
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maps. The authors [10] prove that the DMYC is true for triangular maps defined
on Rn and for polynomial maps defined on R2. In the works [4, 28] the DMYC is
proved for gradient maps.

1.3. Belitskii–Lyubich conjecture [2]. Let E be a Banach space, Ω ⊂ E an open
subset and f : Ω 7→ E be a compact and continuously differentiable in Ω. Suppose
D is a nonempty bounded convex open subset of X such that f(D) ⊂ D ⊂ Ω and
sup
x∈D

r(f ′(x)) < 1 (r(A) is the spectral radius of linear bounded operator A). Then

the discrete dynamical system (D, f), generated by positive powers of f : D 7→ D,
admits a unique globally asymptotically stable fixed point.

In generale case the answer to Belitskii-Lyubich conjecture is negative. Namely by
Slyusarchuk V.E. [37] and Shih Mau-Hsiang and Wu, Jinn-Wen [38] was proved
that even in the two-dimensional case this statement is not true.

In the work [38] was given a positive answer to Bielitskii-Lyubich conjecture for
compact holomorphic mappings. We will present in this paper answer to this prob-
lem for asymptotically compact holomorphic maps.

The aim of this paper is study the problem of global asymptotic stability of solu-
tions for holomorphic dynamical systems (both with continuous and discrete time).
We present some new results for C-analytical version of Belitskii–Lyubich conjec-
ture. Some applications this results for periodic C-analytical differential/difference
equations and the equations with impulse are given.

This paper is organized as follows.

In Section 2 we give a positive answer to Belitskii–Lyubich conjecture for asymp-
totically compact holomorphic dynamical systems with discrete time.

Section 3 is dedicated to the study of Belitskii–Lyubich problem for asymptotically
compact holomorphic flows.

In section 4 we study the holomorphic dissipative dynamical systems (both with
continuous and discrete times).

We give in section 5 some applications of obtained general results for periodical
holomorphic differential/difference equations and differential equations with im-
pulse.

2. Belitskii–Lyubich conjecture

Let E be a Banach space. If B ⊂ E is bounded, we define the set measure of
noncompactness of B, α(B), by α(B) := inf{ε > 0 : B has a finite cover by sets
whose diameters do not exceed ε}. Clearly, B is precompact iff α(B) = 0.

Definition 2.1. A function F whose domain is a subset of E is called [1, Ch.I] a k-
set-contraction operator, if there is a nonnegative constant k such that α(F (B)) ≤
kα(B) for every bounded subset B of the domain of F .



BELITSKII–LYUBICH CONJECTURE . . . 3

It is known [1, Ch.III],[12] that the Schauder Fixed Point Theorem extends to the
class of k-set-contractions for which k < 1.

Definition 2.2. An operator F : E 7→ E is called Fréchet differentiable at the point
x0 ∈ E if there exists a linear bounded operator A : E 7→ E such that for all h ∈ E
we have F (x0 + h)− F (x0) = Ah + ω(x0, h), where ω(x0, h) satisfies the condition
lim
|h|→0

|ω(x0,h)|
|h| = 0. In this case the expression Ah is called the Frechet differential

of F at x0 and is denoted by Ah = dF (x0, h).

It is known [1, Ch.I] that a Fréchet derivative of a k-set-contraction is a k-set-
contraction.

Definition 2.3. Let E be a complex Banach space and U ⊂ E bean open set. The
mapping f : U 7→ E is called:

(i) G-holomorphic at the point x0 ∈ U , if there exists a positive number δ such
that B(x0, δ) ⊂ U and the mapping λ 7→ f(x0 + λu) is holomorphic for
every u ∈ E \ {0}, where |λ| < δ

|u| ;
(ii) holomorphic, if it is continuous and G-holomorphic at every point in U .

Definition 2.4. A fixed point x0 ∈ U of the mapping f : U 7→ E is said to be:

- stable, if for arbitrary positive number ε the exists a positive number δ =
δ(ε) such that |x− x0| < δ implies |fn(x)− x0| < ε for all n ∈ Z+;

- attracting, if there exists a positive number γ such that

(2) lim
n→∞

|fn(x)− x0| = 0

for all x ∈ B(0, γ) := {x ∈ E : |x− x0| < γ};
- asymptotically stable, if x0 is stable and attracting;
- uniformly asymptotically stable, if x0 is attracting and equality (2) takes

place uniformly with respect to x ∈ B(0, γ).

Lemma 2.5. Let x0 ∈ U be a fixed point of the map f : U 7→ E. If x0 is uniformly
asymptotically stable, then it is stable.

Proof. If we suppose that it is not true, then there are ε0 > 0, δn → 0, |xn−x0| < δn

and {kn} ⊂ Z+ such that kn →∞ as n →∞ and

(3) |fkn(xn)− x0| ≥ ε0

for all n ∈ Z+.

