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Abstract. The aim of this paper is to prove the existence of Levitan/Bohr
almost periodic, almost automorphic, recurrent and Poisson stable solutions
of the scalar differential equation

(1) x′ = f(σ(t, y), x), (y ∈ Y )

where Y is a complete metric space and (Y,R+, σ) is a one-sided dynamical
system (also called a driving system). The existence of at least one quasi

periodic (respectively, Bohr almost periodic, almost automorphic, recurrent,
pseudo recurrent, Levitan almost periodic, almost recurrent, Poisson stable)
solution of (1) is proved under the condition that (1) admits at least one
bounded on the positively semi-axis and uniformly Lyapunov stable solution.

1. Introduction

Let X and Y be two complete metric spaces and C(X,Y ) be the space of all
continuous functions F : X 7→ Y equipped with the compact-open topology. The
aim of this paper is to analyze the existence of Levitan/Bohr almost periodic,
almost automorphic, recurrent and Poisson stable solutions of the scalar differential
equation

x′ = f(σ(t, y), x), (y ∈ Y )

where Y is a complete metric space, (Y,T, σ) is a (driving) dynamical system,
F ∈ C(Y × R,R), R := (−∞,+∞) (respectively, R+ := [0,+∞)) and T = R or
R+.

The existence of Bohr almost periodic solutions of equation

(2) x′ = f(t, x)

with Bohr almost periodic right hand-side f in t, uniformly with respect to (shortly
w.r.t.) x on every compact subset in R (see Example and definition therein) was
studied by many authors.
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By B. P. Demidovich [11] was proved that if the function g ∈ C(R,R) is almost
periodic and its primitive

G(t) :=

∫ t

0

g(s)ds

is bounded on R and the function f ∈ C(R,R) is monotone and continuously
differentiable, then every bounded on R solution of equation

x′ = f(x) + g(t)

is also almost periodic. He also noted that this statement remains true without
of the boundedness of the function G, if f ′(x) ≥ k > 0 (or f ′(x) ≤ k < 0) for all
x ∈ R.

Using the ideas of Demidovich, by N. Gheorghiu [15] was generalized the last result
for differential equation (2). Namely he proved that, if φ ∈ C(R,R) is a solution of
equation (2) and the following conditions are fulfilled:

(i) |φ(t)| ≤ m for all t ∈ R;
(ii) the function f ∈ C(R × R,R) is almost periodic in t uniformly w.r.t.

x ∈ [−m.m];
(iii) the function f is continuously differentiable in x and f ′x(t, x) ≥ k > 0 (or

f ′x(t, x) ≤ k < 0) for all (t, x) ∈ R× [−m,m].

Then each solution ψ : R 7→ [−M,M ] of equation (2) is almost periodic.

Remark 1.1. Under the conditions above (i)-(iii) there exists a unique almost
periodic solution ψ : R 7→ [−m,m] of equation (2).

Z. Opial [18] generalized results of B. P. Demidovich and N. Gheorghiu for differ-
ential equation (2) if the second hand right side is only monotone in the sense large
w.r.t. spacial variable x ∈ R.

By B. A. Shcherbakov [26] was studied the problem of Poisson stability (in par-
ticular, periodic, Bohr almost periodic, recurrent in the sense of Birkhoff, almost
recurrent in the sense of Bebutov, Levitan almost periodic) of solutions for equation
(2) with Poison stable in time t ∈ R (uniformly w.r.t. x on every compact sub-
set from R) right hand side f . He generalized Z. Opial’s result for Poisson stable
differential equations (2).

Let E be a Banach space with the norm | · |. Consider differential equation (2)
in the Banach space E, i.e., we suppose that f ∈ C(R × E,E). By V. V. Zhikov
[31] was studied a special class of differential equations (2) in the strict convex
Banach spaces (so called V -monotone systems). Recall that equation (2) is said to
be V –monotone w.r.t. x ∈ E, if there exists a continuous non-negative function
V : E ×E → R+, which equals to zero only on the diagonal, so that the numerical
function α(t) := V (x1(t), x2(t)) is non-increasing w.r.t. t ∈ R+, where x1(t) and
x2(t) are two arbitrary solutions of (2) defined on R+. V. V. Zhikov generalized for
V -monotone systems in the strictly convex Banach space the result of Z. Opial.

In the work of D. Cheban [8] the results of V. V. Zhikov and B. A. Shcherbakov was
generalized for equations (2) in the Banach space E with arbitrary Poisson stable
(w.r.t. time t) second hand right side f .
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Finally, below we note some of works, where one study the problem of almost
periodicity of solutions of scalar almost periodic equation (2) without assumption
of monotony of the second hand right side f w.r.t. spacial variable x ∈ R.

A solution φ(t, x0, f) of equation (2) is called distal (in the positive direction), if

inf
t≥0

|φ(t, x0, f)− φ(t, x, f)| > 0

for all x ̸= x0 (with φ(R, x, f) ⊆ Q := φ(R, x0, f)).

V. V. Zhikov [30] (see also [2, ChIV] and [17, ChVII]) established that equation (2)
with almost periodic second right hand side f admits at least one almost periodic
solution, if it admits a bounded on R distal solution.

By R. Sacker and G. Sell [19, 21] (see also [14, ChXI]) was proved that equation
(2) with almost periodic coefficients has at least one almost periodic solution, if it
admits a bounded on R+ uniformly Lyapunov stable solution.

Remark 1.2. 1. If the second right hand side f of equation (2) is regular, almost
periodic and φ(t, x, f) is a bounded on R+ uniform Lyapunov stable solution of (2),
then it admits a bounded on R uniformly stable solution [22] (see also [14, ChXI]
and [23, Ch]).

2. Under the conditions of item 1, if φ(t, x, f) is a bounded on R and uniformly
Lyapunov stable solution of equation (2), then it is distal [30] (see also [17, ChVII]).
Thus the result of R. Sacker and G. Sell follows from the more early result of V.
V. Zhikov.

In general case the proof of the existence of an almost periodic solution (under
the assumption that a bounded solution exists on R) turns out to be difficult. For
example, the difficulty consists in the fact that equation (2) might have an infinite
number of bounded solutions on R (for instance, all solutions might be bounded on
R) and it is not clear how should we pick an almost periodic solution out of this
set of bounded solutions.

The aim of this paper is studying the problem of existence of Levitan/Bohr almost
periodic (respectively, almost automorphic, recurrent and Poisson stable) solutions
of the scalar differential equation (2), when the second right hand side is not mono-
tone with respect to spacial variable. The existence at least one quasi periodic
(respectively, Bohr almost periodic, almost automorphic, recurrent, pseudo recur-
rent, Levitan almost periodic, almost recurrent, Poisson stable) solution of (2) is
proved under the condition that (2) admits at least one bounded on the positively
semi-axis solution φ(t, x0, f) and one of the following two conditions holds:

(i) the solution φ(t, x0, f) is uniformly stable;

(ii) the solutions of equation (2) with the values from Q := φ(R, x0, f) are
distal.

The paper is organized as follows.
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In Section 2 we collected some notions and facts from the theory of dynamical sys-
tems which we use in this paper: Bohr/Levitan almost periodic, almost automor-
phic, recurrent and Poisson stable motions and functions, cocycles, skew-product
dynamical systems, non-autonomous dynamical systems.

Section 3 is dedicated to the study the problem of existence a common fixed point
for some semigroup of nonlinear transformations. The main result of this sec-
tion is Theorem 3.12, where we establish the existence at least one fixed point
for a semi-group consisting from strict monotone increasing maps acting on a one-
dimensional compact subset. This result we apply in Section 4 for one-dimensional
non-autonomous dynamical systems in the studying their Bohr/Levitan almost pe-
riodic, almost automorphic, recurrent and Poisson stable motions.

In Section 4 we study the comparable in the sense of B. A.Shcherbacov motions
of dynamical systems by character of their recurrence. Comparability the motions
by character of recurrence plays a very important role in the study the problem
of existence of Bohr/Levitan almost periodic (respectively, quasi-periodic, almost
automorphic, almost recurrent, recurrent and Poisson stable) solutions of the differ-
ent types of evolution equations with Poisson stable coefficients. The main results
in this sections are Theorems 4.16 and 4.20 which contain simple conditions of
the existence of comparable (respectively, uniformly comparable) motions for one-
dimensional non-autonomous dynamical systems.

Section 5 is dedicated to the study the problem of existence of Bohr/Levitan al-
most periodic, almost automorphic, recurrent and Poisson stable solutions of scalar
non-autonomous differential equation (2). Taking into consideration that equa-
tion (2) under some appropriate conditions generates some non-autonomous one-
dimensional dynamical system we are able to apply our general results from Sections
3 and 4 to the study the problem of existence of different classes of Poisson stable
solutions (as Bohr/Levitan almost periodic, almost automorphic, almost recurrent
in the sense of Bebutov, recurrent in the sense of Birkghoff) of differential equation
(2). In this way we obtain a series of new results (some of them coincides with the
well known results).

2. Bohr/Levitan Almost Periodic and Almost Automorphic Motions
of Dynamical Systems

In this section we recall some notions, facts and constructions from the theory of
dynamical systems. In order to keep our paper self-contained as much as possible,
we prefer to include the necessary results.

Let (X,T, π) be a dynamical system on the complete metric space X, i.e., let π :
T × X→X be a continuous function such that π(0, x) = x for all x ∈ X, and
π(t1 + t2, x) = π(t2, π(t1, x)), for all x ∈ X, and t1, t2 ∈ T.

2.1. Recurrent, Bohr Almost Periodic and Almost Automorphic Mo-
tions. Given ε > 0, a number τ ∈ T is called an ε−shift (respectively, an ε−almost
period) of x, if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ + t, x), π(t, x)) < ε for all
t ∈ T).
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A point x ∈ X is called almost recurrent (respectively, Bohr almost periodic), if
for any ε > 0 there exists a positive number l such that in any segment of length l
there is an ε−shift (respectively, an ε−almost period) of the point x ∈ X.

If the point x ∈ X is almost recurrent and the set H(x) := {π(t, x) | t ∈ T} is
compact, then x is called recurrent, where the bar denotes the closure in X.

Denote by Nx := {{tn} ⊂ T : such that {π(tn, x)} → x and {tn} → ∞} and
Mx := {{tn} ⊂ T : such that {π(tn, x)} is convergent and {tn} → ∞}.

A point x ∈ X is called Poisson stable in the positive direction if there exists a
sequence {tn} ∈ Nx such that tn → +∞ as n→ ∞.

A dynamical system (X,T, π) is said to be

(i) transitive, if there exists a point x0 ∈ X such that H(x0) = X, where

H(x0) := {π(t, x0) : t ∈ T};
(ii) pseudo recurrent if X is compact, transitive and every point x ∈ X is

Poisson stable.

A point x ∈ X is called [25, 27] pseudo recurrent if the dynamical system (H(x),T, π)
is pseudo recurrent.

Remark 2.1. Every recurrent point is pseudo recurrent, but there exist pseudo
recurrent points which are not recurrent [25, 27].

An m-dimensional torus is denoted by T m := Rm/2πZm. Let (T m,T, σ) be an
irrational winding of T m with the frequency ν = (ν1, ν2, . . . , νm) ∈ Rm, i.e.,
σ(t, v) := (v1 + ν1t(mod 2π), v2 + ν2t(mod 2π), . . . , vm + νmt(mod 2π)) for all
t ∈ T and v = (v1, v2, . . . , vm) ∈ T m, where the numbers ν1, ν2, . . . , νm are rational
independent.

A point x ∈ X is called quasi-periodic with the frequency ν := (ν1, ν2, . . . , νm) ∈
Rm, if there exists a continuous function Φ : T m → X such that π(t, x) := Φ(σ(t, v))
for all t ∈ T, where (T m,T, σ) is an irrational winding of the torus T m with the
frequency ν = (ν1, ν2, . . . , νm) and v ∈ T m such that Φ(v) = x.

A point x ∈ X of the dynamical system (X,T, π) is called Levitan almost periodic
[17], if there exists a dynamical system (Y,T, σ) and a Bohr almost periodic point
y ∈ Y such that Ny ⊆ Nx.

Remark 2.2. Let xi ∈ Xi (i = 1, 2, . . . ,m) be a Levitan almost periodic point of
the dynamical system (Xi,T, πi). Then the point x := (x1, x2, . . . , xm)) ∈ X :=
X1 × X2 × . . . × Xm is also Levitan almost periodic in the product dynamical
system (X,T, π), where π : T × X → X is defined by the equality π(t, x) :=
(π1(t, x1), π2(t, x2), . . . , πm(t, xm)) for all t ∈ T and x := (x1, x2, . . . , xm) ∈ X.

A point x ∈ X is called stable in the sense of Lagrange (st.L) (respectively, stable in
the sense of Lagrange in the positive direction (st.L+)), if its trajectory {π(t, x) :
t ∈ T} (respectively, its positive semi-trajectory {π(t, x) : t ∈ T+}) is relatively
compact, where T+ := {t ∈ T : t ≥ 0}.
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A point x ∈ X is called almost automorphic [17, 28] in the dynamical system
(X,T, π), if the following conditions hold:

(i) x is st.L;
(ii) there exists a dynamical system (Y,T, σ) and a Bohr almost periodic point

y ∈ Y such that Ny ⊆ Nx.

A motion π(·, x) of dynamical system (X,T, π) is called stationary (respectively,
τ -periodic, quasi-periodic, Bohr almost periodic, almost automorphic, recurrent in
the sense of Birkhoff, Levitan almost periodic, almost recurrent, Poisson stable) if
the point x ∈ X is so.

2.2. Shift Dynamical Systems, Levitan/Bohr Almost Periodic and Al-
most Automorphic Functions. Below we recall a general method of construc-
tion of dynamical systems on spaces of continuous functions. In this way, we will
obtain many well-known dynamical systems on some functional spaces (see, for
example, [2, 23, 25]).

Let (X,T, π) be a dynamical system on the complete metric space X, Y be a com-
plete pseudo metric space, and P be a family of pseudo metrics on Y . We denote
by C(X,Y ) the family of all continuous functions f : X → Y equipped with the
compact-open topology. This topology is given by the following family of pseudo
metrics {dpK} (p ∈ P, K ∈ C(X)), where

dpK(f, g) := sup
x∈K

p(f(x), g(x))

and C(X) denotes the family of all compact subsets of X. For all τ ∈ T we define
the mapping στ : C(X,Y ) → C(X,Y ) by the following equality: (στf)(x) :=
f(π(τ, x)), x ∈ X. We note that the family of mappings {στ : τ ∈ T} possesses
the next properties:

a. σ0 = IdC(X,Y );
b. στ1 ◦ στ2 = στ1+τ2 , for all τ1, τ2 ∈ T;
c. στ is continuous for all τ ∈ T.

Lemma 2.3. [7] The mapping σ : T×C(X,Y ) → C(X,Y ), defined by the equality
σ(τ, f) := στf (f ∈ C(X,Y ), τ ∈ T), is continuous.

Corollary 2.4. The triple (C(X,Y ),T, σ) is a dynamical system on C(X,Y ).

Consider now two examples of dynamical systems of the form (C(X,Y ),T, σ), which
are useful in the applications.

Example 2.5. LetX = T, and denote by (X,T, π) a dynamical system on T, where
π(t, x) := x+t. The dynamical system (C(T, Y ),T, σ) is called Bebutov’s dynamical
system [2, 23, 25] (a dynamical system of translations, or shifts dynamical system).

It is said that the function φ ∈ C(T, Y ) possesses a property (A), if the motion
σ(·, φ) : T → C(T, Y ), generated by this function, possesses this property in the
Bebutov dynamical system (C(T, Y ),T, σ). As property (A) we can take periodicity,
quasi-periodicity, Bohr/Levitan almost periodicity, almost automorphy, recurrence,
pseudo recurrence, Poisson stability etc.
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Example 2.6. Let X := T × W , where W is a metric space, and let (X,T, π)
denote a dynamical system on X defined in the following way: π(t, (s, w)) :=
(s+ t, w). Using the general method proposed above, we can define on C(T×W,Y )
a dynamical system of translations (C(T×W,Y ),T, σ).