Since x0 is uniformly asymptotically stable, then there exists a positive number γ
such that equality (2) holds uniformly with respect to x ∈ B(x0, γ). In particular,
for arbitrary ε ∈ (0, ε0) there exists a natural number N1 = N1(ε) ∈ N such that

|fn(x)− x0| < ε

for all n ≥ N1 and x ∈ B(x0, ε). There exists a natural number N2 such that
δn < γ for all n ≥ N2. Denote by N := max{N1, N2}, then |xn − x0| < δn < γ for
all n ≥ N and, consequently,

(4) |fkn(xn)− x0| < ε
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for all n sufficiently large. Inequalities (3) and (4) are contradictory. The obtained
contradiction proves our statement. ¤
Corollary 2.6. Let x0 be a fixed point of the map f : U 7→ E. If x0 is uniformly
asymptotically stable, then it is asymptotically stable.

Lemma 2.7. [3, Ch.I] Let x0 be an asymptotically stable fixed point of the map
f : U 7→ E. Then for any compact subset K ⊂ B(0, γ), where γ is a positive number
figuring in the definition of asymptotic stability of x0, we have

lim
n→∞

max
x∈K

|fn(x)− x0| = 0.

Remark 2.8. 1. If the Banach space E is finite-dimensional, then every asymptot-
ically stable fixed point is uniformly asymptotically stable. This statement follows,
for example, from the Lemma 2.7 and the fact that finite-dimensional Banach space
E is locally compact.

2. If the Banach space E is infinite-dimensional, then from asymptotic stability of
the fixed point x0, generally speaking, it does not follow uniform asymptotic stability
of x0. The corresponding example can be find, for example, in [6] (Example 3.1).

Theorem 2.9. Let U be a non-empty bounded domain in a complex Banach space
E, f : U 7→ E be holomorphic and f(x0) = x0. If x0 is attracting (respectively,
uniformly asymptotically stable), then lim

n→∞
Anu = 0 for all u ∈ E (respectively,

lim
n→∞

Anu = 0 uniformly with respect to u on every bounded subset from E), where

A := f ′(x0).

Proof. Let x0 be an attracting (respectively, uniformly asymptotically stable) fixed
point of the map f : U 7→ E. Then there exists a positive number γ such that
B(x0, γ) ⊂ U and

(5) lim
n→∞

fn(x) = x0

for all x ∈ B(x0, γ) and according to Lemma 2.7 equality (5) takes place uniformly
in x on every compact subset K from B(x0, γ) (respectively, uniformly with respect
to x ∈ B(x0, γ)). Thus the sequence {fn} of functions converges uniformly to
the constant function g(x) ≡ x0 on each compact subset of B(x0, γ) (respectively,
uniformly with respect to x on B(x0, γ)). Fixe u ∈ E. Then the map λ 7→ f(x0+λu)
is holomorphic in ∆(u, γ) := {λ ∈ C : |λ| < γ/|u|}. Let ν ∈ (0, γ/|u|) and
A := f ′(x0). By Cauchy’s integral formula

Au =
df(x0 + λu)

dλ

∣∣
λ=0

=
1

2πi

∫

|λ|=ν

f(x0 + λu)
λ2

dλ.

Since f(x0) = x0 and (fn(x0))′ = f ′(fn−1(x0)) ◦ f ′(fn−2(x0)) ◦ . . . f ′(f(x0) ◦
f ′(x0) = An, then we obtain

An(u) =
dfn(x0 + λu)

dλ

∣∣
λ=0

=
1

2πi

∫

|λ|=ν

fn(x0 + λu)
λ2

dλ (n = 1, 2, . . .).

Since {x0 + λu : |λ| = ν} is a compact subset of B(x0, γ), then we have

(6) lim
n→∞

An(u) =
1

2πi

∫

|λ|=ν

lim
n→∞

fn(x0 + λu)
λ2

dλ =
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1
2πi

∫

|λ|=ν

1
λ2

dλ x0 = 0 (n = 1, 2, · · · )

(respectively, equality (6) takes place uniformly with respect to u on S(0, ν) :=
{u ∈ E : |u| = ν} ⊂ E for all ν > 0). Since u ∈ E is arbitrary (respectively,
ν > 0 is arbitrary) we conclude that lim

n→∞
Anu = 0 for all u ∈ E (respectively,

lim
n→∞

Anu = 0 uniformly with respect to u on every bounded subset from E), where

A : f ′(x0). Theorem is completely proved. ¤
Corollary 2.10. Let U be a non-empty bounded domain in a complex Banach
space E, f : U 7→ E be holomorphic and f(x0) = x0. If the point x0 is uniformly
asymptotically stable, then r(f ′(x0)) < 1.