The function f ∈ C(T × W,Y ) is called Bohr/Levitan almost periodic (quasi-
periodic, recurrent, almost automorphic, etc) in t ∈ T, uniformly w.r.t. w on
every compact subset from W , if the motion σ(·, f) is Bohr/Levitan almost peri-
odic (quasi-periodic, recurrent, almost automorphic, etc.) in the dynamical system
(C(T×W,Y ),T, σ).
Remark 2.7. Notice the following well-known facts.

1. Every almost automorphic point is Levitan almost periodic.

2. A Levitan almost periodic point is almost automorphic if and only if it is stable
in the sense of Lagrange.

3. Let

φ(t) :=
1

2 + sin t+ sin
√
2t

for all t ∈ R, then the point φ ∈ C(R,R) is Levitan almost periodic with respect to
Bebutov’s dynamical system (C(R,R),R, σ), but it is not almost automorphic.

2.3. Cocycles, Skew-Product Dynamical Systems and Non-Autonomous
Dynamical Systems. Let T1 ⊆ T2 be two sub-semigroups of the group R (R+ ⊆
T1).

A triplet ⟨(X,T1, π), (Y,T2, σ), h⟩, where h is a homomorphism from (X,T1, π)
onto (Y,T2, σ) (i.e., h is continuous and h(π(t, x)) = σ(t, h(x)) for all t ∈ T1 and
x ∈ X), is called a non-autonomous dynamical system.

Let (Y,T2, σ) be a dynamical system on Y , W be a complete metric space and φ be
a continuous mapping from T1×W×Y intoW , possessing the following properties:

a. φ(0, u, y) = u (u ∈W, y ∈ Y );
b. φ(t+ τ, u, y) = φ(τ, φ(t, u, y), σ(t, y)) (t, τ ∈ T1, u ∈W, y ∈ Y ).

Then the triplet ⟨W,φ, (Y,T2, σ)⟩ (or shortly φ) is called [23] a cocycle over (Y,T2, σ)
with the fiber W .

Let X := W × Y and let us define a mapping π : X × T1 → X as follows:
π((u, y), t) := (φ(t, u, y), σ(t, y)) (i.e., π = (φ, σ)). Then, it is easy to see that
(X,T1, π) is a dynamical system on X, which is called a skew-product dynamical
system [23] and h = pr2 : X → Y is a homomorphism from (X,T1, π) onto (Y,T2, σ)
and, hence, ⟨(X,T1, π), (Y,T2, σ), h⟩ is a non-autonomous dynamical system.

Thus, if we have a cocycle ⟨W,φ, (Y,T2, σ)⟩ over the dynamical system (Y,T2, σ)
with the fiberW , then it generates a non-autonomous dynamical system ⟨(X,T1, π),
(Y,T2, σ), h⟩ (X :=W ×Y ), called a non-autonomous dynamical system generated
by the cocycle ⟨W,φ, (Y,T2, σ)⟩ on (Y,T2, σ).

Non-autonomous dynamical systems (cocycles) play a very important role in the
study of non-autonomous evolutionary differential equations. Under appropriate
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assumptions, every non-autonomous differential equation generates a cocycle (a
non-autonomous dynamical system). Below we give some examples of this type
using in this paper.

Example 2.8. Let (Y,T, σ) be a dynamical system on the metric space Y (driving
system). We consider the equation

(3) u′ = F (σ(y, t), u) (y ∈ Y ),

where F ∈ C(Y × Rn,Rn). Suppose that for equation (3) the conditions for the
existence, uniqueness and extendability of solutions to R+ are fulfilled. The non-
autonomous dynamical system ⟨(X,R+, π), (Y,T, σ), h⟩ (respectively, the cocycle
⟨Rn, φ, (Y,T, σ)⟩), where X := Rn × Y , π := (φ, σ), φ(·, x, y) is the solution of (3)
and h := pr2 : X → Y , is generated by equation (3).

A solution φ(t, u, y) of equation (3) is called [25, 27] compatible (respectively, uni-
formly compatible) by the character of recurrence if Ny ⊆ Nu (respectively, My ⊆
Mu), where Nu (respectively, Mu) is the set of all sequences {tn} ⊂ R such that
{φ(t + tn, u, y} converges to φ(t, u, y) (respectively, {φ(t + tn, u, y} converges) in
the space C(T,Rn).

Remark 2.9. The sequence {φ(t + tn, u, y)} converges to the function ψ in the
space C(T,Rn) if and only if {φ(tn, u, y)} converges to ψ(0).

Example 2.10. We consider the equation

(4) u′ = f(t, u),

where f ∈ C(R × Rn,Rn). Along with equation (4) we consider the family of
equations

(5) u′ = g(t, u),

where g ∈ H(f) := {fτ : τ ∈ R}, by bar is denoted the closure in C(R × Rn,Rn)
and fτ is the τ -shift of f w.r.t. time, i.e., fτ (t, u) := f(t + τ, u) for all (t, u) ∈
R × Rn. Suppose that the function f is regular [23], i.e., for all g ∈ H(f) and
u ∈ Rn there exists a unique solution φ(t, u, g) of equation (5) defined on R+.
Denote by Y = H(f) and (Y,R, σ) a shift dynamical system on Y induced by the
Bebutov dynamical system (C(R × Rn,Rn),R, σ). Now the family of equations
(5) can be written as (3) if we take the mapping F ∈ C(Y × Rn,Rn) defined by
F (g, u) := g(0, u), for all g ∈ H(f) and u ∈ Rn.

Theorem 2.11. [25, 27] The following statements hold:

1. Let y ∈ Y be a stationary (respectively, τ -periodic, Levitan almost periodic,
almost recurrent, Poisson stable) point. If φ(t, u, y) is a compatible solution of
equation (3), then so is φ(t, u, y).

2. Let y ∈ Y be a stationary (respectively, τ -periodic, Bohr almost periodic, al-
most automorphic, recurrent, pseudo recurrent) point. If φ(t, u, y) is a uniformly
compatible solution of equation (3), then so is φ(t, u, y).
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3. Some criterion of the existence of fixed point for a semigroup of
transformations

In this section we will prove a general theorem of existence of common fixed point
for a semigroup of transformations of a compact subset K from R. This fact we
will use in Section 4 to prove the existence of comparable (respectively, uniform
comparable) motions by character of their recurrence for one dimensional non-
autonomous dynamical systems.

Denote by 2X the family of all compact subset of X equipped with the Hausdorff
metric. Let F : X 7→ 2X be a set-valued map, that is, ∅ ≠ F (x) ∈ 2X for all x ∈ X.

Definition 3.1. The mapping F : X 7→ 2X is said to be compact if the set F (M)
is compact for all M ∈ 2X , where F (M) :=

∪
{F (x) : x ∈M}.

It is well known (see, for example, [10, ChI]) that, if the map F : X 7→ 2X is upper
semi-continuous, then it is compact.

Definition 3.2. A subset M ⊆ Xis said to be:

- F -invariant, if F (M) ⊆M ;
- F -minimal if M is non-empty, F -invariant, closed and it does not contain
an own closed F -invariant subset.

Lemma 3.3. Suppose that F : X 7→ 2X , K ∈ 2X and the following conditions are
fulfilled:

(i) the set K is F -invariant;
(ii) the mapping F is compact;
(iii) F 2(x) ⊆ F (x) for all x ∈ K, where F 2(x) := F (F (x)).

Then there exists a nonempty, compact F -minimal subset M ⊆ K.

Proof. Denote by K∗ the family of all nonempty F -invariant compact subsets A ⊆
K. Note that K∗ ̸= ∅ because K ∈ K∗. It is clear that the family K∗ partially
ordered with respect to the inclusion ⊆. Namely: A1 ≤ A2 if and only if A1 ⊆ A2

for all A1, A2 ∈ K∗. If K := {Kλ : λ ∈ Λ} ⊆ K∗ is a linear ordered subfamily of
K∗, then the intersection B of subsets of the family K is nonempty, since the set
K is compact. Note that the set B is F -invariant because

F (B) = F (
∩
λ∈Λ

Kλ) ⊆
∩
λ∈Λ

F (Kλ) ⊆
∩
λ∈Λ

Kλ = B.

Thus B ∈ K∗. By Lemma of Zorn the family K∗ contains at least one minimal
element M . It is clear that M is a F -minimal set. Lemma is proved. �

Lemma 3.4. Under the conditions of Lemma 3.3 the set M ∈ 2X is F -minimal if
and only if F (x) =M for all x ∈M .

Proof. Let M ∈ 2X be F -minimal and x be an arbitrary element from M . By
conditions of Lemma we have F (F (x)) ⊆ F (x) and, consequently, the set F (x) is
an F -invariant subset. Since the set M is F -minimal, then F (x) =M .
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Let now M ′ ⊆ M be an arbitrary F -invariant, closed subset of M and x0 ∈ M ′,
then M = F (x0) ⊆M ′ and, consequently, M ′ =M . �

If K ∈ 2X , then KK denotes the collection of all maps from K to itself, provided
with the product topology, or, what is the same thing, the topology of pointwise
convergence. By Tychonoff’s theorem, KK is compact. KK has a semi-group
structure defined by the composition of maps.

Let E be a semi-group. A right ideal in E is a non-empty subset I such that EI ⊂ I,
where EI := {η ◦ ξ : ξ ∈ I, η ∈ E} and η ◦ ξ is a composition of η and ξ, i.e.,
(η ◦ ξ)(x) := η(ξ(x)) for all x ∈ K.

A minimal right ideal is one which does not properly contain a right ideal.

Remark 3.5. 1. Every compact semigroup admits at least one minimal right ideal
[1, 2].

2. Every compact semigroup E contains at least one idempotent element [1, 2], i.
e., an element u with u2 = u.

Lemma 3.6. Suppose that K ∈ 2X , E ⊆ KK be a compact sub-semigroup, then
the compact right ideal I ⊆ E is minimal if and only if Eξ = I for each ξ ∈ I.

Proof. Note that the compact semi-group I ⊆ E is a minimal right ideal if and only
if it is an F -minimal subset of E , where F (ξ) := Eξ for all ξ ∈ E . Let ξ ∈ I, then
F (ξ) ∈ 2E because the left multiplication in E ⊆ KK (i.e., the mapping ξ 7→ ξ ◦ η
for every η fixed) is continuous and E is compact. Note that

F 2(ξ) = F (F (ξ)) = EF (ξ) = EEξ ⊆ Eξ = F (ξ)

for all ξ ∈ E . Now to finish the proof it is sufficient to apply Lemma 3.4. �

Definition 3.7. Let K ∈ 2X and E ⊆ KK be a compact sub-semigroup. A subset
A ⊆ K is said to be E-invariant, if EA ⊆ A, where EA :=

∪
{ξ(A) : ξ ∈ E}.

Lemma 3.8. If A ⊆ K is a compact and E-invariant, then A contains a nonempty
compact E-minimal subset M ⊆ A.

Proof. Consider the mapping Φ : A 7→ 2A defined by the equality Φ(x) = Ex :=
{ξ(x) : ξ ∈ E}. Note that

Φ2(x) = Φ(Φ(x)) = Φ(Ex) =
∪

{Φ(ξ(x)) : ξ ∈ E} =∪
{Eξ(x) : ξ ∈ E} = EEx ⊆ Ex = Φ(x)

for all x ∈ A. By Lemma 3.3 in the set A there exists at least one nonempty
compact Φ-minimal subset A0 ⊆ A. It is clear that the set A0 is E-minimal. �

Lemma 3.9. Under the conditions of Lemma 3.3 the following conditions are equiv-
alent:

(i) the compact set M ⊆ K is E minimal;
(ii) E(x) =M for all x ∈M .
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Proof. Let M ⊆ K be a compact E-minimal set and x ∈M be an arbitrary point.
Then reasoning as well as in the proof of Lemma 3.8 we can show that the set E(x)
a nonempty, compact and E-invariant subset of K. Since the set M is E-minimal,
then E(x) =M .

Let now E(x) =M for all x ∈M . If we suppose that the compact set M is not E-
minimal, then there exists a nonempty, compact proper subset M ′ ⊂M (M ′ ̸=M)
which is F-invariant, where F(x) := E(x) for all x ∈ M . Let now x′ ∈ M ′, then
E(x′) is a nonempty, compact and F-invariant subset of M ′, i.e.,

M = E(x′) ⊆M ′ ⊆M

and, consequently M =M ′. The obtained contradiction proves our statement. �

Below we will establish the relation between the E-minimal subsets in K and the
minimal right ideals in E .

Lemma 3.10. Under the conditions of Lemma 3.3 the following statements hold:

(i) If I ⊆ E is a compact minimal right ideal and x ∈ K, then the set I(x) is
E-minimal;

(ii) If M ⊆ K is a compact E-minimal set, x ∈ M and I ⊆ E is an arbitrary
compact minimal right ideal, then M = I(x).

Proof. Let x′ ∈ I(x), then there exists ξ ∈ I such that x′ = ξ(x). Note that by
Lemma 3.6 we have Eξ = I for all ξ ∈ I and, consequently, Ex′ = Eξ(x) = I(x)
for all x′ ∈ M . Thus we have E(x′) = I(x) for all x′ ∈ I(x) and by Lemma 3.9 we
conclude that the set I(x) is E-minimal.

Let now M ⊆ K be a compact E-minimal set, x ∈ M and I ⊆ E be an arbitrary
compact minimal right ideal. Consider the nonempty compact set M ′ = I(x) ⊆
E(x) =M . Note that E(M ′) = EI(x) ⊆ I(x) because EI ⊆ I. Thus M ′ = I(x) is a
nonempty, compact and E-invariant subset of M . By E-minimality of M we obtain
I(x) =M . �

Corollary 3.11. Let K ∈ 2X be a compact subset, E ⊆ KK be a sub-semigroup,
I ⊂ E be a compact minimal right ideal of E and M ⊆ K be a nonempty compact
E-minimal subset, then M = I(x) = E(x) for all x ∈M .

Theorem 3.12. Let K ∈ 2X and E be a nonempty compact sub-semigroup of KK .
If the compact set K is one-dimensional (i.e., K ⊂ R or K is homeomorphic to a
compact subset from R) and every mapping ξ ∈ E is strictly monotone increasing,
then there exists at least one fixed point x0 ∈ K of sub-semigroup E, i.e., ξ(x0) = x0
for all ξ ∈ E.

Proof. By Lemma 3.8 the compact set K contains at least one nonempty compact
E-minimal subset M . From Corollary 3.11 we have

(6) M = E(x).

for all x ∈ M . We will show that the set M consists of a single point x0, i.e.,
M = {x0}. If we suppose that it is not true, then there exist at least two different
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points x1, x2 ∈M . Suppose, for example, that x1 < x2. Denote by α := infM and
β := supM . Since M is a compact set, then α, β ∈M and, consequently,

α ≤ x1 < x2 ≤ β.

From equality (6) we have M = E(β) and, consequently, there exists a mapping
η ∈ E such that

(7) η(β) = α.

According to the conditions of Theorem the mapping η :M 7→M is strictly mono-
tone increasing, i.e.,

(8) α ≤ η(α) < η(β) ≤ β.

From (7) and (8) we obtain α ≤ η(α) < η(β) = α. The obtained contradiction
proves our statement. Thus M = {x0} and, consequently, x0 = ξ(x0) for all
ξ ∈ E . �

Remark 3.13. 1. Note that we proved in fact that under the conditions of Theorem
3.12 every E-minimal set M consists of a single point.

2. It easy to see that Theorem 3.12 remains true if every mappings ξ ∈ E is strictly
decreasing.

3. It easy to see (reasoning as in the proof of Theorem 3.12) that Theorem 3.12
remains true also in the case when K is a subset from a partially ordered Banach
space, if the following conditions hold:

(i) K is a nonempty compact subset;
(ii) there are α, β ∈ K such that α ≤ x ≤ β for all x ∈ K;
(iii) every mapping ξ ∈ E is strict monotone increasing.