Proof. This statements follows from Theorem 2.9 and the fact that for every linear
bounded operator A : E 7→ E the following two statements are equivalent (the
proof see, for example, in [5, Ch.IV, Theorem 4.3.13] or [6, Theorem 3.5]):

(i) lim
n→∞

||An|| = 0;

(ii) r(A) < 1,

where r(A) is the spectral radius of A. ¤
Remark 2.11. Note that Theorem 2.9 (respectively, Corollary 2.10) is not true for
the real analytic functions. For example the mapping f : R 7→ R defined by equality

f(x) =
x

(1 + 2x2)1/2

is real analytic on U := (−ε, ε) ⊂ R, where ε is a small enough positive number.
It easy to check that f(0) = 0, lim

t→∞
fn(x) = 0 for all x ∈ U and f ′(0) = 1, i.e.,

the point x0 is an asymptotically stable fixed point for mapping f , but r(f ′(0)) = 1.
The required example is constructed.

Definition 2.12. A continuous mapping f : E 7→ E is called:

(i) condensing (see, for example, [1, 36]) if α(f(A)) < α(A) for all bounded
subset A ⊂ E with α(A) > 0;

(ii) asymptotically compact (see, for example, [17, 26]) if for any bounded pos-
itively invariant subset M ⊂ E there exists a nonempty compact subset
K ⊂ E such that

lim
n→∞

β(fn(M),K) = 0.

Remark 2.13. 1. Every k-set contraction is a condensing operator [17].

2. A condensing operator is asymptotically compact [17].

Let M be a subset of E. Denote by V0 := cof(M), where by co(A) is denoted the
closed convex hull of the set A, and for ν > 0

(7) Vν =





cof(M
⋂

Vν−1), if ν − 1 exists
⋂

β<ν

Vβ , otherwise.

There is an ordinal number δ such that Vν = Vβ for all ν ≥ β.
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Definition 2.14. The limit set Vβ of the transfinite sequence (7) is called [1,
Ch.I],[36] ultimated range (or limit range) of the operator f on the set M and
is denoted by f∞(M). The operator f : M 7→ E is said to be ultimately compact
(or limit compact) [1, Ch.I],[36] if the set f(M

⋂
f∞(M)) is relatively compact.

Theorem 2.15. [18],[35] Suppose that the operator f : E 7→ E maps a nonempty
convex closed subset M into itself. If f is asymptotically compact, then it has at
least one fixed point in M .

Remark 2.16. In the works [18],[35] it was established Theorem 2.15 for the con-
densing operators. In general case this statement can be proved using absolutely the
same arguments as in the work [35] (see also [1, Ch.I,p.26]).

Denote by Hol(U,E) the set of all holomorphic functions f : U 7→ E equipped with
the compact-open topology.

Denote by Fix(f, D) := {x ∈ D : f(x) = x}, where D ⊆ E and W s(p) := {x ∈
D : lim

n→∞
ρ(fn(x), p) = 0} for all p ∈ Fix(f,D).

Theorem 2.17. Let E be a complex Banach space, let U be a non-empty bounded
domain in a Banach space E, f ∈ Hol(U,E) be an asymptotically compact operator.
Suppose that the following conditions hold:

(i) D is a non-empty bounded convex open subset of U such that D ⊂ U ;
(ii) f(D) ⊆ D;
(iii) r(f ′(x)) < 1 for all x ∈ Fix(f, D).

Then

(i) f has a unique fixed point x0 ∈ D;
(ii) x0 is globally asymptotically stable, i.e., W s(x0) = D.

Proof. By Theorem 2.15 the set M := Fix(f, D) is a nonempty subset of D. It
easy to see that M is closed and invariant. Since f is asymptotically compact, then
M is a compact set. Let x ∈ M . Since r(f ′(x)) < 1, then by Theorem 5.2 [32,
Ch.V] there exists a positive number δx such that

(i) f(Ux) ⊆ Ux;
(ii)

lim
n→∞

fn(y) = x

for all y ∈ Ux and (2) holds uniformly with respect to y ∈ Ux, where
Ux := B(x, δx).

Thus M
⋂

Ux = {x} for all x ∈ M , i.e., every point x ∈ M is isolated and taking
into account compactness of M we concludes that M contains a finite number
of points, i.e., M = {p1, p2, . . . , pm}. Denote by D̃ := D

⋃
Up1

⋃
. . .

⋃
Upm and

E := {fn : n ∈ Z+}. Under the conditions of Theorem 2.17 there exists a positive
constant M such that

|fn(x)| ≤ M

for all x ∈ D̃ and n ∈ Z+. Then by Montel’s theorem [30, Ch.II] the family E is a
relatively compact subset of C(D̃, E).
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Denote by E := {g : there exists a sequence {nk} ⊂ Z+ such that nk → ∞ and
fnk → g as k → ∞}, where fnk → g means convergence in C(D̃, E). Since E is a
relatively compact subset of C(D̃, E), then E is a nonempty and compact subset of
C(D̃, E). Let ξ ∈ E, then there exists a sequence {nk} ⊂ N such that nk →∞ and
fnk → ξ in C(D̃, E). If p ∈ M , then ξ possess the following properties:

(i) ξ ∈ Hol(D̃, E);
(ii) ξ(p) = p;
(iii) ξ(x) = lim

k→∞
fnk(x) = p for all x ∈ Up.