4. Comparable and uniform comparable motions by character of
recurrence

In this section we study the comparable in the sense of B. A.Shcherbacov motions of
dynamical systems by character of their recurrence. Comparability the motions by
character of their recurrence plays a very important role in the study the problem of
existence of Bohr/Levitan almost periodic (respectively, quasi-periodic, almost au-
tomorphic, almost recurrent, recurrent and Poisson stable) solutions of the different
types of evolution equations with Poisson stable coefficients.

4.1. Comparability and uniform comparability of motions in the since of
Shcherbakov. Let (X,h, Y ) be a fiber space, i.e., X and Y be two metric spaces
and h : X → Y be a homomorphism from X onto Y .

A subsetM ⊆ X is said to be conditionally relatively compact [6, 7], if the pre-image
h−1(Y ′)

∩
M of every relatively compact subset Y ′ ⊆ Y is a relatively compact

subset of X, in particularly My := h−1(y)
∩
M is relatively compact for every y.

The setM is called conditionally compact if it is closed and conditionally relatively
compact.
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Lemma 4.1. [4] Let ⟨W,φ, Y,T, σ)⟩ be a cocycle and ⟨(X,R+, π), (Y,T, σ), h⟩ be
a non-autonomous dynamical system associated by cocycle φ. Suppose that x0 :=
(u0, y0) ∈ X := W × Y and the set Q(u0,y0) := {φ(t, u0, y0) | t ∈ R} (respectively,

Q+
(u0,y0)

:= {φ(t, u0, y0) | t ∈ R+} is compact.

Then the set H(x0) := {π(t, x0) | t ∈ R} (respectively, {π(t, x0) | t ∈ R+} :=
H+(x0)) is conditionally compact.

Let ⟨(X,R+, π), (Y,T, σ), h⟩ be a non-autonomous dynamical system, M ⊆ X be a
nonempty, closed and positively invariant subset, and y ∈ Y be a positively Poisson
stable point. Denote by

E+
y := {ξ| ∃{tn} ∈ N+∞

y such that πtn |My → ξ},

where πt := π(t, ·), Xy := {x ∈ X| h(x) = y}, My := M
∩
Xy, → means the

pointwise convergence and N+∞
y := {{tn} ∈ Ny such that tn → +∞ as n→ ∞}.

Lemma 4.2. [6, 7] Let y ∈ Y be a positively Poisson stable point, ⟨(X,R+, π),
(Y,T, σ), h⟩ be a non-autonomous dynamical system and M be a conditionally com-

pact space, then E+
y is a nonempty compact sub-semigroup of the semigroup M

My
y

(w.r.t. composition of mappings).

Theorem 4.3. [10, ChVI] Let X be a conditionally compact metric space and
⟨(X,R+, π), (Y,T, σ), h⟩ be a non-autonomous dynamical system. Suppose that the
following conditions are fulfilled:

(i) The point y ∈ Y is positively Poisson stable;
(ii) lim

t→+∞
ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ Xy := h−1(y) = {x ∈ X :

h(x) = y}.

Then there exists a unique point xy ∈ Xy such that ξ(xy) = xy for all ξ ∈ E+
y .

Corollary 4.4. Let ⟨(X,R+, π), (Y,T, σ), h⟩ be a non-autonomous dynamical sys-
tem and x0 ∈ X. Suppose that the following conditions are fulfilled:

(i) the set H+(x0) := {π(t, x0) | t ∈ R+} is conditionally compact;
(ii) the point y := h(x0) ∈ Y is positively Poisson stable;
(iii) lim

t→+∞
ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ H+(x0) ∩ Xy, where Xy =

h−1(y) := {x ∈ X : h(x) = y}.

Then there exists a unique point xy ∈ H+(x0) ∩ Xy such that ξ(xy) = xy for all
ξ ∈ E+

y .

Let (X,T1, π)) and (Y,T2, σ) be two dynamical systems on the metric spaces X
and Y respectively. A point x ∈ X is called [25]–[27] comparable by the character
of recurrence with y ∈ Y if Ny ⊆ Nx.

Remark 4.5. If a point x ∈ X is comparable by the character of recurrence with
y ∈ Y and y is stationary (respectively, τ -periodic, almost recurrent, Levitan almost
periodic, Poisson stable), then the point x is also so [27].
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Corollary 4.6. Let X be a conditionally compact metric space and ⟨(X,T, π),
(Y,T, σ), h⟩ be a non-autonomous dynamical system. Suppose that the following
conditions are fulfilled:

(i) The point y ∈ Y is positively Poisson stable;
(ii) lim

t→+∞
ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ Xy := h−1(y) = {x ∈ X :

h(x) = y}.

Then there exists a unique point xy ∈ Xy which is comparable by the character of
recurrence with y ∈ Y such that

(9) lim
t→+∞

ρ(π(t, x), π(t, xy)) = 0

for all x ∈ Xy.

Corollary 4.7. Let y ∈ Y be a stationary (respectively, τ -periodic, almost recur-
rent, Levitan almost periodic, Poisson stable) point. Then under the conditions of
Corollary 4.6 there exists a unique stationary (respectively, τ -periodic, almost re-
current, Levitan almost periodic, Poisson stable) point xy ∈ Xy such that equality
(9) holds for all x ∈ Xy.

Proof. This statement directly follows from Corollary 4.6 and Remark 4.5. �

Denote by M+∞
y := {{tn} ∈ My| such that tn → +∞ as n→ ∞}.

A point x ∈ X is called [25]–[27] uniformly comparable by the character of recur-
rence with y ∈ Y if My ⊆ Mx.

Remark 4.8. Let y ∈ Y be a positively Poisson stable point of dynamical system
(Y,T, σ) and x ∈ X be a point of dynamical system (X,T, π), then the following
statements hold [5]:

(i) Ny ⊆ Nx if and only if N+∞
y ⊆ N+∞

x ;
(ii) My ⊆ Mx if and only if the following two inclusions take place:

(a) M+∞
y ⊆ M+∞

x ;

(b) N+∞
y ⊆ N+∞

x .

In the proof of this statement one use some ideas from [9, ChI] and [27, ChII].

Remark 4.9. 1. If a point x ∈ X is uniformly comparable by the character of
recurrence with y ∈ Y and y is stationary (respectively, τ -periodic, almost periodic,
almost automorphic, recurrent, pseudo recurrent, Poisson stable), then the point x
is also so [25]–[27].

2. Every almost automorphic (respectively, almost periodic) point is recurrent.

Theorem 4.10. [10, ChVI] Let X be a compact metric space and ⟨(X,R+, π),
(Y,T, σ), h⟩ be a non-autonomous dynamical system. Suppose that the following
conditions are fulfilled:

(i) The point y ∈ Y is recurrent;
(ii) lim

t→+∞
ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ X such that h(x1) = h(x2).
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Then there exists a unique point xy ∈ Xy which is uniformly comparable by the
character of recurrence with y ∈ Y such that (9) takes place for all x ∈ Xy.

Corollary 4.11. Let y ∈ Y be a stationary (respectively, τ -periodic, Bohr almost
periodic, recurrent, pseudo recurrent, Poisson stable) point. Then under the con-
ditions of Theorem 4.10 there exists a unique stationary (respectively, τ -periodic,
Bohr almost periodic, recurrent, pseudo recurrent, Poisson stable) point xy ∈ Xy

such that (9) is fulfilled for all x ∈ Xy.

4.2. Comparable and uniform comparable motions by character of their
recurrence for one-dimensional non-autonomous dynamical systems. Con-
sider a non-autonomous dynamical system ⟨(X,R+, π), (Y,T, σ), h⟩. In this section
everywhere we suppose that it is one-dimensional, i.e., it satisfies the following
condition:

Condition (D1): For all y ∈ Y the fiber Xy = R × {y} or Xy is homeomorphic
to R× {y}.

Let xi = (ui, y) ∈ Xy, then we will say that x1 ≤ x2, if u1 ≤ u2. If x1 ≤ x2 and
x1 ̸= x2, then we will say that x1 < x2.

Remark 4.12. 1. It easy to see that under condition (D1), if x1 ≤ x2 then
π(t, x1) ≤ π(t, x2)) for all x1, x2 ∈ Xy, y ∈ Y and t ∈ R+.