Since Up is a connected open subset of E, then by identity theorem [30, Ch.II] we
have ξ(x) = p for all x ∈ D̃. Since ξ ∈ Hol(D̃, E), then f admits at most one fixed
point in D, i.e., M consists a single point M = {p}. Thus we obtain the following
equality

(8) lim
k→∞

fnk(x) = p

for all x ∈ D̃. Now we will prove that

lim
n→∞

fn(x) = p

for all x ∈ D̃. Let x ∈ D̃ and we consider the sequence {fn(x)}. According to (8)
there exists a number k0 ∈ N such that fnk(x) ∈ U for all k ≥ k0 and consequently,
we obtain

lim
n→∞

fn(x) = lim
n→∞

fn−nk0 (fnk0 (x)) = p.

Theorem is proved. ¤
Remark 2.18. Note that Theorem 2.17 remains true if we replace the condition
”r(f ′(x)) < 1 for all x ∈ Fix(f, D)” by the following: there exists a fixed point
p ∈ Fix(f, D) such that r(f ′(p)) < 1. This statement can be proved by slight
change of the proof of Theorem 2.17.

3. Belitskii–Lyubich conjecture for holomorphic flows

Let (E,R+, π) be a flow (semi-group dynamical system with continuous time R+).
Everywhere in this section we will suppose that E is a complex Banach space and
the mapping π(t, ·) : E 7→ E is holomorphic for all t ∈ R+.

Definition 3.1. A dynamical system (E,R+, π) is called asymptotically compact
(see, for example, [17, 26]) if for any bounded positively invariant subset M ⊂ E
there exists a nonempty compact subset K ⊂ E such that

lim
t→∞

β(π(t,M), K) = 0.

Theorem 3.2. Suppose that the following conditions hold:

(i) M ⊂ E is a nonempty, bounded, convex and closed subset;
(ii) the set M is positively invariant, i.e., π(t,M) ⊆ M for all t ∈ R+;
(iii) the dynamical system (E,R+, π) is asymptotically compact.

The (E,R+, π) admits at least one fixed point (stationary point) in M , i.e., there
exists a point p ∈ M such that π(t, p) = p for all t ∈ R+.



8 DAVID CHEBAN

Proof. Let {tn} be a decreasing sequence such that lim
n→∞

tn = 0 and t be an arbitrary

number from R+. Denote by fn := π(tn, ·) : E 7→ E. Under the conditions of
Theorem 3.2 according to Theorem 2.15 the mapping fn admits at least one fixed
point pn ∈ M . We will show that the set A := {pn| n ∈ N} is relatively compact.
To this end we denote by kn ∈ N a number such that tnkn ≥ n. Note that the set
A′ := {π(t, A)| t ≥ 0} is positively invariant and bounded. Since the dynamical
system (E,R+, π) is asymptotically compact, then there exists a nonempty compact
subset K ⊆ M such that

lim
t→∞

β(π(t, A), K) = 0.

On the other hand we have pn = π(tnkn, pn) and, consequently,

(9) ρ(pn,K) = ρ(π(tnkn, pn),K) ≤ β(π(tnkn, A),K) → 0

as n → ∞. Taking into account the compactness of K we concludes from (9) the
sequence {pn} is relatively compact. Thus without loss of generality we can suppose
that the sequence {pn} s convergent. Denote by p its limit. Let t ∈ R+, then there
are mn ∈ N and τn ∈ [0, tn) such that t = tnmn + τn. Thus we have

(10) π(t, pn) = π(tnmn + τn, pn) = π(τn, pn)

for all n ∈ N. Passing into limit in (10) as n → ∞ we obtain π(t, p) = p for all
t ∈ R+ because 0 ≤ τn < tn, tn → 0 and pn → p as n →∞. Theorem is completely
proved. ¤

Remark 3.3. Theorem 3.2 was proved by Jones G. S. [23] in the case when the
dynamically system (E,R+, π) is completely continuous, i.e., there exists a number
t0 > 0 such that π(t0, ·) : E 7→ E is completely continuous.