2. If (X,R+, π) is a skew-product dynamical system, i.e., X = R×Y and π = (φ, σ),
then ⟨(X,R+, π), (Y,T, σ), h⟩ satisfies condition (D1), if the cocycle φ is monotone
increasing. This means that x1 ≤ x2 (x1, x2 ∈ R) implies φ(t, x1, y) ≤ φ(t, x2, y)
for all (t, y) ∈ R+ × Y .

Let y ∈ Y . The fiber Xy is said to be distal, if

inf
t∈R+

ρ(π(t, x1), π(t, x2)) > 0

for all x1, x2 ∈ Xy such that x1 ̸= x2.

Theorem 4.13. Suppose that M ⊆ X and the following conditions are fulfilled:

(i) M is positively invariant and conditionally compact;
(ii) the point y ∈ Y is positively Poisson stable;
(iii) My :=M

∩
Xy ̸= ∅;

(iv) the fiber My is distal.

Then there exists a point py ∈My such that ξ(py) = py for all ξ ∈ E+
y .

Proof. By Lemma 4.2 E+
y is a nonempty, compact sub-semigroup of M

My
y . Under

the conditions of Theorem 4.13 the set My is nonempty, compact and invariant
with respect to semigroup E+

y . Now we will establish that every mapping ξ ∈ E+
y

is strictly increasing. In fact, let x1, x2 ∈ My and x1 < x2.Since the fiber My is
distal, then there exists a positive number d = d(x1, x2) such that

(10) pr1(π(t, x2)− π(t, x1)) ≥ d

for all t ∈ R+, where by pr1(x) is denoted the first projection of x ∈ Xy. Let ξ ∈ E+
y

then there exists {tn} ⊂ R+ such that tn → +∞ as n→ ∞ and ξ(x) = lim
n→∞

π(tn, x)
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for all x ∈ My. From (10) we obtain ξ(x2) > ξ(x1). Now to finish the proof of
Theorem 4.13 it is sufficient to apply Theorem 3.12. �

Remark 4.14. Note that under the conditions of Theorem 4.13 if the set My is
E+
y (M)-minimal, then it consists of a single point.

This statement can be proved using the same arguments as in the proof of Theorem
4.13 and taking into consideration Remark 3.13.

Let y ∈ Y . A point x0 ∈ Xy (respectively, a fiber Xy) is said to be uniformly stable,
if for every ε > 0 there exists a positive number δ = δ(ε, x0) > 0 (respectively,
there exists a positive number δ = δ(ε) > 0) such that ρ(π(t0, x), π(t0, x0)) < δ
(respectively, ρ(π(t0, x1), π(t0, x2)) < δ (x1, x2 ∈ Xy)) implies ρ(π(t, x), π(t, x0)) <
ε (respectively, ρ(π(t, x1), π(t, x2)) < ε) for all t ≥ t0.

Lemma 4.15. Suppose that the following conditions are fulfilled:

(i) the fiber Xy is a nonempty compact subset of X;
(ii) every point x0 ∈ Xy is uniformly stable.

Then the fiber Xy is uniformly stable.

Proof. Let ε be an arbitrary positive number, x0 ∈ Xy and δ = δ(ε, x0) be a
positive number chosen from the uniform stability of the point x0. Then the family
of open subsets {B(x0, δ)}x0∈Xy forms an open covering of Xy, where B(x0, δ) :=
{x ∈ Xy : ρ(x, x0) < δ}. Since Xy is a compact set and the metric space X is
complete from the covering {B(x0, δ)}x0∈Xy we can extract a finite sub-covering

{B(xi, δ)}ki=1. Denote by δ(ε) := min{δ(ε, xi) : i = 1, 2, . . . , k}, then it easy to
check that ρ(π(t0, x1), π(t0, x2)) < δ (x1, x2 ∈ Xy) implies ρ(π(t, x1), π(t, x2)) < ε
for all t ≥ t0. �

Theorem 4.16. Suppose that M ⊆ X and the following conditions are fulfilled:

(i) M is positively invariant and conditionally compact;
(ii) the point y ∈ Y is positively Poisson stable;
(iii) My :=M

∩
Xy ̸= ∅;

(iv) the fiber My is uniformly stable.

Then there exists a point py ∈My such that ξ(py) = py for all ξ ∈ E+
y .

Proof. Under the conditions of Theorem 4.16 the setMy is nonempty, compact and
invariant with respect to semigroup E+

y . By Lemma 3.8 there exists a E+
y -minimal

subset M ⊆ My. Denote by α := min{x ∈ R| (x, y) ∈ M} and β := max{x ∈
R| (x, y) ∈ M}. Since the set M is compact, then (α, y), (β, y) ∈ M. We will show
that there exists a number x ∈ K such that py := (x, y) ∈ M and ξ(py) = py for
all ξ ∈ E+

y . In fact. Since the set M is E+
y -minimal, then there exists ξ ∈ E+

y such
that ξ(α, y) = (β, y) or equivalently, ξy(α) = β, where

(11) ξ(x, y) := (ξy(x), y)

for all x ∈ Ky := {x ∈ K : such that (x, y) ∈ M}. Note that α ≤ ξy(α) ≤ ξy(β) ≤ β
and the mapping ξy : Ky 7→ Ky is monotone increasing, i.e., x1 ≤ x2 implies
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ξy(x1) ≤ ξy(x2) for all x1, x2 ∈ Ky. Thus we have

β = ξy(α) ≤ ξy(β) ≤ β

and, consequently, ξy(α) = ξy(β) = β. On the other hand, if x ∈ Ky, then β =
ξy(α) ≤ ξy(x) ≤ ξy(β) = β. Thus we obtain the equality

(12) ξy(x) = β

for all x ∈ Ky. Since ξ ∈ E+
y (the mapping ξ is defined by equality (11)), then there

exists a sequence {tn} ∈ N+∞
y such that

(13) π(tn, (x, y)) 7→ (β, y)

as n → ∞ for all (x, y) ∈ M. From (13) and uniform stability of the fiber My it
follows that

(14) lim
t→+∞

ρ(π(t, (x, y)), π(t, (β, y))) = 0

for all x ∈ R such that (x, y) ∈ My. From equality (14) and Theorem 4.3 we
obtain that there exists a unique common fixed point py ∈ M of the semigroup
E+
y . Taking into account (12) we conclude that py = (β, y). Now we will show that

α = β. In fact, since the set M is E+
y -minimal, then there exists a mapping η ∈ E+

y

such that η(β, y) = (α, y) and, consequently, η(ξ(α, y)) = (α, y). Since η ◦ ξ ∈ E+
y

and under condition (14) py is a unique fixed point of the mapping η ◦ ξ ∈ E+
y , then

(α, y) = py and, consequently, α = β, i.e., the minimal set M consists of a single
point {py}. �

Remark 4.17. For the non-autonomous dynamical systems ⟨(X,R+, π), (Y,T, σ), h⟩
with two-sided base (Y,T, σ), i.e., in the case when T = R, we can prove that The-
orem 4.16 follows from Theorem 4.13. In reality it can be proved that under the
conditions of Theorem 4.16 from the uniform stability of the fiber My it follows its
distality. In general case (T = R+) this is an open question.

Corollary 4.18. Under the conditions of Theorem 4.16 there exists a point p ∈My

which is comparable by character of recurrence with the point y.

Proof. By Theorem 4.16 there exists a fixed point p ∈My of the semigroup E+
y . To

prove this statement it is sufficient to show that the point p is required. In fact.
Let {tn} ∈ Ny, then {tn} ∈ Np. If we suppose that it is not true, then there are two
subsequences {tni

k
} ⊂ {tn} (i = 1, 2) such that lim

k→+∞
π(tni

k
, p) = pi (i=1,2) and

p1 ̸= p2. Without loss of generality we may suppose that the sequences {π(tni
k
, ·)}

are convergent in M
My
y . Denote by ξi := lim

k→+∞
π(tni

k
, ·), then ξi ∈ E+

y and we have

p1 = ξ1(p) = p = ξ2(p) = p2. The obtained contradiction completes the proof our
statement. �

Corollary 4.19. Let y ∈ Y be a stationary (respectively, τ -periodic, almost recur-
rent, Levitan almost periodic, recurrent, Poisson stable) point. Then under the con-
ditions of Corollary 4.18 there exists a unique stationary (respectively, τ -periodic,
almost automorphic, almost recurrent, Levitan almost periodic, recurrent, Poisson
stable) point p ∈My.

Proof. This statement directly follows from Corollary 4.18 and Remark 4.5. �
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Theorem 4.20. LetM be a compact positively invariant subset of non-autonomous
dynamical system ⟨(X,R+, π), (Y,T, σ), h⟩. Suppose that the following conditions
are fulfilled:

(i) Y is a compact minimal set;
(ii) for every q ∈ Y the fiber Mq is uniformly stable.

Then there exists a point p ∈ My which is uniformly comparable by the character
of recurrence with y ∈ Y , i.e., My ⊆ Mp.

Proof. By Theorem 4.16 there exists a fixed point p ∈ My of the semigroup E+
y .

In view of Corollary 4.19 the point p is recurrent. To proof this statement it is
sufficient to prove that the point p is required. In fact. LetM := {π(t, p) : t ∈ R+}
then it is a compact minimal set because the point p is recurrent. We will show
that Mq := M ∩ Xq (for all q ∈ H(y) := {σ(t, y) : t ∈ T}) consists of a single
point. If we suppose that it is not true then there exist q0 ∈ H(y) and x1, x2 ∈
Mq0 such that x1 ̸= x2. By Corollary 4.18 there exists a point xq0 ∈ Mq0 which
is comparable by the character of recurrence with the point q0. Without loss of
generality we may suppose that xq0 = x1. Since the set M is minimal, then there
exists a sequence {tn} ∈ N+∞

q0 such that {π(tn, x1)} → x2. On the other hand

taking into consideration the inclusion N+∞
q0 ⊆ N+∞

x1
we have {π(tn, x1)} → x1

and, consequently, x1 = x2. The obtained contradiction prove our statement.

Now we will prove that My ⊆ Mp. Let {tn} ∈ My, then {tn} ∈ Mp. If we suppose
that it is not true, then there are two subsequences {tni

k
} (i = 1, 2) such that

lim
k→+∞

π(tni
k
, p) = xi (i=1,2) and x1 ̸= x2. Denote by q0 := lim

n→+∞
σ(tn, y), then

q0 ∈ H(y) and x1, x2 ∈ Mq0 . On the other hand before it was proved that Mq

consists of a single point for all q ∈ H(y). The obtained contradiction completes
the proof of Theorem. �

Remark 4.21. Note that under the conditions of Theorem 4.20 if the set My is
E+
y -minimal, then it consists of a single point {p} which is uniformly comparable

by character of recurrence with y.

This statement can be proved using the same arguments as in the proof of Theorem
4.20 and taking into consideration Remark 3.13.

Corollary 4.22. Let y ∈ Y be a stationary (respectively, τ–periodic, almost peri-
odic, almost automorphic, recurrent, pseudo recurrent, Poisson stable) point. Then
under the conditions of Theorem 4.20 there exists a stationary (respectively, τ–
periodic, almost periodic, almost automorphic, recurrent, pseudo recurrent, Poisson
stable) point p ∈My and My ⊆ Mp.

Proof. This statement directly follows from Theorem 4.20 and Remark 4.9. �

Remark 4.23. Note that for the almost periodic (respectively, almost automorphic)
point y, the inclusion My ⊆ Mp is equivalent to the inclusion Mp ⊆ My [5], where
My is the Fourier modulus of the almost periodic (respectively, almost automorphic
[28, ChI]) point y.
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A positively invariant subset M ⊆ X is said to be distal with respect to non-
autonomous dynamical systems ⟨(X,R+, π), (Y,T, σ), h⟩ if

inf
t∈R+

ρ(π(t, x1), π(t, x2)) > 0

for all x1, x2 ∈My (x1 ̸= x2) and y ∈ Y .

Theorem 4.24. LetM be a compact positively invariant subset of non-autonomous
dynamical system ⟨(X,R+, π), (Y,T, σ), h⟩. Suppose that the following conditions
are fulfilled:

(i) the point y ∈ Y is recurrent;
(ii) the set M is distal.

Then there exists a point p ∈ My which is uniformly comparable by the character
of recurrence with y ∈ Y .

Proof. By Theorem 4.13 there exists a fixed point p ∈ My of the semigroup E+
y .

Further this statement can be proved using absolutely the same arguments as in
the proof of Theorem 4.20. �

Remark 4.25. For the non-autonomous dynamical systems ⟨(X,T, π), (Y,R, σ), h⟩
with two-sided compact minimal base (Y,R, σ) the following fact is well known (see,
for example, B. M. Levitan and V. V. Zhikov [17, ChVII]): the compact positively
invariant uniformly stable set M ⊆ X is distal. From this fact it follows that
Theorem 4.24 implies Theorem 4.20. In general case (i.e., when the base dynamical
system (Y,R+, σ) is one-sided) this question remains open.

Remark 4.26. 1. Note that the algebraic approach using ideals and idempotents
was originally proposed in the works of R. Ellis [12].

2. Application of the Ellis semigroup theory to non-autonomous systems (non-
autonomous ordinary differential equations, functional differential equations, partial
differential equations) with compact base (driving system) has already been made in
many works including those due to I. Bronsteyn [2], D. Cheban [7], R. Ellis and R.
Johnson [13], R. Johnson [16], R. Sacker and G. Sell [19]-[21], G. Sell,W. Shen and
Y. Yi [24], W. Shen and Y. Yi [28], V. Zhikov and B. Levitan [17]. As for the non-
autonomous systems with noncompact base (driving system), the Ellis semigroup
theory was applied in the works of D. Cheban [6]-[8].

5. Scalar differential equations

In this section we study the problem of existence of Bohr/Levitan almost periodic,
almost automorphic, recurrent and Poisson stable solutions for scalar differential
equation of the form

(15) x′ = f(σ(t, y), x) (y ∈ Y ),

where f ∈ C(Y × R,R), Y is a complete metric space and (Y,T, σ) is a dynamical
system.
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Recall [23] that the function f ∈ C(Y ×R,R) (respectively, equation (15)) is called
regular, if for every (x, y) ∈ R×Y equation (15) admits a unique solution φ(t, x, y)
defined on R+ passing through the point x at the initial moment, i.e., φ(0, x, y) = x.

A solution φ(t, x0, y) of equation (15) is called uniformly stable if for every ε > 0
there exists a δ = δ(x0, ε) > 0 such that |φ(t0, x, y) − φ(t0, x0, y)| < δ (t0 ≥ 0)
implies |φ(t, x, y)− φ(t, x0, y)| < ε for all t ≥ t0.

Consider a cocycle ⟨R, φ, (Y,T, σ)⟩ generated by equation (15) (see Example 2.8),
the skew-product dynamical system (X,R+, π) generated by cocycle φ (i.e., X =
R × Y and π = (φ, σ)) and the non-autonomous dynamical system ⟨(X,R+, π),
(Y,T, σ), h⟩ associated by φ, where h = pr2 : X 7→ Y .

Remark 5.1. It easy to check that the solution φ(t, x0, y) of equation (15) is uni-
formly stable if and only if the point (x0, y) ∈ Xy of non-autonomous dynamical
system (generated by cocycle φ) is uniformly stable.

Lemma 5.2. Suppose that φ(t, x0, y) is a bounded on R+ and uniformly stable
solution of equation (15), then the following statements hold:

(i) for all q ∈ ωy every point (x, q) ∈ Xq

∩
ω(x0,y) of non-autonomous dy-

namical system ⟨(X,T, π), (Y,T, σ), h⟩ (generated by equation (15)) is
uniformly stable, where ω(x0,y) is the ω-limit set of point (x0, y);

(ii) for every q ∈ ωy the set Mq := Xq

∩
ω(x0,y) is nonempty, compact and

uniformly stable.

Proof. Note that the first statement of Lemma was proved in [14, ChXI,Lemma
11.8] (see also [2, ChIV], [3] and [17, ChVII]) in the case, when the point y is
almost periodic. In the general case it can be proved using the same arguments
and we omit the details.