Let (E,R+, π) be a semi-flow on E and M ⊆ E. Denote by Fix(π, M) := {x ∈ M :
π(t, x) = x for all t ∈ R+} and W s(p,M) := {x ∈ M : such that lim

t→+∞
ρ(π(t, x), p) =

0}.
Theorem 3.4. Let E be a complex Banach space and (E,R+, π) be a semi-flow on
E, let U be a non-empty bounded domain in a Banach space E, for every t ∈ R+ the
mapping π(t·) ∈ Hol(U,E) and the dynamical system (E,R+, π) be asymptotically
compact. Suppose that the following conditions hold:

(i) D is a non-empty bounded convex open subset of U such that D ⊂ U ;
(ii) π(t,D) ⊆ D for all t ∈ R+;
(iii) r(π′(t, x)) < 1 for all t > 0 and x ∈ Fix(π,D), where π′(t, x) is the Fréchet

derivative of π(t, ·) : E 7→ E at the point x.

Then

(i) (E,R+, π) has a unique fixed point p in D;
(ii) p is globally asymptotically stable, i.e., W s(p,D) = D.

Proof. At first we note that under the conditions of Theorem 3.4 the set Fix(π, D)
by Theorem 3.2 is not empty. Let t0 be an arbitrary positive number and f :=
π(t0, ·), then it easy to check that under the conditions of Theorem 3.4 we can
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apply Theorem 2.17 to map f . Thus f = π(t0, ·) admits a unique fixed point p ∈ D
which is globally asymptotically stable.

Let now x ∈ Fix(π, D) be an arbitrary fixed point of (E,R+, π) belonging to D.
Since

f(x) = π(t0, x) = π(t0, π(t, x)) = π(t, π(t0, x)) = π(t, x) = x

for all t ∈ R+ and, consequently, x ∈ Fix(f, D) = {p}. Thus we have Fix(π, D) =
{p}.
We will show that the unique fixed point p of (E,R+, π) is Lyapunov stable. In fact.
Let ε be an arbitrary positive number, then by integral continuity of (E,R+, π) at
the point p there exists a number δ = δ(ε) > 0 such that

(11) ρ(x, p) < δ ⇒ ρ(π(τ, x), p) < ε

for all τ ∈ [0, 1]. Since p is a globally asymptotically stable fixed point of the map
f = π(t0, ·), then for the number δ(ε) > 0 there exists a number γ = γ(ε) > 0 such
that

(12) ρ(x, p) < γ ⇒ ρ(fn(x), p) < δ

for all n ∈ Z+. Let now t ∈ R+ and t = nt+τt, where nt := [t] and τt := {t} ∈ [0, 1).
Note that π(t, x) = π(nt + τt, x) = π(τt, f

nt(x)) and taking into account (11) and
(12) we obtain

ρ(π(t, x), p) = ρ(π(τt, f
nt(x)), p) < ε

if ρ(x, p) < γ.

To finish the proof of Theorem it is sufficient to show that W s(π, D) = D. Let ε be
an arbitrary positive number and x ∈ D. Since lim

n→∞
fn(x) = p, then there exists a

number N = N(ε) ∈ N such that

(13) ρ(fn(x), p) < δ

for all n ≥ N , where δ = δ(ε) > 0 is chosen from the integral continuity of (E,R+, π)
at the point p. From (12) and (13) we obtain

ρ(π(t, x), p) = ρ(π(τt, f
nt(x)), p) < ε

for all t ≥ N(ε), i.e., lim
t→∞

π(t, x) = p. ¤

4. Holomorphic dissipative dynamical systems

Denote by T the set Z+ or R+ and by (E,T, π) a dynamical system on E. In this
section we will suppose that the mapping π(t, ·) : E 7→ E is holomorphic for every
t ∈ T.

Definition 4.1. A dynamical system (E,T, π) on the Banach space E is said to be
dissipative if there exists a positive number R0 such that for all r > 0 we can find
a positive number L = L(r) such that

(14) |π(t, x)| ≤ R0

for all |x| ≤ r and t ≥ L(r).

Definition 4.2. A set S is said to lie strictly inside a subset D of a Banach space
E if there is some ε > 0 such that B(x, ε) ⊂ D whenever x ∈ S.
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Theorem 4.3. (Earle-Hamilton [13], see also Harris [19]). Let D be a nonempty
domain in a complex Banach space E and let h : D 7→ D be a bounded holomorphic
function. If h(D) lies strictly inside D, then the following statement hold:

(i) there exists a metric d on D and a number α ∈ (0, 1) such that d(h(x), h(y)) ≤
αd(x, y) for all x, y ∈ D, i.e., h is a d-contraction;

(ii) there exists a unique fixed point p ∈ D of h;
(iii)

(15) lim
n→∞

hn(x) = p

for all x ∈ D;
(iv) there exists a positive number C such that ρ(x, y) ≤ Cd(x, y) for all x, y ∈

D, where ρ(x, y) := |x− y|.
Remark 4.4. Note that under the conditions of Theorem 4.3 equality (15) takes
place uniformly with respect to x ∈ D because

ρ(hn(x), p) ≤ Cd(hn(x), p) ≤ C
αn

1− α
diamdD

for all x ∈ D, where diamdD := sup{d(x, y) : x, y ∈ D}.
Theorem 4.5. Suppose that (E,T, π) is a dynamical system on the complex Banach
space E and the following conditions hold:

(i) the dynamical system (E,T, π) is holomorphic;
(ii) (E,T, π) is dissipative.

Then there exists a unique fixed point p ∈ E of dynamical system (E,T, π) in E
such that

(i)

(16) lim
t→+∞

π(t, x) = p

for all x ∈ E;
(ii) equality (16) takes place uniformly in x on every bounded subset D from

E.

Proof. Let (E,T, π) be dissipative, R0 be a positive number figuring in the definition
of dissipativity and r > R0, then there exists a number L = L(r) > 0 such that
inequality (14) holds. Denote by D = B(0, r) := {x ∈ E : |x| < r} and f := π(t0, ·),
where t0 ≥ L(r), then f(D) ⊆ B[0, R0] := {x ∈ E : |x| ≤ R0}. Thus all
conditions of Theorem 4.3 hold and, consequently, there exists a unique fixed point
p ∈ D (in fact p ∈ B[0, R0]) such that equality (16) holds uniformly with respect
to x ∈ B(0, r).

Now we will establish that p is a unique fixed point of (E,T, π). In fact. Let
t0 ≥ L(r) and t ∈ T. Note that π(t0, π(t, p)) = π(t, π(t0, p)) = π(t, p) for all t ∈ T.
Since p is a unique fixed point of the map f = π(t0, ·), then π(t, p) = p for all t ∈ T.
Since lim

n→∞
π(nt0, x) = fn(x) = pfor all x ∈ B[0, r], then reasoning as in the proof

of Theorem 3.4 we obtain (16).
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To finish the proof of Theorem it is sufficient to show that (16) takes place uniformly
with respect to x ∈ B[0, r]. In fact. Let ε > 0 be an arbitrary positive number and
x ∈ B[0, r]. Since lim

n→∞
fn(x) = p uniformly with respect to x ∈ B[0, r], then there

exists a number N = N(ε) ∈ N such that

(17) ρ(fn(x), p) < δ

for all n ≥ N and x ∈ B[0, r], where δ = δ(ε) > 0 is chosen from the integral
continuity of (E,R+, π) at the point p, i.e.,

(18) ρ(π(t, x), p) < ε for all t ∈ [0, 1],

if ρ(x, p) < δ. From (17) and (18) we obtain

ρ(π(t, x), p) = ρ(π(τt, f
nt(x)), p) < ε

for all t ≥ N(ε) and x ∈ B[0, r], i.e.,

lim
t→∞

sup
x∈B[0,r]

|π(t, x)− p| = 0.

¤
Lemma 4.6. Let (E,T, π) be a holomorphic dynamical system on the complex
Banach space E. If

(19) lim
t→+∞

π(t, x) = p

for all x ∈ E and equality (19) takes place uniformly in x on every bounded subset
D from E, then p is a stable fixed point of (E,T, π).

Proof. If we suppose that this statement is not true, then there exist ε0 > 0,
0 < δn → 0 as n →∞, |xn| < δ and tn → +∞ (tn ∈ T) such that

(20) |π(tn, xn)− p| ≥ ε0

for all n ∈ N. By equality (19) we have

(21) lim
n→∞

π(tn, xn) = p.

Passing into limit in (20) as n → ∞ and taking into account (21) we obtain 0 ≥
ε0. The last inequality contradicts to the choice of the number ε0. The obtained
contradiction proves our statement. ¤

5. Some applications

5.1. Periodic dissipative differential equations. Let E be a complex Banach
space. Consider a differential equation

(22) x′ = f(t, x),

where f ∈ C(R × E,E), f(t + ω, x) = f(t, x) for all (t, x) ∈ R × E (ω > 0) and ,
f(t, ·) ∈ Hol(E) for all t ∈ [0, ω). In this subsection we suppose that for all x ∈ E
the equation (22) (or the function f) is regular, i.e., it admits a unique solution
ϕ(t, x, f) passing through x at the initial moment t = 0 and defined on R+ and the
mapping ϕ(·, ·, f) : R+ × E 7→ E is continuous.

Remark 5.1. It easy to show that under the conditions above the mapping ϕ(t, ·, f) :
E 7→ E is holomorphic for all t ∈ [0, ω).
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Recall that the mapping P : E 7→ E defined by P (x) := ϕ(ω, x, f) is called Poincaré
mapping for (22).

Definition 5.2. Differential equation (22)is called dissipative if there exists a pos-
itive number R0 such that for all r > o there exists a positive number L = L(r)
with the property |ϕ(t, x, f)| ≤ R0 for all |x| ≤ r and t ≥ L(r).

Theorem 5.3. Suppose that the following conditions hold:

(i) E is a complex Banach space;
(ii) the function f is ω-periodic in t ∈ R;
(iii) the function f ∈ C(R × E,E) is regular and f(t, ·) ∈ Hol(E) for all

t ∈ [0, ω);
(iv) equation (22) is dissipative.