If q ∈ ωy, then it easy to see that under the conditions of Lemma the set Mq

is nonempty. By Lemma 4.1 the set H+(x0, y) (the closure of the positive semi-
trajectory of the point (x0, y)) is conditionally compact and, consequently, every
set Mq is compact. According to the first item every point from Mq is uniformly
stable. Since the setMq is compact, then by Lemma 4.15 it is uniformly stable. �

Corollary 5.3. Under the conditions of Lemma 5.2 if the point y ∈ Y is positively
Poisson stable, then the setMy := Xy

∩
ω(x0,y) is nonempty, compact and uniformly

stable.

Proof. This statement directly follows from Lemma 5.2 because in this case y ∈
ωy. �

Theorem 5.4. Suppose that the following conditions are fulfilled:

(i) the function F ∈ C(Y × R,R) is regular;
(ii) the point y ∈ Y is positively Poisson stable;
(iii) equation (15) admits a bounded on R+ solution φ(t, x0, y);
(iv) the solution φ(t, x0, y) of equation (15) is uniformly stable.

Then the following statements hold;
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(i) there exists at least one solution φ(t, p, y) which is compatible by character
of recurrence with the point y, i.e., N+∞

y ⊆ N+∞
p ;

(ii)

(16) lim
t→+∞

|φ(t, x0, y)− φ(t, p, y)| = 0

Proof. Let ⟨R, φ, (Y,T, σ)⟩ be a cocycle generated by differential equation (15) (see
Example 2.8), (X,R+, π) be the skew-product dynamical system generated by co-
cycle φ (i.e., X = R × Y and π = (φ, σ)) and ⟨(X,R+, π), (Y,T, σ), h⟩ be the
non-autonomous dynamical system associated by φ. Denote by H+(x0, y) the clo-
sure of the positive semi-trajectory of the point (x0, y) ∈ X. Note that the set
M := ω(x0,y) is closed and positively invariant, by Lemma 5.2 under the conditions
of Theorem 5.4 the setMy = Xy

∩
ω(x0,y) is nonempty, compact and uniformly sta-

ble. Now to finish the proof of the first statement it is sufficient to apply Theorem
4.16 and Corollary 4.18.

Now we will establish equality (16). Since (p, y) ∈ ω(x0,y), then there exists a

sequence {tn} ∈ N+∞
y such that π(tn, (x0, y)) → (p, y). Taking into consideration

the inclusion N+∞
y ⊆ N+∞

(p,y) we will have

(17) |φ(tn, x0, y)− φ(tn, p, y)| → 0

as n→ ∞. From (17) and the uniform stability of the set My we obtain (16). �

Recall (see, for example, [9, ChI]) that a function φ ∈ C(R+,R) is said to be
asymptotically stationary (respectively, τ -periodic, quasi-periodic, almost periodic,
almost automorphic, Levitan almost periodic, almost recurrent, recurrent, Poisson
stable) if there exists a stationary (respectively, τ -periodic, quasi-periodic, almost
periodic, almost automorphic, Levitan almost periodic, almost recurrent, recurrent,
Poisson stable) function p ∈ C(R+,R) such that lim

t→+∞
|φ(t)− p(t)| = 0.

Corollary 5.5. Under the conditions of Theorem 5.4 if the point y ∈ Y is station-
ary (respectively, τ -periodic, almost automorphic, Levitan almost periodic, almost
recurrent, recurrent, Poisson stable), then the following statements hold:

(i) equation (15) admits at least one stationary (respectively, τ -periodic, al-
most automorphic, Levitan almost periodic, almost recurrent, recurrent,
Poisson stable) solution;

(ii) the solution φ(t, x0, y) is asymptotically stationary (respectively, τ -periodic,
almost automorphic, Levitan almost periodic, almost recurrent, recurrent,
Poisson stable).

Proof. This statement follows from Theorem 5.4, Corollary 4.19 and Theorem 2.11
(item 1.). �

Theorem 5.6. Suppose that the following conditions are fulfilled:

(i) the function F ∈ C(Y × R,R) is regular;
(ii) the point y ∈ Y is recurrent;
(iii) equation (15) admits a bounded on R+ solution φ(t, x0, y);
(iv) the solution φ(t, x0, y) of equation (15) is uniformly stable.
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Then the following statements hold:

(i) there exists at least one solution φ(t, p, y) which is uniformly compatible by
character of recurrence with the point y, i.e., M+∞

y ⊆ M+∞
p and N+∞

y ⊆
N+∞

p ;
(ii)

lim
t→+∞

|φ(t, x0, y)− φ(t, p, y)| = 0

Proof. This statement can be proved using the same arguments as in the proof of
Theorem 5.4. But unless of Theorem 4.16 and Corollary 4.18 we need to apply in
this case respectively Theorem 4.20 and Corollary 4.22. �

Corollary 5.7. Under the conditions of Theorem 5.6 if the point y ∈ Y is station-
ary (respectively, τ -periodic, quasi-periodic with the frequency ν = (ν1, ν2, . . . , νm),
almost automorphic, almost periodic, recurrent, pseudo recurrent), then the follow-
ing statements hold:

(i) equation (15) admits at least one stationary (respectively, τ -periodic, quasi-
periodic with the frequency ν = (ν1, ν2, . . . , νm), almost automorphic,
almost periodic, recurrent, pseudo recurrent) solution φ(t, p, y). If the point
y ∈ Y is almost periodic (respectively, almost automorphic), then we have
the inclusion of Fourier modulus Mp ⊆ My, where Mp is the Fourier
modulus of the solution φ(t, p, y).

(ii) the solution φ(t, x0, y) is asymptotically stationary (respectively, τ -periodic,
quasi-periodic with the frequency ν = (ν1, ν2, . . . , νm), almost automor-
phic, almost periodic, recurrent, pseudo recurrent).

Proof. This statement follows from Theorem 5.6, Corollary 4.22 (see also Remark
4.23) and Theorem 2.11 (item 2.). �

Remark 5.8. 1. In the case, when T = R and the point y ∈ Y is almost periodic,
Corollary 5.7 precises the results of V. V. Zhikov [30] (see also [17, ChVII]) and R.
Sacker and G. Sell [19] (see also [14, ChXI]).

2. In the case, when T = R and the point y ∈ Y is almost automorphic, Corollary
5.7 coincides with the result of W. Shen and Y. Yi [28, PartIII, Theorem B].

3. It is well known (see, for example, [14, ChXI] and [29, ChIII]) that the bounded on
R+ uniformly stable solution φ of periodic equation x′ = F (t, x) (F ∈ C(R×Rn,Rn)
is a regular function) is asymptotically almost periodic. Thus Corollary 5.7 gener-
alizes this statement for scalar almost periodic (respectively, almost automorphic,
Levitan almost periodic, almost recurrent, recurrent, Poisson stable) equations.
For two-dimensional almost periodic equations the last statement is false. The
last fact can be confirmed by the following example: z′ = ia(t)z, where i2 = −1,
z ∈ C and a ∈ C(R,R) is an almost periodic function with unbounded primitive

A(t) :=
∫ t

0
a(s)ds. Every nontrivial solution of this equation is bounded (on R) and

uniformly stable, but this equation does not admit nontrivial asymptotically almost
periodic (respectively, almost periodic [2, ChIV]) solutions.
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Let φ(t, x0, y) be a bounded on R+ and Q := φ(R+, x0, y), where by bar is denoted
the closure in R. Let q ∈ Y . We will say that the bounded (on R+) solutions of
equation

(18) x′ = F (σ(t, q), x)

are distal in Q, if for all x1, x2 ∈ Q (x1 ̸= x2) with φ(t, xi, q) ∈ Q for all t ≥ 0 we
have inf{|φ(t, x1, q)− φ(t, x2, q)| : t ∈ R+} > 0.

Remark 5.9. 1. Theorem 5.4 and Corollary 5.5 remain true if we replace the
condition of uniform stability of solution φ(t, x0, y) by distality in Q of bounded
solutions of equation (15).

2. Theorem 5.6 and Corollary 5.7 remain true if we replace the condition of uni-
form stability of solution φ(t, x0, y) by distality in Q of bounded solutions of every
equation (18) (for all q ∈ Y ).
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