Then the following statements hold:

(i) there exists a unique ω periodic solution p(t) of equation (22);
(ii) the solution p(t) of equation (22) is globally asymptotically stable.

Proof. Denote by P : E 7→ E the Poincaré mapping for equation (22), i.e., P (x) :=
ϕ(ω, x, f). Since equation (22) is dissipative, then it is not difficult to check the
discrete dynamical system (E,P ) generated by powers of the map P is also dissi-
pative. By Theorem 4.5 there exists a unique fixed point x0 ∈ E of the map P such
that

(23) lim
n→∞

|Pn(x)− x0| = 0

for all x ∈ E. Additionally, equality (23) takes place uniformly with respect to x
on every bounded subset of E. By Theorem 4.5 (see also Lemma 4.6) the fixed
point x0 of the mapping P is stable, i.e., for arbitrary ε > 0 there exists a number
δ = δ(ε) > 0 such that |x− x0| < δ implies the inequality

|Pn(x)− x0| < ε

for all n ∈ Z+. To finish the proof of Theorem it is sufficient to note that p(t) :=
ϕ(t, x0, f) is a unique ω-periodic solution of equation (22) and its stability results
from the stability of x0 with respect to discrete dynamical system (E, P ). In fact, if
we suppose that it is not so, then there are ε0 > 0, 0 < δn → 0 as n →∞, |xn| < δ
and tn → +∞ (tn ∈ T) such that

|ϕ(tn, xn, f)− p(tn)| ≥ ε0

for all n ∈ N. Note that tn = knω + τn, where kn ∈ N and τn ∈ [0, ω). Without
loss of generality we can suppose that the sequence {τn} is convergent. Denote its
limit by τ0, then we have

(24) ε0 ≤ |ϕ(knω + τn, xn, f)− p(knω + τn)| = |ϕ(τn, P kn(xn), f)− p(τn)|
for all n ∈ N. Passing into limit in (24) as n →∞ and taking into account (21) we
obtain 0 ≥ ε0. The obtained contradiction completes the proof of Theorem. ¤
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5.2. Periodic difference equation. All the results about differential equations,
which are presented above, for difference equations hold too, because they were
formulated and proved for general dynamical systems, both for dynamical systems
with continuous time and those with discrete time. Below we will give some of
them that we need to study periodical systems with impulse.

Consider a difference equation

(25) u(k + 1) = Φ(k, u(k)) (Φ ∈ C(Z× E, E)).

Denote by ϕ(·, u, Φ) the solution of equation (25) passing through the point u for
k = 0. Suppose that Φ is p–periodic in k ∈ Z, where p ∈ Z. From general
properties of solutions of the difference equation (25) follows that the mapping
ϕ : Z+ × E × C(Z× E,E) 7→ E possesses the following properties:

(i) ϕ(0, u, Φ) = u for all (u, Φ) ∈ E × C(Z× E, E);
(ii) ϕ(k + p, u, Φ) = ϕ(k, ϕ(p, u, Φ), Φ) for all k ∈ Z+ and u ∈ E;
(iii) ϕ is continuous.

Definition 5.4. By analogy with the case of differential equations, the difference
equation (25) is said to be dissipative, if there is a positive number R0 such that for
all R > 0 there exist a positive number L = L(R) such that

|ϕ(k, v, Φ̃| < R0

for all |v| ≤ R and k ≥ L(R).

We define a mapping P : E → E in the following way: P (v) := ϕ(p, v,Φ) and
denote by (E,P ) the cascade generated by positive powers of P .

Theorem 5.5. Suppose that the following conditions hold:

(i) E is a complex Banach space;
(ii) the function Φ is p-periodic in tk ∈ Z;
(iii) f(k, ·) ∈ Hol(E) for all k ∈ {0, . . . , p− 1};
(iv) equation (25) is dissipative.

Then the following statements hold:

(i) there exists a unique p-periodic solution p(t) of equation (25);
(ii) the solution p(t) of equation (25) is globally asymptotically stable.

Proof. This statement can be proved by slight modification of the proof of Theorem
5.3. ¤

5.3. Periodic equations with impulse. Consider the following differential equa-
tion:

u̇ = f(t, u) (f ∈ C(R× E, E)).
Suppose that f(t + τ, u) = f(t, u) (t ∈ R, u ∈ En) and f is regular. Note, that

ϕ(t + τ, u, f) = ϕ(t, ϕ(τ, u, f), f)

for all t ∈ R+ and u ∈ E.
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Let {tk} ⊂ R (t0 = 0) and {sk} ⊂ E be such that for certain p > 0 (p ∈ Z) tk+p −
tk = τ and sk+p = sk for all k ∈ Z. It is well known [20] that these conditions are

necessary and sufficient for τ–periodicity of the distribution
+∞∑

k=−∞
skδtk

.

Consider a nonlinear τ–periodic equation with impulse

(26) u̇ = f(t, u) +
+∞∑

k=−∞
skδtk

= F.

It is known (see, for example, [20]) that, under the conditions above, the equa-
tion (26) has a unique generalized solution (which is piecewise continuous) passing
through the point u when t = 0 for every u ∈ E. This solution we denote by
ϕ(·, u, F). Thus, lim

t↓0
ϕ(t, u, F) = u. In addition, on every segment ]tk, tk+1[ the

equation (26) coincides with (26). Therefore, the equality

ϕ(t, u, F) = ϕ(t− tk, ck, ftk
)

holds, where the sequence {ck} ⊂ E satisfies the difference equation

ck+1 = Φ(k, ck),

where Φ(k, u) = ϕ(tk+1 − tk, u, ftk
) + sk for all (k, u)Z× E.

Definition 5.6. The equation with impulse (26) is said to be dissipative if there
exists R0 > 0 such that for all R > 0 there exists a positive number L = L(R) such
that

|ϕ(t, u, F)| < R0

for all |u| ≤ R.

Lemma 5.7. If equation with impulse (26) is dissipative, then difference equation
(27) is also dissipative.

Proof. Let (26) be dissipative and R0 > 0, R > 0 and L = L(R) be the positive
number from the dissipativity of (26). If u ∈ E, then

ϕ(k, u,Φ) = ϕ(tk, u, F)

and, hence,
|ϕ(k, u, Φ)| < R0

for all |u| ≤ R and k ≥ k0(R), where k0(R) := min{k ∈ N : tk ≥ L(R)}. Lemma
is proved. ¤

Define a mapping P : E → E by the equality

(27) P (u) := ϕ(τ, u, F) = ϕ(tp, u, F) = ϕ(p, u, Φ).

From equality (27) and general properties of solutions of difference equations follows
the continuity of the mapping P .

Corollary 5.8. If equation with impulse (26) is dissipative, then the cascade (E,P ),
where P is defined by equality (27), is dissipative.

Theorem 5.9. Suppose that the following conditions hold:

(i) E is a complex Banach space;
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(ii) the function f is ω-periodic in t ∈ R;
(iii) the function f ∈ C(R × E,E) is regular and f(t, ·) ∈ Hol(E) for all

t ∈ [0, ω);
(iv) equation (26) is dissipative.

Then the following statements hold:

(i) there exists a unique ω periodic solution p(t) of equation (26);
(ii) the solution p(t) of equation (26) is globally asymptotically stable.

Proof. Denote by P : E 7→ E the Poincare mapping for equation (26), i.e., P (x) :=
ϕ(ω, x, F). Since equation (26) is dissipative, then by Corollary 5.8 the discrete
dynamical system (E,P ) generated by powers of the map P is also dissipative. By
Theorem 4.5 there exists a unique fixed point x0 ∈ E of the map P such that

lim
n→∞

|Pn(x)− x0| = 0

for all x ∈ E. Additionally, equality (23) takes place uniformly with respect to x on
every bounded subset of E. By Theorem 4.5 (see also Lemma 4.6) the fixed point
x0 of the mapping P is stable. To finish the proof of Theorem it is sufficient to
note that p(t) := ϕ(t, x0, F) is a unique ω-periodic solution of equation (26) and its
stability results from the stability of x0 with respect to discrete dynamical system
(E, P ).

In fact, if we suppose that it is not so, then there are ε0 > 0, 0 < δn → 0 as n →∞,
|xn| < δ and tn → +∞ (tn ∈ R) such that

(28) |ϕ(tn, xn, F)− p(tn)| ≥ ε0

for all n ∈ N. Note that tn = knω + τn, where kn ∈ N and τn ∈ [0, ω). Since
0 = t0 < t1 . . . < tp−1 < tp = ω, then there exists a number mn ∈ N such that
τn ∈ [tmn , tmn+1) and, consequently,

(29) ϕ(τn, u, F) = ϕ(τn − tmn , Pmn(u), ftmn
)

for all n ∈ N and u ∈ E. From (28) and (29) we obtain

(30) ε0 ≤ |ϕ(τn − tmn , Pmn(u), ftmn
)− ϕ(τn − tmn , x0, ftmn

)|
for all m ∈ N. Since mn ∈ {0, 1, . . . , p − 1} for all n ∈ N, then without loss
of generality we can suppose that the sequence {tmn} converges to tm̄, where m̄ ∈
{0, 1, . . . , p−1}. Analogically, we can suppose that the sequence {tn} is convergent.
Denote its limit by τ0, then passing into limit in (30) as n → ∞ and taking into
account (28) we will obtain ε0 ≤ 0. The obtained contradiction completes the proof
of Theorem. ¤
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